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Abstract: In the almost 30 years that have passed since the postulation of the “Developmental
Origins of Health and Disease” theory, it has been clearly demonstrated that a mother’s dietary
habits during pregnancy have potential consequences for her offspring that go far beyond in utero
development. Protein malnutrition during pregnancy, for instance, can cause severe alterations
ranging from intrauterine growth retardation to organ damage and increased susceptibility to
hypertension, diabetes mellitus, cardiovascular diseases and chronic kidney disease (CKD) later in
life both in experimental animals and humans. Conversely, a balanced mild protein restriction in
patients affected by CKD has been shown to mitigate the biochemical derangements associated with
kidney disease and even slow its progression. The first reports on the management of pregnant CKD
women with a moderately protein-restricted plant-based diet appeared in the literature a few years
ago. Today, this approach is still being debated, as is the optimal source of protein during gestation in
CKD. The aim of this report is to critically review the available literature on the topic, focusing on the
similarities and differences between animal and clinical studies.
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1. Introduction

“Der Mensch ist was er isst” (Man is what he eats) wrote Feuerbach and his observation is often
cited to underline how important food is to maintaining health [1]. Moreover, our health is also
influenced by what our mothers ate during pregnancy, and maternal diet appears to be a factor in
some diseases.

The quantity (under- and over-nutrition) and quality of foods we eat, as well as our intake of
vitamins and micronutrients, play roles that are only partially understood.

Lessons from disasters such as the famine that affected the Dutch during the Second World
War [2,3] and the one that occurred during China’s Great Leap Forward [4,5] in the 1960s, have clearly
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shown that brutal deprivation, even when of relatively short duration, is not without long-term
consequences on kidney function. Proteinuria, hypertension and cardiovascular and kidney diseases
are all reported to increase when food intake is grossly inadequate.

Conversely, overnutrition in pregnancy is associated, in the short term, with an increase in the
hypertensive disorders of pregnancy and, in the long term, almost paradoxically with the same diseases
we find in an under-nourished population [6–9].

Placental stress is likely to be the common pathway determining the long-term effect of these two
opposite challenges (Figure 1) [10].
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Figure 1. Effect of maternal diet during pregnancy on offspring. Adapted from Chavatte-Palmer P,
Tarrade A, Rousseau-Ralliard D: Diet Before and During Pregnancy and Offspring Health: The
Importance of Animal Models and What Can Be Learned from Them. International Journal of
Environmental Research and Public Health 2016, 13. SGA: small for gestational age; AGA: adequate for
gestational age; LGA: large for gestational age.

Analyzing the effect of the different factors in increasing the long-term risk of kidney diseases is
not easy. Human nutrition is extremely complex, and is not limited to a mere series of protein, lipid,
carbohydrate and energy counts. While during disasters undernutrition usually consists in protein
deprivation, in some diseases, such as anorexia, protein intake is less affected and an energy deficit is
more evident.

On the other hand, overnutrition, especially in Western countries, is associated with poor quality
food, and the effects of quantity, distribution, quality and contaminants become difficult to assess.
Furthermore, energy balance and gene expression are known to depend upon the intake of proteins and
fat, and this modulation may have different effects on people of different genetic backgrounds [11,12].

If we are to answer at least some of these questions, we need studies employing animal models,
as this will enable us to study the effects of single nutrients or of single contaminants (such as drugs or
preservative agents), on a genetically identical population.

With regard to the issue discussed, the aim of the present review is to assess the role maternal
protein restriction during pregnancy has in determining the offspring’s future kidney health. The subject
is a controversial one, as laboratory studies, mainly on rodents, usually apply a severe protein restriction
and result in an increased risk of metabolic and kidney diseases in the offspring, while studies on
humans are mainly performed with a moderate protein restriction and generally result in a lower risk
of pregnancy complications. Conversely, we lack studies on moderate protein restriction in animals,
while studies on very low protein intake in humans are usually set in a context of famine or poor access
to food.
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For this reason, the review is divided into two parts: the first one regards research using animal
models, while the second focuses on studies of humans. This narrative revision will analyze the
following issues:

- Protein-restricted diets in human pregnancy and their link with chronic kidney disease (CKD);
- Rodents:

# Main experimental designs;
# Commonly used diet formulations;
# Models of protein deprivation and their effects on offspring’s kidney health.

- Humans:

# The effect on offspring of moderate protein restriction in pregnant chronic kidney disease
(CKD) patients;

# The relevance of different sources of protein and whether it is scientifically acceptable to
apply observations derived from animal studies to humans.

2. The Various Aspects of Protein-Restricted Diets in Pregnancy in Humans, and Their Link
with CKD

At least for nephrologists, protein restriction is not synonymous with protein deprivation, and is
usually considered to be an unintended, or extreme and unbalanced reduction in protein intake; in
humans this is mainly due to lack of access, usually for economic reasons, to protein-rich foods, mainly
of animal origin. In this regard, diets lacking protein are usually also deficient in other important micro
and macronutrients, even though they sometimes supply enough calories.

There is a significant overlap between diets that result from a lack of resources and some vegan
and plant-based diets. The deficits associated with such diets are highly variable, poorly known and
depend on geographic and social context. Iron and Vitamin B12 deficits are the ones most frequently
found. Overall, such diets are associated with unfavorable pregnancy outcomes, increased risk of
preterm delivery, small for gestational age babies and impaired fetal growth. All these elements are,
in turn, associated with a higher risk of metabolic disorders and cardiovascular and renal diseases
in adulthood.

Anorexia represents a “rich” counterpart of restricted and unbalanced diets; intake of nutrients,
and related deficits, vary widely: they can be multiple in the case of very restricted, rigid, repetitive
diets, or there may not be any in the case of associated compulsory vitamin or micronutrient intake.
The effect on offspring’s health is mainly mediated by a higher incidence of preterm delivery [13].

Hyperemesis gravidarum, usually limited to the first weeks of gestation, can be considered another
form of abrupt food deprivation, often associated with severe electrolyte imbalance. Pre-renal acute
kidney injury may negatively influence the mother’s health, but the effect on the fetus is usually
minor [14].

Outside of pregnancy, moderate to severe protein restriction, when carefully controlled and
supplemented if necessary, is presently recognized as the starting point for the clinical management of
CKD [15].

Few experiments, most of them carried out by our multicentric group, have investigated the
dietary management of women with severe CKD or relevant proteinuria in pregnancy. The diets were
usually moderately restricted (protein intake between 0.6 and 0.8 g/kg/day) and were plant based [16].
Supplementation with vitamins, amino and ketoacids was usually added. The somewhat surprising
result of better intrauterine growth in pregnant chronic kidney disease (CKD) patients on such diets
poses a series of questions, so far unanswered. Of these, the most important is whether the effect on
maternal kidney function and on intrauterine growth is linked to protein restriction or to different
protein sources (plant-based versus animal), or if it is at least partially caused by the avoidance of food
additives and preservation agents frequently used in Western countries, as was suggested by two
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recent case studies [17]. The evidence from studies of patients following well-planned plant-based
diets in pregnancy is reassuring, but the only clearly proven advantage is a reduction in the risk of large
for gestational age babies and, possibly, of gestational diabetes [18–20]. It is, however, conceivable
that other advantages, if they exist, would only be seen in a high-risk situation, like the one that
characterizes CKD from its early stages [21–26].

3. Animal Models: Protein-Restricted Diets in Pregnant Rodents

There are two main approaches to studying protein-restricted diets in rodents: severe protein
restriction, most commonly used as a method to induce fetal growth restriction, and variation of
protein sources, rarely used, to mimic the dietary interventions prescribed to women.

The first, classic model, applies a severe protein restriction to the pregnant animals, often starting
before mating. Table 1 shows some examples of animal feeding formulas. The “regular diet” is usually
casein-based with a protein content of 18–22%. The study diet has a protein content ranging from 4 to 10%.

The aim of these models is usually to produce growth-impaired offspring, that, in keeping
with the observations on humans mentioned above, are at high risk for the development of kidney
abnormalities, or metabolic diseases, cardiovascular diseases, hypertension and kidney disease in
adult life. Genetic background modulates the effects, and, for kidney development and diseases, these
are more serious when breeds characterized by spontaneous development of CKD are employed.

The second model instead exploits different protein dietary sources in pregnant rodents to study
their effects on the offspring. Soya-derived proteins are the most widely used as substitutes for
casein. However, reports on pregnant animals are scant and when different protein sources are tested,
the amount of total protein in the diet is similar between groups [27,28].

To date, only one study has explored the effect of diet on pregnancy in rats with CKD [29].
Cahill and colleagues studied a model of hereditary kidney cyst disease in Han:SPRD Cy rats, feeding
them from two weeks before mating to the end of the weaning period, with either a soya-based or a
casein-based diet. The authors found that the plant-based diet improved renal function in the pups.
Moreover, renal inflammation and cell proliferation, oxidative stress and proteinuria were reduced in
the offspring [29]. This study does however have several limitations: the kidney disease is a hereditary
one and renal function was still in the normal range in both groups; secondly, although the sources
differed, both diets contained a “normal” amount of proteins.

It is evident that none of these approaches mimic the moderate protein restriction employed
for women with CKD in pregnancy. In this case, protein intake is up to 75% of a normal diet
and is supplemented with keto-analogues and essential amino acids [16,30]. Keto-analogues are
nitrogen-free analogues of essential amino acids that can be added to human low- and very low-protein
diets (0.6 g/kg/day of proteins and 0.3 g/kg/day of proteins, respectively) to limit the risk of protein
malnutrition [31].
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Table 1. Examples of commercially available normal or low-protein rodent diets.

Manufacturer Diet Protein Content
(g/100 g)

Fat Content
(g/100 g)

Metabolizable
Energy (kcal/g)

Standard Diets

LabDiet 5001Laboratory Rodent Diet 24.1 5.0 2.9

Picolab 5053 Rodent Diet 20 20 5.0 3.0

Envigo Teklad Rodent Diet 8604 24.3 4.7 3.0

Altromin C1000 20.0 13.0 3,5

American Institute
of Nutrition [32]

AIN-93G Rodent Diet for Growth,
Pregnancy and Lactation 19.3 16.7 3.8

American Institute
of Nutrition [32]

AIN-93M Rodent Diet for
Maintenance 14.1 10.0 3.6

Low-protein Diets

Envigo Teklad TD90016 6.0 5.5 3.8

Altromin C1003 9.0 13.0 3.6

Data from manufacturers’ websites, accessed on February 10, 2020. LabDiet: https://www.labdiet.com/cs/groups/
lolweb/@labdiet/documents/web_content/mdrf/mdi4/~{}edisp/ducm04_028021.pdf; Picolab: http://www.petfoods.
com.mx/PetFoods/LabDiet_ifo_files/5053.pdf; Envigo Teklad: https://www.envigo.com/resources/brochures/rodent-
diet-and-ingredient-comparison.pdf; https://www.envigo.com/resources/data-sheets/90016.pdf; Altromin: https:
//altromin.com/pdf/en/C1000; https://altromin.com/pdf/en/C1003.

4. Models of Protein Deprivation during Pregnancy in Rodents and Kidney Health in Offspring

The earliest studies on low-protein diets in rodents date back to the 1930s [33]. In the Sixties,
Zeman observed smaller kidneys with a reduced number of glomeruli in the offspring of dams fed an
LPD [34] and undertook a series of experiments to investigate this phenomenon and distinguish it
from the effects of calorie restriction during pregnancy [35]. He also hypothesized that smaller kidneys
lead to reduced kidney function later in life [35].

In keeping with this observation, in 1988 Brenner proposed that a lower nephron endowment at
birth confers increased salt sensitivity and a higher risk of hypertension during adulthood [36].

In 1993, Barker observed the relationship with gestational undernutrition and diseases that
develop later in life and formulated the theory of “Developmental Origins of Health and Disease” [37].
Since then, a large body of evidence has been gathered from studies using animal models.

In the 1990s, Langley-Evans produced a series of studies showing that fetal programming by
means of a severely protein-restricted maternal diet leads to hypertension, which could be prevented
by a blockade of glucocorticoid production [38] or administration of ACE inhibitors to pups [39].
This increase in blood pressure could be, at least in part, caused by an alteration of the normal
angiotensin II receptor ratio. In fact, in the kidney cortex of Wistar rat pups whose dams had been
fed a severely protein-restricted diet, AT1 receptors were about 62% higher, while AT2 receptors were
about 35% lower, with no change in angiotensin II tissue levels or circulating aldosterone levels [40].
Even when a protein-deprived diet was administered only in the second half of pregnancy, the offspring
exhibited a higher expression of AT1 receptors and decreased expression of AT2 receptors in the
heart [41]. Increased oxidative stress and inflammatory renal cell infiltration contribute to hypertension
programming. Increased renal oxidation markers before hypertension onset has been observed in the
offspring of mothers fed a low-protein diet during gestation and the administration of antioxidants
or mycophenolate during the prehypertensive window was able to prevent high blood pressure in
adulthood [42]. These findings were recently corroborated by experiments in which renin-angiotensin
system inhibitors were administered after weaning: losartan eliminated inflammatory infiltration and
intrarenal renin-angiotensin system (RAS) activation [43] while transient exposure to enalapril reduced
glomerular filtration rate (GFR) and prevented the onset of hypertension [44]. Moreover, a role for
renal nerves in sodium reabsorption has been postulated: bilateral renal denervation in the offspring of

https://www.labdiet.com/cs/groups/lolweb/@labdiet/documents/web_content/mdrf/mdi4/~{}edisp/ducm04_028021.pdf
https://www.labdiet.com/cs/groups/lolweb/@labdiet/documents/web_content/mdrf/mdi4/~{}edisp/ducm04_028021.pdf
http://www.petfoods.com.mx/PetFoods/LabDiet_ifo_files/5053.pdf
http://www.petfoods.com.mx/PetFoods/LabDiet_ifo_files/5053.pdf
https://www.envigo.com/resources/brochures/rodent-diet-and-ingredient-comparison.pdf
https://www.envigo.com/resources/brochures/rodent-diet-and-ingredient-comparison.pdf
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dams fed a low-protein diet was able to increase the fractional excretion of sodium, thereby mitigating
the rise of blood pressure [45].

Experimental data suggest that protein restriction timing during gestation influences the severity
of hypertension in offspring: feeding dams with a low-protein diet during discrete time frames (i.e.,
early, mid or late pregnancy) resulted in hypertensive pups but the highest blood pressure levels were
observed in pups whose mothers were given a low-protein diet for the entire duration of gestation [46].

In addition, it was observed that severe protein restriction during pregnancy decreased offspring’s
life span [47] and impaired nephrogenesis [48], in accordance with Brenner’s hypothesis [49]. The reason
why severe protein restriction in the mother turns into a reduced number of glomeruli at birth
(20% to 30% fewer glomeruli than in controls) [50,51] has been explained as an imbalance between
actively proliferating cells and apoptosis in the metanephros, in favor of apoptosis [51] and with
higher p53 expression [52]. Moreover, protein deprivation from conception to the 5th–6th week of
gestation alters gene expression in embryonic kidneys, downregulating the expression of prox-1 and
cofilin-1, the genes that are pivotal in the normal development of the lymphatic vessels [53] and
cytoskeleton [54], respectively [55]. In addition, experimental studies with severe protein restriction in
sheep, demonstrated impaired fetal renal microvascular development [56].

Although kidney damage during embryogenesis leads to hypertension during adulthood,
the window for programming can extend to the postnatal period and appears to be susceptible
to treatment. It was found that feeding the offspring of female rats kept on a low-protein diet during
pregnancy, a low-sodium diet or administrating an ACE inhibitor for a short time after weaning
was able to prevent a subsequent rise in blood pressure even after discontinuation of treatment [57].
Moreover, cross-fostering pups generated by dams fed a regular 20% protein diet to mothers fed a
severely protein-restricted diet, during lactation, resulted in hypertension even in the absence of fetal
programming [58]. Conversely, it has been shown that cross-fostering the offspring of mothers with
protein malnutrition in pregnancy to mothers fed a normal protein diet was able to normalize the
number of glomeruli and normalize blood pressure to the values found in control male rats [59].

However, renal physiology in rodents is different than in humans, as in rodents kidney maturation
continues after birth [60–63] while in humans it ceases by the 36th week of gestation in at-term
infants [64] and there is evidence that nephrogenesis continues until the 40th post-natal day only in
preterm neonates in whom, however, nephrons remain abnormal [65].

Protein restriction during pregnancy affects male and female offspring differently [66,67].
For instance, hypertension in pups from dams fed a protein-restricted diet has been shown to
be glucocorticoid-dependent in males but not in females. The underlying mechanism seems to
be a reduced expression of renal AT2 receptors [68]. In addition, male pups from mothers fed a
severely protein-restricted diet showed impaired sexual maturation, prostate growth and reproductive
ability [69,70]. Similarly, severe maternal protein restriction has been associated with a reduced ovarian
reserve in female offspring [71]. These results support the importance of studying the F3 generation,
which is the first one not influenced by the mother’s diet during pregnancy, in order to understand
the transgenerational effect of gestational protein restriction on kidney structure and function [72]
(Figure 2).

Hypertension is not the only cardiovascular risk factor that has been observed in offspring
exposed to severe protein restriction in utero: insulin resistance [73], reduced insulin secretion [74] and
insulin signaling deregulation [75], reduced pulmonary compliance and higher tissue elastance [76],
altered lipid metabolism [77], fatty liver disease [78], cardiac fibrosis [79] and cardiac oxidative
stress [80], muscle fiber and neuromuscular junction changes [81], metabolic syndrome [82], altered
fat distribution [83], increased susceptibility to vascular injury [84], and alteration of coagulation
factors [85] have all been described.
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Severe protein restriction in pregnancy can also influence drug response in the offspring.
DuBois reported an impaired response to furosemide in programmed Sprague Dawley female
rats due to increased renal organic anion transporter 1, irrespective of body weight, an important notion
in drug dosing for physicians [86]. In addition, epithelial sodium channel (ENaC) activity, as well
as sodium-potassium-chloride cotransporter (NKCC2) activity in the cortical collecting ducts seem
to be caused by severe maternal protein restriction, which potentially affects renal sodium handling.
The administration of the ENaC inhibitor benzamil, indirectly showed that basal ENaC activity was
higher in pups from protein-deprived dams compared to controls [87]. In addition, maternal protein
deprivation resulted in increased NKCC2 abundance in the renal medulla and increased chloride
transport in the thick ascending limb of the Henle’s loop in their offspring [88].

Maternal protein restriction has also been shown to increase sodium urinary loss [89] and
determine an increment of total body sodium content and extracellular fluid volume expansion
in the offspring [90]. In order to explain these apparently contrasting observations, Alwasei and
colleagues proposed that increased sodium reabsorption in the kidney of the offspring of dams fed
a protein-restricted diet is an adaptation to sodium loss due to prenatal injury and sodium losses
also stimulate an appetite for salt and increased food intake that lead to accelerated growth and
hypertension [90].
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The kidneys of pups exposed to severe protein restriction during gestation also showed impaired
calcium handling with a decreased passive reabsorption in the proximal tubule, leading to a reduction
in femur trabecular bone mass [91].

Finally, it is worth mentioning that there are a small number of studies that were not able to
demonstrate the effects of fetal programming by means of severe protein restriction during pregnancy.
According to Jones and colleagues, a programmed lower nephron endowment did not influence the
onset of kidney disease in diabetic Wistar rats [92]. Zimanyi and colleagues, instead, did not confirm
the onset of hypertension and did not find correlations between total filtration surface area and blood
pressure in adulthood in pups from Wistar Kyoto dams fed a severe protein-restricted diet during
pregnancy and lactation [93]. These results led the authors to suggest that a lower nephron endowment
is not sufficient to induce hypertension in adulthood but that these animals are more susceptible to a
“second hit”. In fact, although not different from controls in basal conditions, the infusion of advanced
glycation end-products (AGEs) in the offspring increased the expression of profibrotic genes and the
accumulation of AGEs in the kidney, suggesting increased susceptibility to the development of diabetic
nephropathy [94].

Severe protein restriction has been found to alter placental morphology and function in animal
models. Several alterations have been described, including reduced vascularization due to increased
proinflammatory cytokine secretion by immune cells [95], reduced weight with smaller junctional
zone [96], reduced trophoblast giant cells and trophoblast glycogen cells [97], higher oxygen uptake by
placental mitochondria that may reflect the uncoupling of respiration and oxidative phosphorylation [98]
and downregulated amino acid transport [99].

5. Experience in Human CKD Pregnancies with Moderate Protein Restriction and Modulation of
Protein Quality

Human pregnancies, like all mammal pregnancies, are characterized by an increased demand
for energy and macro- and micro-nutrients. Accordingly, it is generally suggested that protein intake
should be increased to meet metabolic requirements. It is recommended that normal protein intake of
0.7–0.9 g/kg/day should be increased by 1 g/day during the first trimester, then by a further 8 g per
day in the second trimester, and 23–29 g in the third [100,101]. The modulation of these indications in
pregnant women with CKD is not fully agreed but several reports indicate that, in the presence of
CKD, a moderate protein restriction might be useful and safe for mother and offspring. The first study
of pregnant CKD patients put on moderately protein-restricted diets was published almost a decade
ago [17]. Originating as an attempt to balance the contrasting nutritional needs of advanced CKD
and pregnancy, 12 pregnancies in 11 patients with CKD stages 3 to 5 and/or proteinuria (>1 g/day),
were managed with a 0.6–0.7 g/kg/day vegetarian protein diet with keto-analogue supplementation at
increasing dosage throughout gestation. The authors observed no major side effects of this diet and
only one pregnancy, in the context of nephrotic syndrome, was terminated. Ten of the 11 babies born
were delivered preterm, two were small for gestational age but after birth, the growth curve of all
the babies was normal. None of the mothers started dialysis during pregnancy or in the year after
delivery [17]. In a subsequent study, these authors applied the same dietary protocol to 24 pregnancies,
with 21 control CKD pregnancies with no dietary restrictions [25]. Notably, the number of small for
gestational age babies was significantly lower in the diet group than in controls. A follow-up study
of the babies from six months to ten years of age found no socialization or schooling problems and
similar rates of hospitalization [25]. Expanding the sample size of both cases and controls confirmed
the results [22]. These studies included a large spectrum of renal diseases: diabetic nephropathy,
glomerulonephritis, kidney transplant, genetic diseases [17,22,25]. In a small, more homogeneous series
of patients affected by biopsy-proven focal segmental glomerulosclerosis, with normal kidney function
and proteinuria, mothers on the same diet delivered at-term healthy babies without consequences to
babies’ growth [21]. Other case reports confirm this trend [102], demonstrating the difference between
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a controlled diet compared to the “famine” model and the importance of dietary education in order to
improve adherence [103].

6. What Are the Best Sources of Protein

The differences in quality and properties of animal- and plant-derived protein are summarized in
Table 2. Notably, plant-derived proteins are associated with lower phosphate bioavailability [104,105],
are less likely to induce acidosis [106], favorably modulate gut microbiota leading to reduced production
of uremic toxins [107,108], and are rich in antioxidants. Conversely, animal-derived proteins supply all
the essential amino acids. Overall, there are no indications that a plant-based diet is not appropriate in
pregnancy. In fact, according to the United States Academy of Nutrition and Dietetics, “Well-designed
vegetarian diets provide adequate nutrient intakes for all stages of the life cycle and can also be useful
in the therapeutic management of some chronic diseases” [19].

While data on plant-based protein diets were associated with lower mortality in patients with CKD
after adjusting for comorbidities and risk factors [109], vegetarian diets during pregnancy carry a risk of
nutritional deficits: vitamins B12 [110,111] and D [112], and iron [113] and zinc [114] deficits have been
described but these can easily be corrected by close monitoring and well-planned supplementation.
These deficits are also common among non-vegetarian mothers and it has been found that vegetarian
patients are more compliant in taking supplements [113]. Plant-based diets do not seem to affect
pregnancy-related disorders: the incidence of preeclampsia and preterm delivery has been described
as equal or lower [115–119] whereas glycemic control seems to be improved by fiber-rich diets [120].
Although we lack proof that a plant-based diet is more beneficial than an omnivorous one, no significant
harm was observed.

Soya is the source of vegetable protein most studied in nephrology. Soybeans are a complete
source of amino acids, comparable to meat, for which they can serve as a valuable substitute [121].
In renal patients, soya-based diets have been shown to have positive effects on plasma cholesterol
and triglycerides [122,123], serum creatinine and phosphates [122], oxidation markers and endothelial
function [124,125], glucose metabolism [126] and proteinuria [127–129]. Extensive studies on
isoflavones, the polyphenolic group of compounds found in soybeans, have shown that they exhibit
anti-inflammatory, anticancer, antioxidant and antimicrobial activity [130]. Among them, genistein
and daidzein have a structure similar to estradiol and are classified as phytoestrogens because of their
affinity for the estrogen receptor [131]. It is worth mentioning, however, that isoflavone metabolism is
mediated by the kidney: patients on dialysis show a longer half-life of genistein and daidzein and
dialysis clearance is minimal [132].

In pregnant, non-CKD women, soya-based diets have been found to ameliorate glucose
homeostasis, lipid profile and antioxidant reserves [133].

The effect of the diet in humans may, however, depend on genetic background, as happens in
rodents. In fact, a Canadian study showed that a plant-based diet during pregnancy was associated
with a higher risk of delivering small for gestational age babies among European-origin mothers and
increased neonatal birth weight among Canadian mothers of South Asian origin [134].
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Table 2. Main differences between the nutritional profiles of plant- and animal-derived protein patterns.

Plant-Based Protein Pattern Animal Protein Pattern

Energy No difference No difference

Essential amino acids
Lacking in methionine and cysteine
(lack can be overcome by combining

cereals with legumes)
All present

Fats Low, mostly unsaturated High, mostly saturated
Fiber High Low

Iron

Non-heme iron
(reduced bioavailability; Phytic acid and
fibers reduce absorption; vitamin C may

favor absorption)

Heme iron
(high bioavailability)

Sodium Low High

Potassium High
(cooking methods may reduce content) Low

Phosphate
Moderate

(in the form of phytic acid, so less easily
absorbed)

High

Production of uremic toxins Low High
Antioxidants High Low
Vitamin B12 Low High

Calcium Low
(phytic acid and fibers reduce absorption) Low, high only in dairy foods

Folate High
(cooking methods may reduce content) Low

Magnesium High Low
Zinc Low High

7. What Rodent Models Cannot Show Us about Protein Restriction in Human Pregnancy

Although animal models are a cornerstone of experimental research they are far from perfect [135].
Most importantly, protein restriction in pregnant animal models is extreme, between 50% and 70% of
the normal protein diet. This configures a model of protein deprivation rather than protein restriction,
which is hardly comparable to studies on humans in which protein intake is reduced by a maximum of
25% below baseline.

Secondly, renal development in rodents extends after birth. This differs from humans in whom
kidney development is complete by the 36th week of gestation. Moreover, not all rodent strains
are equally susceptible to kidney injury, thus the choice of model is critical [136,137]. In addition,
severe protein restriction can affect housekeeping gene expression in the offspring, making it crucial to
select the reference gene when analyzing genome transcripts [138]. In rodents, the catch-up growth
of offspring with intrauterine growth restriction seems to be crucial for developing disease during
adulthood [139–142]. In this context, catch-up growth may be a “second hit” revealing the increased
susceptibility of fetal programming, as the offspring would not be able to cope with an increased
nutrient intake [143,144].

Finally, despite the large number of models of kidney injury in pregnancy, there are no murine
models for chronic kidney disease focusing on maternal diet.

Protein sources during pregnancy are likely to influence offspring health but few studies have
addressed this issue. A favorable effect of soya-based compared to casein-based diets has been
described in rats in regard to renal inflammation, oxidative stress and endothelial function [29,145].

For humans, our experience is scant. Processed red meat has been associated with the worst
outcomes in terms of kidney disease: the generation R study showed that protein intake during the
first trimester of pregnancy correlated with renal function in offspring; however, when assessing the
different contributions of protein sources, this association was confirmed for vegetable-derived protein
but not for animal-derived protein intake [146].
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8. Future Directions

Research employing animal models is warranted as it will enable us to determine whether a
moderate protein restriction during pregnancy in CKD is beneficial.

Theoretically, pregnancy in chronic kidney disease should be studied in experimental models of
glomerulonephritis [147] as well as in the setting of a reduction of the renal mass [148,149].

The design we propose is to evaluate the effects of a plant-based, moderately protein-restricted
diet during pregnancy and lactation in Wistar rats undergoing 5/6 nephrectomy before mating (thus
with moderate kidney function impairment at the time of conception). Pregnancies would be evaluated
in terms of abortions, miscarriages, premature delivery, worsening of kidney function or dam’s death.
Offspring would be evaluated in regard to body and kidney weight (and their ratio), renal function,
presence of physical abnormalities, ability to thrive and develop normally. If possible, the effect of the
diet would also be studied in the second and third generation fed different diets (Figure 3).
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9. Lessons for Clinical Nephrologists

Nephrologists routinely refer to animal models to better understand the pathophysiology and
management of kidney diseases. While this approach is pivotal to safely translating basic scientific
observations into clinical practice, in some cases, such as the one being discussed, it may be misleading.

Acknowledging the difference between animal models and human situations is crucial if we are
to avoid seeing every type of protein restriction in pregnancy as negative.

A semantic problem exists, since the same terms indicate different interventions: “low-protein
diets” in rodents are usually synonymous with highly-restricted diets, bordering on protein deprivation;
conversely in humans, a “low-protein diet” identifies a protein restriction of 20–25%, often supplemented
with essential amino acids or keto-analogues. In this respect, generalization of the current findings in
animal models to human pregnancies is not possible. Even in the absence of solid pre-clinical studies,
however, some reports indicate that the management of CKD pregnant patients with a balanced,
moderate protein restriction is safe and may decrease gestational complications without increasing
the risk of renal disease progression in the mother. Larger human studies, and research using animal
models are needed to corroborate these promising results (Table 3).

Table 3. Key points for clinical nephrologists.

Rodents Humans

Severe maternal protein deprivation during pregnancy is detrimental for offspring and leads to an increased risk of
cardiovascular and metabolic diseases later in life.

A moderate protein restriction in CKD patients has
proved to retard the progression of chronic kidney

disease and control uremic symptoms [15].

Protein restriction in pregnant animal models is usually
severe (50–70%) and unbalanced.

A vegan/vegetarian diet with a 20–25% protein restriction
supplemented with keto-analogues in pregnant CKD

patients is safe for the mother and the offspring and may
help control renal disease without consequences for the

newborn [21–26].

Consequences of a poor maternal diet on offspring’s
health could extend as far as the third generation [72].

Genetic background and gender modulate the effects of maternal diet on the offspring [66,67,134].

There are no studies on diet in pregnant rodents
with CKD.

Further research on animal models is needed to better
elucidate the mechanisms and long-term consequences

on offspring of a moderate protein restriction during
pregnancy in CKD in a controlled environment

Longer follow-up studies are needed to study the effects
of a moderate maternal protein restriction in the course of

CKD pregnancy on offspring’s health in adulthood.

10. Conclusions

Severe protein restriction in pregnancy is detrimental for kidney health, in particular if genetic
background already predisposes to CKD; there is full agreement between rodents and humans in
this respect. However, in pregnant patients affected by CKD, a moderate protein restriction, with a
well-planned plant-based diet can be safe for both mother and offspring, decreasing the incidence of
pregnancy complications and producing an expected positive effect on offspring’s kidney health.
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