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Informational laws of genome 
structures
Vincenzo Bonnici1,2 & Vincenzo Manca1,2

In recent years, the analysis of genomes by means of strings of length k occurring in the genomes, 
called k-mers, has provided important insights into the basic mechanisms and design principles of 
genome structures. In the present study, we focus on the proper choice of the value of k for applying 
information theoretic concepts that express intrinsic aspects of genomes. The value k = lg2(n), 
where n is the genome length, is determined to be the best choice in the definition of some genomic 
informational indexes that are studied and computed for seventy genomes. These indexes, which 
are based on information entropies and on suitable comparisons with random genomes, suggest five 
informational laws, to which all of the considered genomes obey. Moreover, an informational genome 
complexity measure is proposed, which is a generalized logistic map that balances entropic and anti-
entropic components of genomes and is related to their evolutionary dynamics. Finally, applications to 
computational synthetic biology are briefly outlined.

The study of complexity in Biology is an old topic that often reemerges in theoretical biological investigations1–3. 
The study of complexity has very important implications for any deep understanding of the informational organ-
ization that life chooses in the different species to realize their specific biological functionalities. Entropy is a fun-
damental scientific concept that is naturally related to complexity and was the basis of statistical physics founded 
by Ludwig Boltzmann and the essence of his famous H theorem, which related the arrow of time to Boltzmann’s 
equation, where entropy is expressed in terms of mechanical microstates4. Essentially, the same function was the 
basis of the information theory founded by Claude Shannon in 19485, where entropy is defined on information 
sources, that is, probability distributions over finite sets of elements (symbols, words or signals). A genome is 
essentially a text; if read at pieces of length k (called k-mers), a genome becomes an information source. Therefore 
genomic k-entropies can be easily defined, and the concepts and results of information theory can be applied6–10.

In recent years, many studies have approached the investigation of DNA strings and genomes by means of 
algorithms, information theory and formal languages11–22, and methods were developed for investigating whole 
genome structures. In particular, dictionaries of words occurring in genomes, distributions defined over genomes, 
and concepts related to word occurrences and frequencies have been very useful and seem to characterize impor-
tant genomic features relevant in biological contexts23–30. Dictionaries are, in essence, finite formal languages. 
In genome analyses based on dictionaries, concepts from formal language theory, probability, and information 
theory are naturally combined by providing new perspectives in the investigation of genomes, which may disclose 
the internal logics of their structures.

The set of all k-mers, occurring in a given genome is a particular dictionary. A point that is crucial in genome 
analyses based on k-mers is the value of k that is more adequate for specific investigations. This issue becomes 
extremely evident when computing the entropy of a genome. We prove that preferential lengths exist for comput-
ing entropies, and in correspondence with these lengths, some informational indexes can be defined that exhibit 
“informational laws” and characterize an informational structure of genomes. As we have already noticed, there 
is a long tradition in investigating genomes by using k-mers. However, comparing genomes of different lengths, 
by using the same value of k (usually less than 12) may result in the loss, in some cases, of important regularities. 
In fact, the genomic laws that we discover emerge when the values of k are suitably defined from the logarithmic 
length of the genomes.

When genomic complexity is considered, it is very soon clear that it cannot be easily measured by parame-
ters such as genome length, number of genes, CG-content, basic repeatability indexes, or their combinations. 
Therefore, we follow an information theoretic line of investigation based on k-mer dictionaries and entro-
pies16,26,27,31–33, which is aimed at defining and computing informational indexes for a representative set of 
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genomes. This task is not trivial when genome sizes increase, so a specific software package is used to this end31. 
Moreover, an aspect that is missing in classical Shannon’s conceptual apparatus is relevant in our approach: ran-
dom strings and pseudo-random generation algorithms, which now can be easily produced and analyzed34. In 
fact, it is natural to assume that the complexity of a genome increases with its “distance” from randomness35,36, 
as identified by means of a suitable comparison between the genome under investigation and random genomes 
of the same length. This idea alone provides important clues about the correct k-mer length to consider in our 
genome analyses, because theoretical and experimental analyses show that random genomes reach their entropic 
maxima for k-mers of length lg2(n), where n is the genome length. No assumption on the distribution of proba-
bility of k-mers is assumed or inferred (as in Markov Models-based approaches); rather, data processing is devel-
oped on the basis of the empirical distributions of k-mers computed over the investigated genomes.

To this end, two basic indexes are introduced, which we call entropic and anti-entropic components. These 
indexes, and other related indexes, are computed over the chosen seventy genomes, ranging from prokaryotes 
to primates. The obtained values suggest some laws of genome structure. These laws hold in all of the investi-
gated genomes and motivate the definition of the genomic complexity measure BB proposed in the paper. This 
measure depends on the entire structure of a genome and considers, together, the components of genomes (e. g., 
repeats, CpG, long range correlations, surely affecting entropies) without considering them separately. Moreover, 
as demonstrated below, BB is related to phylogeny but does not coincide with phylogenetic ordering. Certainly, 
primate genomes are usually more complex than, say, bacterial or insect genomes, but the situation is surely more 
critical because evolution is always active and a bacterium that we sequence today is not a type of bacteria that 
firstly arose in the tree of life. For this reason, genomes that are phylogenetically older can cumulate, even along 
different paths, “distances” from their corresponding random genomes comparable with those gained by “more 
evolved” genomes.

Results
The results presented in this paper are based on comparing real genomes with random genomes of the same 
length. As we show, any genome  of length n defines a partition of lg4(n) in two addends AC ( ) and EC ( ) such 
that  + =AC EC n( ) ( ) lg ( )4 .

The fundamental informational components of genomes.  We denote by LG ( ) the value lg ( )4 . 
Of course,  =LG2 ( ) lg ( )2 . We call LG ( ) the logarithmic length of  and LG2 ( ) the double logarithmic 
length of . When no possible confusion can arise, we avoid explicitly indicating , so we write in short LG, and 
consequently we denote the entropy E ( )LG2 ( )  over the LG2 ( )-mers of  by E ( )LG2  (analogous abbreviations 
are also adopted for other indexes). We also refer to the interval  LG LG[ ( ), 2 ( )] as the critical entropic interval. 
In the following, when 2LG is not integer, E ( )LG2  denotes the linear interpolation between E ( )k1

 and E ( )k2
, where 

k1, k2 are the smallest integers such that k1 <​ 2LG <​ k2. In the case of the human genome, 2LG is between 31 
and 32; in the genomes considered in this paper (from microbes to primates), it ranges between 16 and 36.

We prove, by using well-known results of information theory, that the values LG and 2LG have the following 
properties (see section Methods):

i).	 LG2 ( ) is an upper bound to the values that entropy can reach over the genomes with the same length of ;
ii).	 if k belongs to the critical interval  LG LG[ ( ), 2 ( )], and  = n, then entropies Ek, for k ≤​ n, reach, on 

suitable genomes, the best approximations to LG2 ( ) with an error close to zero, which is inferior to 
| − |⌈ ⌉n n nlg ( /( lg ( ) )2 2 , being ⌈ ⌉x  the closest integer greater than x.

iii).	entropy E ( )LG2  reaches its maximum in random genomes of length =n . This result follows from the fact 
that in random genomes of length n all lg2(n)-mers are hapaxes, that is, they occur once in the whole 
genome37.

In conclusion, the maximum of E ( )LG2  is almost equal to LG2 ( ), and this maximum is reached by random 
genomes of length  . It was realized that for all of the investigated genomes the following inequality immediately 
holds:

  < < .LG E LG( ) ( ) 2 ( ) (1)LG2

Therefore, we know that E ( )LG2  belongs to the (open) real interval of bounds LG ( ) and LG2 ( ). Then, we 
can define the following values EC ( ) and AC ( ), which we call Entropic Component and anti-entropic 
Component of , respectively:

  = −EC E LG( ) ( ) ( ) (2)LG2

  = − .AC LG E( ) 2 ( ) ( ) (3)LG2

Summing Equations (2) and (3), we obtain   + =AC EC LG( ) ( ) ( ). The value EC ( ) corresponds to the 
gap between the double logarithmic entropy E ( )LG2  and the logarithmic length LG ( ), which is always positive 
according to the equations above. Moreover, AC ( ) is the gap between the double logarithmic length LG2 ( ) 
and the entropy E ( )LG2 , which is positive because LG2 ( ) is an upper bound to the entropies in the critical 
entropic interval. The term “anti-entropic” stresses an important difference with the analogous concept of negh-
entropy, which is frequently used to denote the other side of the order/disorder dichotomy associated with 
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entropy (and its time arrow)38–41. In fact, in anti-entropy, no change of sign is involved, but a difference from an 
upper bound of the entropy is instead considered.

Informational genomic laws.  Let us define LX ( ), called lexical index, as the ratio:

  =LX D( ) / ( ) (4)m

The numerator is essentially the number of words of length 2LG occurring in random genomes, which as we 
already noticed are all hapaxes, and therefore, coincides with the number of possible occurrences of 2LG-mers in .  
The denominator is the number of words of length 2LG occurring in . This ratio is related to the degree of order 
that  gains with respect to random genomes. In fact, in a random genome R, we have LX(R) =​ 1; therefore, in a 
real genome ,  >LX ( ) 1. The lexical index is smaller than the ratio  EC AC( )/ ( ) but is greater than 

 LG EC( )/ ( ). Moreover, by dividing and multiplying LX by EC ( ) and LG ( ), it is possible to obtain lower and 
upper bounds to AC ( ). The value EH ( ), given by   −EC AC LG( ( ) ( ))/ ( ), corresponds to the eccentricity 
of an ellipse associated with  (see Supplementary Information, Sup. Fig. 3). The product of EH ( ) with LX ( ) 
differs by 1 less than AC ( ). In conclusion, the following laws hold for all seventy investigated genomes:

  > ∗EC LX AC( ) ( ) ( ) (5)

  ∗ >LX EC LG( ) ( ) ( ) (6)

    ∗ − >LX EC LG LX AC( ) ( ) ( )/ ( ) ( ) (7)

  − >EC AC LG G LX( ) ( ) ( )/ ( ) (8)

   − < ∗ < + .AC EH LX AC1 ( ) ( ) ( ) 1 ( ) (9)

Biobit: a measure of genomic complexity.  As we already noticed, AC is an index measuring the infor-
mational distance between genomes and random genomes with the same length. This means that the more bio-
logical functions a genome  has acquired, the further the genome is from randomness. However, if we directly 
identify the complexity of  with AC ( ), we obtain some biologically inconsistent results. For example, Zea mays 
has an LG value of 15.4701 but an AC value of 3.6678 (primates have AC less than 1). These types of anomalies 
suggested to us that AC is surely related to the biological complexity of a genome, but this complexity is not a 
linear function of AC because also the EC component also has to be considered in a more comprehensive defini-
tion of complexity. Our search focused on a function that combines AC with EH, which is strictly related to EC. If 
x briefly denotes the anti-entropic fraction AF =​ AC/LG, it is easy to verify that because EC =​ LG −​ AC, then 
EH =​ (EC −​ AC)/LG =​ (1 −​ 2x); therefore, the product AC *​ EH can be represented by:

− .LGx x(1 2 )

This function (after a simple change of variables) is a type of logistic map ax(1 −​ x), with a constant, and x 
variable ranging in [0, 1], which is very important in population dynamics.

If we generalize x(1 −​ 2x) in the class of functions xγ(1 −​ 2x)δ, with γ and δ positive rationals weighting the two 
factors, then we discover that these functions have maxima for values approaching to zero when γ ≤​ 1 decreases 
and δ increases. Therefore, because AC is supposed to have a predominant role in the complexity measure, we 
define BBγ,δ as BBγ,δ =​ xγ(1 −​ 2x)δ by choosing the values of the exponents in such a way that maxima of BBγ,δ fall 
close to the values that the anti-entropic fraction AF assumes for the most part in genomes with high values of 
AC (almost all of them have medium horizontal eccentricity; see Supplementary Information, Sup. Table 2). No 
genome on our list reaches the maximum of the chosen function because their AF value is always smaller (subop-
timal genomes) or greater (super-optimal genomes) than the value where the maximum is reached.

In conclusion, we conjecture that the genomic complexity is a non-linear function of AC having the form 
(apart from a multiplicative constant):














γ δ

LG AC
LG

EC
LG (10)

In particular, the following definition, which is an instance of (10), was supposed to be the most appropriate 
( = AFAC

LG
 and = − AF1EC

LG
):

   = − .BB LG AF AF( ) ( ) ( ) (1 2 ( )) (11)3

In Fig. 1, the biobit values, together with the other described informational indexes, of the seventy genomes 
are visualized in a diagram. In Fig. 2 a flowchart is given that, in general terms, expresses the main stages for com-
puting the BB measure of a given genome.

A further law could be associated with the biobit index, according to which genomes evolve by increasing the 
value of the BB function. This means that an ordering, denoted by  (a reflexive, antisymmetric, and transitive 
relation), can be defined such that:
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Figure 1.  The left side of the figure shows the 70 analyzed genomes plotted on a Cartesian plane with 
their logarithmic length LG (G) as the abscissa and their biobit value BB(G) as the ordinate. An 
enlargement of the top-right region, which is highlighted with a dashed line, is shown on the right side of 
the image.

Figure 2.  A flowchart of the computational steps involved in calculating BB(G). Given an input 
genome , an upper bound of maximum entropy is calculated, its value equals LG2 ( ), and the value also 
defines the appropriate word length. Then the entropic and anti-entropic components are computed as, 
respectively, EC ( ) and AC ( ) and are successively normalized and combined by a weighted product into 

BB( ).
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G G G �G≥ ⇒ .BB BB( ) ( ) (12)2 1 2 1

Table 1 reports the main informational indexes based on the two entropic components of the logarithmic 
length of genomes. Figure 3 depicts graphically the values of these informational indexes for all of the investigated 
genomes (see Supplementary Information, Sup. Table 4, for the exact numerical values). The lengths of genomes 
are naturally linearly ordered, thus allowing us to arrange them along the x-axis. Apart from the EC curve, which 
is quite coincident with LG, the other indexes presents peaks that correspond to the genomes differing only 
slightly in lengths but differing greatly in other indexes.

It is interesting that, in essence, biological evolution is anti-entropic because the AC component, representing 
the tendency toward order, increases with the increase of biological functionalities, under the constraint of keep-
ing the ratio AC/EC under a threshold, as expressed by the factor (1 −​ 2x)3 of BB.

A 3D-visualization of our seventy genomes, by means of the AC, LX, BB informational indexes (see 
Supplementary Information, Sup. Fig. 2), reveals that genomic complexity does not coincide with classical phy-
logenetic classifications, as argued in the next section.

Discussion
We think that our informational indexes, and the laws relating them, confirm a very simple and general intuition. 
If life is information represented and elaborated by means of (organic) molecules, then the laws of information 
necessarily have to reveal the deep logic of genome structures.

The laws presented in the previous section represent universal aspects of genome structure and may rarely 
hold for strings of the same lengths that are not genomes. Therefore, the genomic complexity measure BB, 
obtained by means of informational indexes, is not a mathematical trick but must to be related to the way genomes 
are organized and to the way in which the genomes were generated. Figure 2 shows the values of BB along the 70 
investigated genomes, and it is clear that BB is related to the evolutionary positions of organisms. However, our 
approach has an important biological implication in clarifying the difference between phylogenesis and genomic 
complexity, which are related but different concepts. In fact, several cases have been found (see Fig. 2 and Sup. Fig. 2  

=LG lg ( )4
=​ Logarithmic length

= −EC E LG( )LG2 =​ Entropic component

= −AC LG E2 ( )LG2 =​ anti-entropic component

=LX D /LG2 =​ Lexical index

AF =​ AC/LG =​ anti-entropic fraction

EH =​ (EC −​ AC)/LG =​ Horizontal eccentricity

= −BB LG AF AF(1 2 )3 =​ Biobit

Table 1.   Main informational genomic indexes. |D2LG| is the number of 2LG-mers occurring in , and   is 
the length of  .

Figure 3.  A chart of the main informational indexes. Some measures have been rescaled, by applying a factor 
of ten (×10) or one hundred (×100) to their value, to obtain a comprehensive overview. Species are arranged on 
the horizontal axis according to their genome length (increasing from left to right).
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in Supplementary Information) where organisms that are phylogenetically more primitive than others, for exam-
ple bacteria, have biobit values greater than those of “more evolved” organisms. The reason could be the follow-
ing. A bacterium that we sequence today is an evolutionary product of some primitive bacterium. Even if we do 
not know the path from the bacterium’s (possibly unknown) ancestor to the bacterium, its complexity along this 
path grew over time because its evolutionary age is the same as H. sapiens (even along different branches). The 
genomic complexity of  is, in a sense, a measure of the relevant steps from random genomes to . Surely, these 
steps reflect the evolutionary pressure and the biological interactions and competitions among species. However, 
if we forget this perspective, we lose an important aspect of evolutionary dynamics. This is why complexity-driven 
classifications that completely agree with phylogenesis are almost impossible. For example, we found that bacteria 
associated with human diseases have BB values significantly higher than others phylogenetically comparable to 
them. The BB measure is a sort of absolute distance from random, whereas phylogenesis concerns similarity or 
dissimilarity between species. Therefore, a very natural question arises, which suggests the development of the 
presented theory. Can entropic divergences (Kullback-Leibler divergence or similar concepts) be applied to phy-
logenetic analysis of genomes by means of “common words” and their probability distributions in the compared 
genomes? Finally, what is the applicability of our indexes in the identification of informational features that are 
relevant in specific pathological genetic disorders? Of course, these questions deserve specific investigations; 
however, our informational indexes with the related laws, and computational tools, provide a framework on 
which these informational analyses may be fruitfully set. We argue that it is almost impossible that functional 
changes do not correspond to precise informational alterations in the relationships expressed by the genomic 
laws. The challenge is in discovering the specific keys of these correspondences.

We developed some computational experiments showing a direct applicability of informational indexes and 
related genomic laws to the emergent field of synthetic biology. In fact, recent experiments on minimal bacteria42 
are based on the search for genome sequences obtained by manipulating and reducing some real genomes. It has 
been proved that after removing some parts of the M. mycoides genome, the resulting organism, JCVI-syn3.0 (531 
kilobase pairs, 473 genes), is able to survive and has a genome smaller than that of any autonomously replicating cell 
found in nature (very close to M. genitalium). Of course, in this manner a better understanding of biological basic 
functions is gained, which directly relates with the investigated genome (removing essential portions results in life 
disruption). On the basis of this principle, we considered M. genitalium and removed some portions of its genome 
through a greedy exploration of the huge space of possibilities. At every step of our genome modifications (of 
many different types), we checked the validity of our genomic laws. We found that, after removing portions of the 
genome, some of our laws do not hold in the resulting sequences (see Supplementary Information, Sup. Table 6).  
Of course, these methods need to be carefully analyzed and validated with other examples and comparisons. 
However, a clear indication seems to emerge about the applicability of informational indexes and laws, possibly 
after suitable improvements to support and complement the development of genome synthesis and analysis, in 
the spirit of new trends in synthetic biology.

The starting point of our investigation was the comparisons of real genomes with random genomes of the same 
length. To accomplish this purpose, the right length of k-mers equal to the double logarithmic length of genomes 
was identified as being more appropriate for this comparison because for this length random genomes reach 
their maximum entropy. The difference between entropies was considered a measure of the order acquired by 
real genomes and corresponded to their capability of realizing biological functions. This intuition was supported 
by the values of indexes that we computed for an initial list of genomes. In fact, Sup. Table 3 in Supplementary 
Information provides AC values that, apart from two evident exceptions, seem to confirm the increasing of the 
AC value in accordance with the macroscopic biological complexity of organisms (independently from length, 
number of genes, or other typical genomic parameters). However, when we extended our analysis by including 
other genomes43, we found AC values that were anomalous with respect to those already collected. In particular, 
plants provided extreme values, with no coherence with our interpretation of the AC index. To solve this puzzle, 
we considered a more comprehensive framework where AC and EC values interact in a trade-off between order 
and randomness. Genomes deviate from randomness, though to some extent, because genomes need a level of 
randomness that is sufficient to keep their evolutionary nature, based on a random exploration of new possibili-
ties of life (filtered by natural selection).

In this picture, the two quantities EC ( ) and AC ( ) seem to correspond to the informational measure of two 
important aspects of genomes: evolvability and programmability (in the sense of2). Evolvability measures the ran-
dom component of genomes, whereas programmability measures the order that genomes gain with respect to 
pure random genomes by acquiring biological functions. The non-random meaning of AC can be mathematically 
characterized in terms of Kullback-Leibler entropic divergence between the probability distribution of words of 
 and the probability distribution of the same words in random genomes44.

Genome evolution is realized through an interplay of programmability and evolvability. The anti-entropic com-
ponent AC cannot increase beyond a percentage of the logarithmic length because LG =​ AC +​ EC and therefore 
increase of AC implies a decrease of EC by reducing the evolutionary ability. Therefore, the only way to increase 
AC, by keeping a good balance of the two components, is to increase the value of LG, i. e., the genome length, 
which explains why genomes increase their length during evolution. However, this increase is only indirectly 
correlated with biological complexity, as apparent in Fig. 1 (see also Supplementary Information, Sup. Table 3).

The definition of genomic complexity, in terms of a nonlinear function of AC, is related to the balance between 
AC and EC values. Some of the genome entropic laws continue to also hold for k-mers with >k lg ( )2 , but 
almost none of the laws continue to hold when <k lg ( )2 . For example, for k =​ 6 and = | |k lg ( )4 , the values 
of AC completely lose the logic that they have for =k lg ( )2 , by showing dramatic changes with respect to 

= | |k lg ( )2 , on which our indexes are based (see Supplementary Information, Sup. Table 4). Of course, we 
could compare real and random genomes also for values shorter than lg ( )2 , but in this case, we need to gener-
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ate random genomes and compute the corresponding entropies, whereas for =k lg ( )2 , we do not need such 
generations and computations, because we know, by theoretical arguments (see Proposition 3) that in random 
genomes, entropies at double logarithmic lengths can be assumed to be equal to | |lg ( )2 .

Our investigation can be compared to the astronomical observations measuring positions and times in the 
orbits of celestial objects. Kepler’s laws arose from the regularities found in planetary motions, and from Kepler’s 
laws, the laws of mechanics emerged. This astronomical comparison, which was an inspiring analogy, revealed a 
surprising coincidence when ellipses were introduced in the representation of entropic and anti-entropic compo-
nents. Kepler’s laws were explained by Newton’s dynamical and gravitational principles. Continuing our analogy, 
probably deeper informational principles are the ultimate reason for the laws that we found.

Methods
The seventy investigated genomes include prokaryotes, algae, amoebae, fungi, plants, and animals of different 
types. In Sup. Table 5 of Supplementary Information, source data bases, assembly identifiers, genome lengths, and 
percentages of unknown nucleotides are given. Basic concepts from information theory, probability theory, and 
formal language theory can be found in classical texts in these fields5,45,46.

Basic definitions and notation.  Strings are finite sequences of contiguous symbols. Mathematically, 
strings are functions from a set of positions, viewed as a subset of the set  of natural numbers, ∈ ≥ ≥i i n{ 1 } 
to a set of symbols, called alphabet. The number n is called the length of the string. We denote generic strings with 
Greek letters (possibly with subscripts) and reserve λ for the empty string (useful for expressing mathematical 
properties of strings). The length of a string α is denoted by |α|, and α[i] is the symbol occurring in α at position i,  
whereas α[i, j] is the string occurring in α between the positions i and j (both included).

Let us consider the genomic alphabet of four symbols (characters, or letters, associated with nucleotides) {a, c, 
g, t}. The set {a, c, g, t}*​, as usual, denotes the set of all possible strings over {a, c, g, t}. A genome  is representable 
by a string of {a, c, g, t}*​, where symbols that occur, from the first to the last position, are written in the order that 
they occur, from left to right, according to the standard writing system of Western languages, and according to the 
chemical orientation 5′​–3′​ of DNA molecules.

Substrings  i j[ , ] of length k, where ≤ ≤ ≤i j1 , are also called k-words, k-factors, k-mers of  (k may be 
omitted, when it is not relevant). We remark that the absolute value notation |−​| used for string length has differ-
ent meaning when applied to sets or multisets. In fact, for a finite set A, then |A| denotes its cardinality, whereas 
for a finite multiset X (set of elements that possibly occur in many “identical” copies, with no relevance for occur-
rence order) |X| denotes its size (the sum of the elements of X each counted all the times that the element occurs).

A dictionary of  is a set of strings occurring in . We denote by D ( )k  the dictionary of all k-mers occurring 
in G. It is easy to verify that the number of occurrences of k-mers in  is   − +k 1 (   is the length of ) and 
corresponds to the maximum cardinality  D ( )k  reachable by a dictionary of k-mers within genomes of the same 
length of .

A word α of D can occur in  many times. We denote by  αmult ( ) its multiplicity in , that is, the number of 
times α occurs in . A word of  with multiplicity greater than 1 is called a repeat of , whereas a word with 
multiplicity equal to 1 is called a hapax of . This term is used in philological investigation of texts, but it is also 
adopted in document indexing and compression37. The values of word multiplicities can be normalized if we 
divide the word multiplicities by the sum of the multiplicities of all the words occurring in . This normalization 
corresponds to replacing multiplicities with frequencies, which can be seen as percentages of multiplicity.

Many important indexes related to characteristics of genome dictionaries can be defined on genomes. For 
example, mrl ( ) is the length of the longest repeats of . Of course,  +mrl ( ) 1 is the minimum length, such that 
k-mers with k greater than mrl ( ) are all hapaxes.

Shannon used the term information source as synonymous with discrete probability distribution to introduce 
the notion of (information) entropy. Given a distribution of probability p, over a finite set A, its entropy is given 
by −∑ ∈ p x p x( ) lg ( ( ))x A 2 . We remark that if −​lg2(p(x)) is considered to be the information associated with the 
occurrence of x∈​A (the more improbable x is, the more its occurrence is informative), then entropy is the mean 
(in a probabilistic sense) quantity of information emitted by the information source (A, p).

An intrinsic property of entropy is its Equipartition Property, that is, in the finite case, the fact that entropy 
reaches its maximum value lg2(|A|), when p is equally distributed, that is, when p(x) =​ 1/|A|, for all x ∈​ A (|A| is 
the number of elements of A).

A genome  is any sequence over the alphabet {a, c, g, t}. This definition includes real genomes and ideal 
genomes, with no biological meaning, which are important in the mathematical analysis of genomes, as “material 
points” are essential in physics for discovering motion laws. Any subsequence of contiguous symbols of  is 
called a string, word, or k-mer of  (k explicitly expresses the length).

The empirical k-entropy E ( )k  of  is given by (the adjective empirical refers to the use of frequencies):



∑ α α= − .

α∈
E p p( ) ( ) lg ( ( ))

(13)
k

D ( )
2

k

We remark that the entropy E ( )k  is computed only with the k-mers occurring in  (see definition of D ( )k ). The 
computation of E ( )k  becomes prohibitive when  has length of order 109 and k >​ 20. Therefore, we used suffix 
arrays47 in the computation of genomic dictionaries.

A Bernoullian, or random, genome is a synthetic genome generated by means of casual (blind) extractions 
(with insertion after extraction) from an urn containing four types of balls, in equal numbers of copies, completely 
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identical apart from their colors, denoted by the genomic letters a, c, g, t. Pseudo-Bernoullian genomes can be 
generated by means of (pseudo) random generators available in programming languages (by suitable encoding of 
genomic symbols). We denote by RNDn the class of Bernoullian genomes of length n.

The computations of the main informational indexes, given in Table 1, extract the set of lg ( )2 -mers occur-
ring in the considered genomes, where lg ( )2  varies from 16 to 36, by means of a dedicated software, based on 
suffix arrays, called InfoGenomics Tools (shortly IGTools)31, which is an efficient suite of interactive tools mainly 
designed for extracting k-dictionaries, computing on them distributions and set-theoretic operations, and finally 
evaluating empirical entropies Ek, and informational indexes, for different and even very large values of k.

In Supplementary Information, a 3D-visualization (Sup. Fig. 2) of 70 genomes is given with respect to BB, 
AC, LX axes, where Principal Component Analysis is applied for a better visualization. A taxonomy tree of the 70 
genomes has been built via the NCBI taxonomy48 (see Supplementary Information, Sup. Fig. 1).

Mathematical Backgrounds.  In the following, some propositions are given, which were essential to the 
identification of parameters on which information entropies are computed. Let us start with the following ques-
tion. Given a genome length n and a value k ≤​ n, which is the maximum value of E ( )k  in the class of genomes of 
length n? We answer to the question above with Proposition 3, which is based on two Lemmas.

Lemma 1 Given a genome  of length n, if = +k mrl ( ) 1, then E ( )k  is the maximum value that Ek can reach in 
the class of all possible genomes of length n.

Proof. The minimum value of k such that all k-mers are hapaxes of  is  +mrl ( ) 1. Therefore, if = +k mrl ( ) 1,  
then E ( )k  is maximum, according to the entropy Equipartition Property, because we have the maximum num-
ber of words occurring once in , and all these words have the same probability of occurring in . ☐

Lemma 2 If R is a random genome of length n, then

− ≤ + ≤ .⌊ ⌋ ⌈ ⌉n mrl R nlg ( ) 1 ( ) 1 lg ( )2 2

Proof. Let RNDn the class of random genomes of length n. If k =​ mrl(R) +​ 1, the probability that a k-mer occurs 
in R∈​RNDn is (n −​ k +​ 1)/4k, and the probability that it occurs exactly once in R (being all k-mer hapaxes) is 1/
(n −​ k +​ 1). Therefore, by equating these two probabilities we get:

− + = − +n k n k( 1)/4 1/( 1) (14)k

that is:

− + =n k( 1) 4 (15)k2

that implies (k has to be an integer) that the minimum length k for having all hapaxes in R is:

= − +⌈ ⌉k n klg ( 1) (16)4
2

whence

= − +⌈ ⌉k n klg ( 1) (17)2

that is

= − − + +⌈ ⌈ ⌉ ⌉k n n klg ( lg ( 1) 1) (18)2 2

length min max sd avg lg2(|R|)

1,000 9 15 1.07 10.2 9.97

100,000 15 20 0.95 16.67 16.61

200,000 16 21 0.86 17.78 17.61

500,000 18 23 0.91 19.09 18.93

1,000,000 18 24 0.96 20.14 19.93

10,000,000 22 26 0.97 23.49 23.25

20,000,000 23 27 0.93 24.31 24.25

30,000,000 24 30 1.14 25.08 24.84

50,000,000 24 31 1.17 25.86 25.58

75,000,000 25 29 0.85 26.44 26.16

100,000,000 25 30 1.02 26.89 26.58

Table 2.   For each genome length, 100 trials were performed. The minimum, the maximum and the average, 
together with the standard deviation, of mrl +​ 1 was computed for each trial set. With a good approximation 
lg2(|R|) ≈​ avg(mrl(R) +​ 1).
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therefore

− ≤ ≤⌈ ⌈ ⌉ ⌉ ⌈ ⌉n n k nlg ( lg ( ) ) lg ( ) (19)2 2 2

that implies the asserted inequality.	 ☐
Table 2 shows an experimental validation of Lemma 2. It confirms that lg2(|R|) results to be a good estimation 

of the average of mrl(R) +​ 1 in RND .

Proposition 3 In the class of genomes of length n, for every k <​ n, the following relation holds

 < .E n( ) lg ( ) (20)k 2

Moreover, random genomes of length n have entropies differing from the upper bound lg2(n) less than 
− ⌈ ⌉n n nlg ( /( lg ( ) )2 2  (close to zero).

Proof. According to Lemma 1, E ( )k  reaches its maximum, when = +k mrl ( ) 1. In this case:

 = − +E n k( ) lg ( 1) (21)k 2

therefore, the difference −n Elg ( ) ( )k2  is given by:

− − + = − + .n n k n n klg ( ) lg ( 1) lg ( /( 1)) (22)2 2 2

If  belongs to the class of random genomes of length n, according to Lemmas 1 and 2, the maximum  
entropy is given by E ( )k , for = +k mrl ( ) 1, with − ≤ ≤⌊ ⌋ ⌈ ⌉n k nlg ( ) 1 lg ( )2 2 . Therefore, by substituting  
in equation (22) the upper bound of k, giving the upper bound of lg2(n/(n − ​ k + ​ 1)), we get: 

− − + ≤ − + < −⌈ ⌉ ⌈ ⌉n n k n n n n n nlg ( ) lg ( 1) lg ( /( lg ( ) 1) lg ( /( lg ( ) )2 2 2 2 2 2 .	 ☐
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