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Summary
Background Emergency readmission poses an additional burden on both patients and healthcare systems. Risk
stratification is the first step of transitional care interventions targeted at reducing readmission. To accurately predict
the short- and intermediate-term risks of readmission and provide information for further temporal risk stratifica-
tion, we developed and validated an interpretable machine learning risk scoring system.

Methods In this retrospective study, all emergency admission episodes from January 1st 2009 to December 31st
2016 at a tertiary hospital in Singapore were assessed. The primary outcome was time to emergency readmission
within 90 days post discharge. The Score for Emergency ReAdmission Prediction (SERAP) tool was derived via an
interpretable machine learning-based system for time-to-event outcomes. SERAP is six-variable survival score, and
takes the number of emergency admissions last year, age, history of malignancy, history of renal diseases, serum cre-
atinine level, and serum albumin level during index admission into consideration.

Findings A total of 293,589 ED admission episodes were finally included in the whole cohort. Among them, 203,748
episodes were included in the training cohort, 50,937 episodes in the validation cohort, and 38,904 in the testing
cohort. Readmission within 90 days was documented in 80,213 (27.3%) episodes, with a median time to emergency
readmission of 22 days (Interquartile range: 8-47). For different time points, the readmission rates observed in the
whole cohort were 6.7% at 7 days, 10.6% at 14 days, 13.6% at 21 days, 16.4% at 30 days, and 23.0% at 60 days. In
the testing cohort, the SERAP achieved an integrated area under the curve of 0.737 (95% confidence interval: 0.730-
0.743). For a specific 30-day readmission prediction, SERAP outperformed the LACE index (Length of stay, Acuity
of admission, Charlson comorbidity index, and Emergency department visits in past six months) and the HOSPI-
TAL score (Hemoglobin at discharge, discharge from an Oncology service, Sodium level at discharge, Procedure dur-
ing the index admission, Index Type of admission, number of Admissions during the last 12 months, and Length of
stay). Besides 30-day readmission, SERAP can predict readmission rates at any time point during the 90-day period.

Interpretation Better performance in risk prediction was achieved by the SERAP than other existing scores, and
accurate information about time to emergency readmission was generated for further temporal risk stratification
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and clinical decision-making. In the future, external validation studies are needed to evaluate the SERAP at different
settings and assess their real-world performance.
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Research in context

Evidence before this study

We searched PubMed from 2010 to 2021. Search terms
included ("patient readmission" OR "rehospitalization"
OR "readmission") AND ("predict" OR "prediction") AND
("emergency department" OR "accident & emergency"
OR "emergency" OR "unplanned" OR "avoidable"). We
observed that most readmission risk scoring systems
were designed to predict 30-day readmission risk, such
as the LACE index and the HOSPITAL score, and few
scoring systems were able to provide information about
time to readmission or quantified change in risk over
time.

Added value of this study

The new tool, Score for Emergency ReAdmission Predic-
tion (SERAP), is parsimonious and easy to use with only
six variables. The SERAP outperforms other existing
tools in predicting 30-day readmission risk. Risks for
readmission could also be predicted at the 30-day time
point and any time point during the 90-day period. This
allows for quantifying change in readmission risk over
time, significantly increasing real-life practicality.

Implications of all the available evidence

This study emphasizes the importance of lab values and
personal medical history as predictors of emergency
readmission risk, consistent with previous clinical stud-
ies. The interpretable machine learning-based tool
allows physicians to efficiently calculate patients' read-
mission risks at various time points and the timing of
readmission. Accurate information regarding time to
emergency readmission is helpful for further temporal
risk stratification, clinical decision-making, and personal-
ized transitional care coordination.
Introduction
Emergency readmission, also known as unplanned
readmission, usually refers to patients being readmitted
to inpatient service through the emergency department
(ED). This poses a challenge, especially for healthcare
systems with only finite resources that struggle to meet
the rapidly increasing demand brought by the aging
population .1 In the United States, the emergency read-
mission rate was estimated to be 18%, incurring an
annual cost of $17 billion among Medicare beneficia-
ries.2 Another study in the United Kingdom reported
5.8 million emergency readmission cases during a 6-
year period, adding up to an emergency readmission
rate of 7%.3 In Singapore, a city-state located in South-
east Asia, the all-cause 30-day readmission rate was
reported as 11.6% in 2010, and 19.0% for elderly
patients.4

It has been reported that emergency readmission is
associated with multiple factors5, and a considerable
proportion of readmissions are avoidable.6 Hospitals
and public health authorities worldwide have been put-
ting forward measures and policies aiming to reduce
the rate of readmission. At the policy level, the United
States established the Hospital Readmission Reduction
Program7, where hospitals are financially penalized for
high readmission rates. Commonly practiced measures
include home-visiting programs, telemonitoring, and
patient education upon discharge.8

Identifying patients at high risk for emergency read-
mission is a cornerstone of transitional care interven-
tions that aim to minimize emergency readmission.9,10

Multiple risk scoring systems have been proposed, such
as the LACE index (Length of stay, Acuity of admission,
Charlson comorbidity index, and Emergency depart-
ment visits in past six months)11 and the HOSPITAL
score (Hemoglobin at discharge, discharge from an
Oncology service, Sodium level at discharge, Procedure
during the index admission, Index Type of admission,
number of Admissions during the last 12 months, and
Length of stay).12 However, these scores have several
limitations. Firstly, as both were designed to predict 30-
day readmission risk, their performance in predicting
longer-term (i.e., > 30 days) risks is not guaranteed 13,14,
possibly because the risk of longer-term readmission is
determined by different factors.15,16 Therefore, in com-
parison to patients at short-term (30 days or less) risks,
probably different interventional approaches are
required to achieve an optimal outcome for those at risk
of intermediate-term readmission.8 Moreover, in terms
www.thelancet.com Vol 45 Month March, 2022
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of time to readmission or the quantified change in risk
over time, little information was elicited from these two
scores. This causes some uncertainty in scheduling and
coordinating the transitional care program, which may
lead to the untimely delivery of interventions and thus
reduce the overall effectiveness.8 It would be ideal if
clinicians knew who should receive transitional care
and when interventions were indicated.

To overcome the limitation of current readmission
predictive scores, we proposed and validated a scoring
system of emergency readmission risk prediction,
namely the Score for Emergency ReAdmission Predic-
tion (SERAP), developed through a machine learning-
based clinical score generator.17 The performance of
SERAP was evaluated in a testing cohort and compared
with the HOSPITAL score and LACE index.
Methods

Study design and setting
This study was a retrospective analysis of patients
admitted to Singapore General Hospital (SGH) through
ED. Singapore is a city-state in Southeast Asia, with a
rapidly aging population18; about 1 in 5 Singaporeans
are aged 60 or above in 2020.19 SGH is the largest pub-
lic tertiary hospital in Singapore. In the SGH ED, over
120,000 visits were received, and over 36,000 patients
were referred for inpatient admissions annually.20 In
our study, we focus on all index emergency admission
episodes and look at their following emergency read-
mission. Electronic Health Record (EHR) data analyzed
in this study were obtained from Singapore Health Serv-
ices.
Ethics, consent and permissions
This study was approved by Singapore Health Services'
Centralized Institutional Review Board (CIRB 2021/
2122), and a waiver of consent was granted for EHR
data collection.
Study population
All index emergency admission episodes21 from January
1st, 2009, to December 31st, 2016, were included and
followed for 90 days after discharge to determine
whether an emergency readmission event occurred.
Readmission episodes through non-ED visits were not
counted towards the number of emergency readmis-
sion. Patients under 21 years old were excluded from
our study. Patients deceased during index admission or
before possible readmission were also excluded. Non-
resident foreign citizens were excluded, as they may not
have a complete medical history recorded in our EHR
system. Index admission episodes from 2009 to 2015
were randomly split into two non-overlapping cohorts: a
training cohort (80%) and a validation cohort (20%).
www.thelancet.com Vol 45 Month March, 2022
The admission episodes dated in 2016 were assigned to
the testing cohort. Sequential testing design was
adopted due to better consistency with real-world sce-
narios and its ability to determine whether our model's
performance could be influenced by population shift.
Outcome and candidate variables
Data were extracted from the hospital's EHR through
the SingHealth Electronic Health lntelligence System
(eHints), and the data was de-identified in accordance
with data governance regulations. The primary outcome
was time to emergency readmission within 90 days
post discharge. Comorbidities were obtained from hos-
pital diagnoses and discharge records within five years
preceding patients' index emergency admissions. All
diagnoses were recorded in the form of International
Classification of Diseases (ICD) codes (ICD-9/ICD-10)
22, which is a globally adopted diagnostic tool for epide-
miological and clinical purposes. Comorbidity variables
were extracted according to the Charlson Comorbidity
Index (CCI).23 The algorithms previously proposed by
Quan et al.24 were applied in this study for the linkage
between CCI and ICD codes. A total of 45 preselected
candidate variables were collected, according to data
availability, clinician's perspectives, and literature
reviews. They were all available before discharge from
index admission to ensure that the SERAP is capable of
early stratification of readmission risks. Candidate varia-
bles included demographics, comorbidities, medical uti-
lization history, last measurement of inpatient vital
signs and lab tests during the index admission. The list
of candidate variables was shown in the supplementary
material (eTable 1).
Statistical analysis
All data were analyzed with R 4.0.2 (R Foundation,
Vienna, Austria). For vital signs and lab tests, a certain
value would be considered an outlier and marked as
missing if it was beyond the plausible physiological
range based on domain knowledge, such as any value
below zero or a SpO2 above 100%. Then, all missing val-
ues were imputed with the median value of the training
cohort. In the descriptive summaries, baseline charac-
teristics of the dataset were described through univari-
able and multivariable Cox regression. Kaplan-Meier
survival curves were generated for different risk groups
stratified by the SERAP and compared through the log-
rank test. Furthermore, we computed the 10th/25th and
50th percentile readmission times and actual survival
probabilities at different time points stratified by our
scores.

AutoScore-Survival17, a machine learning-based
time-to-event score generation algorithm25, was imple-
mented to derive the SERAP model. This algorithm
combined both machine learning and Cox regression,
3



Figure 1. The flow of the study cohort formation
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integrated multiple data manipulation modules, and
automated the development of parsimonious sparse-
score risk models for time-to-event outcomes. In addi-
tion, it builds transparent and straightforward time-to-
event scores, which can be easily implemented and vali-
dated in clinical practice. In the AutoScore-Survival
main flow, tentative SERAP models were generated in
the training cohort, and multiple candidate SERAP
models were evaluated in the validation cohort for
parameter tuning and model selection. Then, the per-
formance metrics of the final SERAP model were calcu-
lated based on the testing cohort. The methodology
details were shown in the supplementary eMethod.

After model derivation, the predictive performance
of the final SERAP model was reported based on the
testing cohort, and bootstrapped samples were applied
to calculate 95% confidence intervals (CIs). The individ-
ual scores were then summed up to derive the aggregate
SERAP score for performance evaluation. The predictive
power of SERAP was measured by time-dependent area
under the curve (AUC(t)) 26 concordance indices (Har-
rell's C-index).27,28 AUC(t) is the most popular and intu-
itive measure of performance at a specific point of time
in time-to-event outcome-predicting models. Mean-
while, C-index is able to summarize the overall perfor-
mance in a single number, which adapts well to the
purpose of this study.29 We also derived the integrated
AUC (iAUC), a weighted average of AUC(t) 30 over a fol-
low-up period (i.e., from Day 1 to Day 90), summarizing
the overall discrimination ability of the SERAP. In addi-
tion, the SERAP was compared with the LACE index 11

and the HOSPITAL score 12 within the same testing
cohort in terms of predicting time-to-readmission out-
comes. Specifically for 30-day readmission prediction,
sensitivity, specificity, positive predictive value (PPV),
and negative predictive value (NPV) were also computed
with the optimal cut-off values, defined as the point
nearest to the upper-left corner of the receiver operating
characteristic curve.
Role of the funding source
The funders of the study had no role in study design,
data collection, data analysis, data interpretation, or
writing of the report. Feng Xie, Nan Liu, Yilin Ning,
and Marcus Eng Hock Ong had access to the data. All
authors took the decision to submit for publication.
Results

Cohort formation and fundamental covariates analysis
A total of 293,589 ED admission episodes were finally
included. As shown in Figure 1, 203,748 episodes were
included in the training cohort, 50,937 episodes in the
validation cohort, and 38,904 in the testing cohort. The
Kaplan-Meier curve of the overall population was plot-
ted in eFigure 1. When censored at the end of the 90-
day observation window, 213,376 (72.7%) episodes were
readmission-free for more than 90 days. In contrast,
80,213 (27.3%) episodes had readmission within
90 days, with a median time to emergency readmission
of 22 days (IQR: 8-47) and a mean time to readmission
of 29.5 days (SD=25.3). For different time points, the
readmission rates observed in the whole cohort were
6.7% at 7 days, 10.6% at 14 days, 13.6% at 21 days,
16.4% at 30 days, and 23.0% at 60 days. Table 1 sum-
marizes the characteristics of patients with >1 emer-
gency admission episode in the last year, in comparison
to those with <=1 emergency admission episode. Table 2
summarizes the univariable and multivariable Cox
regression analyses of all prognostic factors. All varia-
bles except gender had P < 0.001, making it challeng-
ing to select a parsimonious model based on P values
only.
Parsimony plot and time-to-event scores
The number of variables was determined by the parsi-
mony plot (i.e., model performance vs. complexity)
www.thelancet.com Vol 45 Month March, 2022



Overall 0 or 1 emergency
admissions last year

More than 2 emergency
admissions last year

# Episodes 293589 234054 59535

Age 63.00 (17.01) 61.94 (17.28) 67.16 (15.22)

Gender

Female 149741 (51.0%) 120635 (51.5%) 29106 (48.9%)

Male 143848 (49.0%) 113419 (48.5%) 30429 (51.1%)

Race

Chinese 215803 (73.5%) 173173 (74.0%) 42630 (71.6%)

Others 8543 (2.9%) 6775 (2.9%) 1768 (3.0%)

Indian 30652 (10.4%) 23564 (10.1%) 7088 (11.9%)

Malay 38591 (13.1%) 30542 (13.0%) 8049 (13.5%)

Triage class code

P3 and P4 78006 (26.6%) 67735 (28.9%) 10271 (17.3%)

P1 49052 (16.7%) 36283 (15.5%) 12769 (21.4%)

P2 166531 (56.7%) 130036 (55.6%) 36495 (61.3%)

Myocardial infarction 17343 (5.9%) 8066 (3.4%) 9277 (15.6%)

Congestive heart failure 35315 (12.0%) 17762 (7.6%) 17553 (29.5%)

Peripheral vascular disease 17896 (6.1%) 8943 (3.8%) 8953 (15.0%)

Stroke 40719 (13.9%) 26334 (11.3%) 14385 (24.2%)

Dementia 8485 (2.9%) 4540 (1.9%) 3945 (6.6%)

Chronic pulmonary disease 31057 (10.6%) 17938 (7.7%) 13119 (22.0%)

Rheumatoid disease 4499 (1.5%) 2830 (1.2%) 1669 (2.8%)

Peptic ulcer disease 12012 (4.1%) 7221 (3.1%) 4791 (8.0%)

Moderate to severe chronic kidney disease 64311 (21.9%) 36057 (15.4%) 28254 (47.5%)

Diabetes

None 190736 (65.0%) 162946 (69.6%) 27790 (46.7%)

Diabetes without chronic complications 28455 (9.7%) 23008 (9.8%) 5447 (9.1%)

Diabetes with complications 74398 (25.3%) 48100 (20.6%) 26298 (44.2%)

Malignancy

None 252110 (85.9%) 204520 (87.4%) 47590 (79.9%)

Local tumor, leukemia and lymphoma 24798 (8.4%) 17506 (7.5%) 7292 (12.2%)

Metastatic solid tumor 16681 (5.7%) 12028 (5.1%) 4653 (7.8%)

Number of surgeries 0.29 (0.68) 0.31 (0.69) 0.20 (0.61)

Number of ICU admissions 0.03 (0.27) 0.03 (0.28) 0.02 (0.21)

Length of stay (days) 6.42 (10.89) 6.25 (10.67) 7.09 (11.68)

Time to readmission (days) within 90 days 74.20 (30.42) 79.36 (26.35) 53.94 (36.32)

7-day readmission 19595 (6.7%) 10636 (4.5%) 8959 (15.0%)

14-day readmission 31263 (10.6%) 16867 (7.2%) 14396 (24.2%)

21-day readmission 39895 (13.6%) 21605 (9.2%) 18290 (30.7%)

30-day readmission 48279 (16.4%) 26274 (11.2%) 22005 (37.0%)

60-day readmission 67474 (23.0%) 37449 (16.0%) 30025 (50.4%)

90-day readmission 80213 (27.3%) 45237 (19.3%) 34976 (58.7%)

Table 1: Baseline characteristics of the whole study cohort.
*Continuous variables are presented as Mean (SD); binary/categorical variables are presented as Count (%).

Articles
(eFigure 2) based on the validation cohort, and after bal-
ancing model performance (i.e., iAUC) with complexity
(number of variables, m), six variables were selected.
Performance was not markedly improved with more
variables added to the time-to-event score.

The six-variable survival score, took the number of
emergency admissions last year, age, history of
www.thelancet.com Vol 45 Month March, 2022
malignancy, history of renal diseases, serum creatinine
level, and serum albumin level during index admission
into consideration, as tabulated in Table 3. The final
score ranges from 0 to 40, where a greater number indi-
cates a higher risk of emergency readmission within
90 days after discharge from index admissions. We can
find that the number of ED admission last year has the
5
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largest score value, accounting for 19 out of 40 points,
revealing the most significant contribution to the risk.
Table 4 shows different score intervals and their corre-
sponding percentile survival time as well as survival
probability estimated by the Kaplan-Meier method.
Readmission probability at 7, 14, 30, 60, and 90 days
increases with rising SERAP scores, as expected. Table 4
and Figure 2(a) offer a correspondence of scores and
predicted readmission probability based on the training
set. For example, scores between 15 and 19 correspond
to a 30-day readmission probability of 28.1% and a
median time to readmission of more than 90 days,
while scores ranging from 20 to 24 correspond to a 30-
day readmission probability of 42.1% and median time
to readmission of shorter than 44 days. As shown in
Figure 2(b), the time-to-event score is able to accurately
stratify patients in the test set into risk groups based on
the Kaplan-Meier curve (P < 0.0001).
Performance evaluation and comparison
The performance of various scoring tools evaluated at
different time points in the unseen test set was
reported in Table 5. Our SERAP achieved an iAUC of
0.737 (95% CI: 0.730-0.743) and a C-index of 0.744
Figure 2. Kaplan-Meier curve of emergency readmission through ris
cohort
(95% CI: 0.740-0.748) for time to emergency readmis-
sion prediction. eTable 2 shows the sensitivity analysis
of SERAP performance by removing each variable, fur-
ther specifying the impact of previous-year emergency
visits. Table 6 specifically compares the performance
of predicting 30-day readmission, where SERAP
achieved an AUC of 0.753 (95% CI: 0.746-0.759) and
outperformed the LACE index (AUC: 0.713, 95% CI:
0.707-0.721) and the HOSPITAL score (AUC: 0.683,
95% CI: 0.676-0.690). In addition, SERAP also had
the highest sensitivity of 0.746 (95% CI: 0.735-0.757)
and the highest positive likelihood ratio of 1.953 (95%
CI: 1.899-2.013) among the three. In addition, SERAP
only has six variables, making it easier to implement
in clinical practice. Besides 30-day readmission,
SERAP could predict readmission rate at any time
point during the 90-day period and achieved an AUC
of 0.720 (95% CI: 0.713-0.727) for 7-day readmission,
0.737 (95% CI: 0.729-0.745) for 14-day readmission,
0.744 (95% CI: 0.738-0.751) for 21-day readmission,
0.764 (95% CI: 0.760-0.769) for 60-day readmission,
and 0.772 (95% CI: 0.767-0.777) for 90-day readmis-
sion. Besides, eTable 3 and eTable 4 summarize the
comparison of performance in subpopulations strati-
fied by age and gender, respectively. It shows that
k stratification by the SERAP at (a) training cohort and (b) testing

www.thelancet.com Vol 45 Month March, 2022



Figure 2 Continued.
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SERAP may have reduced performance in older
patients (age>=60), but is still significantly superior to
the other two baseline scores.
Discussion
In this cohort study, a parsimonious and point-based
SERAP score was developed for patient stratification
according to their readmission risk. The SERAP was val-
idated in a testing cohort and has shown better discrimi-
native power than the LACE index and the HOSPITAL
score (AUC 0.753 vs. 0.713 vs. 0.683 based on 30-day
emergency readmission). In addition, the SERAP pre-
dicted readmission rate at any time point during the
90-day period and achieved a good performance, signifi-
cantly improving real-life practicality. It is a transparent
and interpretable tool with only six variables, making it
easy to implement in hospital settings. With this tool, a
physician could better understand patients' readmission
www.thelancet.com Vol 45 Month March, 2022
risks at various time points and when patients might be
readmitted.

Some notable findings were also revealed in this
study. The number of ED admissions the year before
was identified as an essential predicting factor. Frequent
admitters were found in our study, with some even
exceeding ten admissions in the preceding year 31,
bringing in a heavy financial burden to society.32 Renal
diseases, malignancy, and serum albumin level were
also identified as key factors for readmission, consistent
with previous studies.33,34 Interestingly, in contrast to
previous studies in which readmission risk increases
with high serum creatine value only35,36, our results
suggested that a low level of creatinine also leads to the
rise of readmission risk, probably because low creati-
nine, serving as an indicator for low muscle mass, is
associated with other medical conditions, such as diabe-
tes mellitus, chronic liver disease, and malnutrition,37,38

and therefore, contributes to increased mortality and
morbidity. This finding calls for more research to
7



HR (95% CI) p-value Adjusted HR (95% CI) p-value

Demographic

Age 1.019 (1.018-1.019) <0.001 1.011 (1.010-1.011) <0.001

Gender

Female 1[Reference] 1[Reference]

Male 1.132 (1.116-1.148) <0.001 1.083 (1.067-1.098) <0.001

Race

Chinese 1[Reference] 1[Reference]

Malay 0.912 (0.893-0.932) <0.001 0.987 (0.966-1.009) 0.25

Indian 0.967 (0.945-0.99) 0.005 1.009 (0.985-1.033) 0.454

Others 0.883 (0.846-0.922) <0.001 0.990 (0.949-1.034) 0.664

PACS triage categories

P3 and P4 1[Reference] 1[Reference]

P1 2.004 (1.960-2.049) <0.001 1.400 (1.368-1.433) <0.001

P2 1.675 (1.645-1.706) <0.001 1.292 (1.268-1.317) <0.001

Comorbiditiesa

Myocardial infarction 2.499 (2.445-2.554) <0.001 1.064 (1.038-1.090) <0.001

Congestive heart failure, 2.428 (2.388-2.469) <0.001 1.236 (1.212-1.26) <0.001

Peripheral vascular disease 2.295 (2.245-2.346) <0.001 1.202 (1.173-1.231) <0.001

Stroke 1.612 (1.584-1.640) <0.001 1.079 (1.056-1.103) <0.001

Dementia 1.968 (1.906-2.033) <0.001 1.176 (1.137-1.217) <0.001

Chronic pulmonary disease 1.841 (1.807-1.876) <0.001 1.187 (1.163-1.212) <0.001

Autoimmune diseases 1.490 (1.421-1.564) <0.001 1.121 (1.067-1.177) <0.001

Peptic ulcer disease 1.753 (1.704-1.804) <0.001 1.078 (1.047-1.11) <0.001

Hemiplegia or paraplegia 1.645 (1.606-1.686) <0.001 1.105 (1.073-1.138) <0.001

Renal diseases 2.460 (2.425-2.496) <0.001 1.349 (1.322-1.376) <0.001

Diabetes

Nil 1[Reference] 1[Reference]

Diabetes without chronic complications 1.306 (1.275-1.337) <0.001 1.092 (1.066-1.12) <0.001

Diabetes with complications 1.926 (1.898-1.955) <0.001 1.138 (1.119-1.159) <0.001

Malignancy

Nil 1[Reference] 1[Reference]

Non-metastatic solid tumor, leukemia, lymphoma 1.817 (1.779-1.857) <0.001 1.494 (1.462-1.527) <0.001

Metastatic solid tumor 2.996 (2.932-3.062) <0.001 2.786 (2.724-2.849) <0.001

Liver diseases 1.722 (1.694-1.750) <0.001 1.198 (1.178-1.219) <0.001

Health utilization during index admission

Number of surgeries 0.899 (0.888-0.910) <0.001 0.928 (0.917-0.94) <0.001

Number of ICU admissions 1.064 (1.039-1.090) <0.001 0.937 (0.904-0.971) <0.001

Number of HDU admission 0.906 (0.892-0.921) <0.001 0.902 (0.888-0.917) <0.001

Length of stay 1.005 (1.005-1.006) <0.001 1.003 (1.003-1.004) <0.001

Duration of ICU stays 1.014 (1.008-1.020) <0.001 1.021 (1.011-1.03) <0.001

Inpatient lab tests (serum level) and vital

Albumin 0.933 (0.932-0.934) <0.001 0.964 (0.963-0.966) <0.001

Bicarbonate 0.981 (0.979-0.984) <0.001 1.003 (1.000-1.005) 0.019

C reactive protein (Every 10 units) 1.019 (1.017-1.02) <0.001 1.002 (1.000-1.004) 0.014

Creatine kinase (Every 10 units) 0.998 (0.998-0.999) <0.001 0.999 (0.999-1.000) <0.001

Creatine kinase MB (Every 10 units) 1.039 (1.031-1.048) <0.001 1.026 (1.011-1.041) <0.001

Creatinine (Every 10 units) 1.012 (1.011-1.012) <0.001 1.005 (1.005-1.005) <0.001

Potassium 1.208 (1.187-1.230) <0.001 0.965 (0.949-0.981) <0.001

Procalcitonin 1.003 (1.003-1.004) <0.001 0.999 (0.998-1.000) 0.014

Prothrombin time 1.026 (1.024-1.028) <0.001 1.012 (1.010-1.015) <0.001

Sodium 0.948 (0.946-0.950) <0.001 0.974 (0.972-0.976) <0.001

Diastolic BP 0.998 (0.997-0.999) <0.001 1.001 (1.000-1.001) 0.235

Systolic BP 1.003 (1.003-1.004) <0.001 0.999 (0.999-0.999) <0.001

Table 2 (Continued)
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HR (95% CI) p-value Adjusted HR (95% CI) p-value

Heart rate 1.012 (1.011-1.012) <0.001 1.006 (1.005-1.006) <0.001

SpO2 0.975 (0.973-0.978) <0.001 0.999 (0.996-1.003) 0.763

Temperature 0.891 (0.878-0.903) <0.001 0.914 (0.901-0.927) <0.001

Previous health utilization

Emergency admissions in the past month 2.005 (1.990-2.020) <0.001 1.236 (1.220-1.252) <0.001

Emergency admissions in the past year 1.155 (1.154-1.157) <0.001 1.097 (1.094-1.099) <0.001

HDU admissions in the past month 1.383 (1.339-1.428) <0.001 0.996 (0.958-1.036) 0.855

HDU admissions in the past year 1.302 (1.291-1.313) <0.001 1.015(1.003-1.027) 0.012

ICU admissions in the past month 1.493 (1.384-1.610) <0.001 1.043 (0.954-1.139) 0.353

ICU admissions in the past year 1.268 (1.251-1.285) <0.001 0.987 (0.966-1.009) 0.235

Surgeries in the past month 1.557 (1.518-1.596) <0.001 0.959 (0.929-0.990) 0.009

Surgeries in the past year 1.227 (1.222-1.231) <0.001 1.056 (1.047-1.064) <0.001

Year of index admission

2009 1[Reference] 1[Reference]

2010 1.073 (1.041-1.105) <0.001 1.004 (0.974-1.034) 0.811

2011 1.100 (1.068-1.132) <0.001 1.010 (0.980-1.040) 0.517

2012 1.113 (1.081-1.145) <0.001 1.045 (1.015-1.076) 0.003

2013 1.097 (1.066-1.129) <0.001 1.062 (1.031-1.094) <0.001

2014 1.078 (1.047-1.11) <0.001 1.078 (1.046-1.111) <0.001

2015 1.071 (1.04-1.102) <0.001 1.070 (1.038-1.103) <0.001

2016 1.088 (1.057-1.12) <0.001 1.090 (1.058-1.124) <0.001

Table 2: Univariable and multivariable Cox regression analysis of the association between included variables and time to emergency
readmission within 90 days (N=293,589).
HR, Hazard Ratio; ED, Emergency Department; BP, Blood Pressure; SpO2, Blood Oxygen Saturation; HDU, High Dependency Unit, wards for people who

need closer monitoring, more aggressive treatment, and more extensive nursing care than provided in regular service, but slightly less intensive than those

given in intensive care. PACS, Patient Acuity Category Scale, the national emergency triage system in Singapore, where P1 patients are the most serious and

P4 are non-emergency.
a The reference group consists of patients without the particular disease.
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comprehensively evaluate the association between
serum creatine level and patient outcome. Although the
collinearity issue may exist in our scoring system, the
model is still valid with the aim of improving the overall
predictive performance. In our cohort, the 30-day read-
mission rate is 16.4%, which is slightly higher com-
pared with a large-scale national study in the US39,
where the 30-day readmission rate for patient's emer-
gent index admission is 12.7%, mainly due to the rapid-
aging population in Singapore.

Several possible reasons why the SERAP outper-
formed the LACE index and the HOSPITAL score in
this study were proposed. To start with, age was not
included in both scores as a predictor. The role of
patients' age in readmissions has been demonstrated in
other studies40 41, and more attention should be paid to
this factor in a consistently aging population as in Sin-
gapore.42 In 43, the LACE index was shown as a poor
tool for predicting readmission in older UK inpatients.
Another large-scale US-based study39 also affirmed the
contribution of age to readmission risk. In addition, the
LACE index includes the CCI index, which was devel-
oped only based on a longitudinal study of 559 patients
in 1987 41, and its weighting strategy may need updat-
ing now that the world population is evolving towards a
www.thelancet.com Vol 45 Month March, 2022
highly aging society with a rising readmission rate.44 In
comparison, only two vital comorbidities were selected
and weighted in our SERAP, based on the readmission
risks in a training cohort of 200,000 episodes, making
it more practical and more accurate. In contrast, the
HOSPITAL score did not include any comorbidities as a
predictor, leading to a relatively poor performance in a
cohort from an aging population.

In addition to its accuracy, the SERAP has several
other strengths. The SERAP is developed and validated
based on a time-to-event outcome, where the readmis-
sion window ranges from 14 days to 90 days. This
endows robust prediction power at both short-term and
intermediate-term readmission risks. Such a flexible
prediction window increases its usability in comparison
to the models designed for 30-day readmission risk
only, as many patients continue to receive care beyond
30 days. Thus, the Kaplan−Meier estimator and curve
based on the SERAP provide physicians with an exact
predicted readmission probability and interpret how it
changes over time in an intuitive manner. Moreover,
machine learning-based variable selection by Auto-
Score-Survival can potentially filter out redundant infor-
mation to achieve a parsimonious solution with only six
variables, making it easy to use in real-world clinical
9



Variables Value/Interval Point

Number of ED

admissions last year

0 0

1 5

2 7

3-4 10

5-6 13

7-9 15

≥10 19

Age (years) <30 0

30-49 2

50-79 4

≥80 5

History of malignancy Nil 0

Local tumor, leukemia,

and lymphoma

2

Metastatic 7

History of renal diseases Nil 0

Yes 2

Creatinine (umol/L) <65 1

65-104 0

≥105 2

Albumin (g/L) <24 5

24-30 3

31-34 2

35-39 1

≥40 0

Table 3: Six-variable Score for Emergency ReAdmission
Prediction (SERAP).
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settings. In comparison, the LACE index includes the
CCI index, requiring information about 17 conditions,
which may hinder its implementation in real clinical
settings, especially for undeveloped regions where the
modern EHR system was not employed.

There are several potentially applicable scenarios for
the SERAP in clinical practice. First, it can be used as a
risk stratification tool in transitional care planning and
coordination. The identification of patients at risk, coor-
dination of care, and the timeliness of follow-ups have
been identified as critical factors for successful transi-
tional care 45,.46 Another study suggested that a data-
driven approach for scheduling post-discharge interven-
tions leads to a significant reduction in readmission rate
by 44.7%, compared to regular visit-based home care.47

With the accurate risk stratification in addition to the
time-to-readmission outcome prediction, it is more
likely to identify the most vulnerable period of each
patient, such as the segment of the time-to-readmission
risk curve where the slope changes drastically or when
the risk exceeds a pre-set threshold. Thus, the schedul-
ing of follow-up can be better tailored and individual-
ized, and timeliness could be ensured. To assist in a
readmission reduction program that aims to deliver
transitional care before the cumulative readmission risk
www.thelancet.com Vol 45 Month March, 2022



SERAP LACE HOSPITAL

iAUC 0.737 (0.730-0.743) 0.707 (0.700-0.712) 0.672 (0.665-0.679)

C-index 0.744 (0.740-0.748) 0.714 (0.709-0.718) 0.695 (0.690-0.700)

AUC(t=7) 0.720 (0.713-0.727) 0.695 (0.685-0.705) 0.658 (0.646-0.670)

AUC(t=14) 0.737 (0.729-0.745) 0.706 (0.698-0.712) 0.676 (0.667-0.686)

AUC(t=21) 0.744 (0.738-0.751) 0.710 (0.704-0.716) 0.679 (0.671-0.686)

AUC(t=60) 0.764 (0.760-0.769) 0.724 (0.720-0.730) 0.689 (0.683-0.694)

AUC(t=90) 0.772 (0.767-0.777) 0.730 (0.725-0.735) 0.689 (0.683-0.694)

Table 5: Performance of different scoring systems on the testing cohort.
AUC: area under the curve.

iAUC: integrated area under the curve.

SERAP LACE HOSPITAL

AUC(t=30) 0.753 (0.746-0.759) 0.713 (0.707-0.721) 0.683 (0.676-0.690)

Number of Variables 6 17+3* 4

Cut-off 11 10 4

Sensitivity 0.746 (0.735-0.757) 0.703 (0.691-0.714) 0.685 (0.674-0.696)

Specificity 0.618 (0.613-0.624) 0.618 (0.613-0.624) 0.595 (0.590-0.600)

PPV 0.280 (0.275-0.283) 0.268 (0.264-0.272) 0.252 (0.248-0.256)

NPV 0.924 (0.921-0.927) 0.913 (0.910-0.916) 0.905 (0.901-0.908)

Positive LR 1.953 (1.899-2.013) 1.840 (1.786-1.899) 1.691 (1.644-1.740)

Negative LR 0.432 (0.389-0.481) 0.504 (0.458-0.529) 0.529 (0.507-0.553)

Table 6: Comparison of SERAP with LACE and HOSPITAL for predicting 30-day readmission on the testing cohort.
* LACE index consists of the Charlson Comorbidity Index, which contains 17 breakdowns of various comorbidities.AUC: area under the curvePPV: positive

predictive valueNPV: negative predictive valueLR: likelihood ratios.
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of a specific patients group reaches 25%, a timeline
could be easily drafted with the Kaplan-Meier curve
derived from the testing cohort: Patients with SERAP
scores equal or greater than 25 should be prioritized to
receive intervention before post-discharge day 7, fol-
lowed by patients with scores within the range of
20»24, before day 12, and those with scores of 15»19,
before day 25. Furthermore, the SERAP could also be
adopted in the practice of reverse triage, a strategy cop-
ing with unusually high-demand situations by identify-
ing patients who no longer need in-hospital resources
and is safe for early discharge.48-50 The integration of
high-quality readmission risk evaluation models into
the decision-making algorithm for reverse triage has
been shown to further improve patient safety by Cara-
mello et al.50 Further research needs to be conducted to
validate the effectiveness and physician-perceived
acceptability after incorporating the SERAP into the
transitional care model and reverse triage.

The study also has several limitations. First, the data-
set was based on the hospital’s EHR portal, and it only
contains certain system-collected information and does
not include all information available that should, in the-
ory, be elicited. Some potential risk factors, such as full
blood count, troponin, chief complaint, and psychiatric
www.thelancet.com Vol 45 Month March, 2022
variables, are not recorded in the system, while manual
extraction was not feasible because of the enormous
amount of data. Furthermore, our index admission epi-
sodes were limited to inpatient admissions through ED
due to technical limitations, which might impact the
generalizability of all hospital admissions. Future
research should look at other types of admission, such
as elective admission. Second, this study is based on the
data of within the aforementioned eight-year period,
where the coronavirus disease 2019 (COVID-19) pan-
demic was not involved. Future research should further
extract recent year data to examine whether the COVID-
19 pandemic would influence the performance of the
SERAP model. Third, although only around 1% of vital
sign data are missing, the missing rate of laboratory
tests is higher, reaching more than 20% in some items.
Therefore, median value imputation for raw EHR data
might not be perfect, which is based on the hypothesis
that patients with missing lab tests are more likely to
have a result value within a normal range. It hints on
the possibility that these lab tests were not performed
due to the lack of clinical relevance, and we believe such
hypothesis is reasonable, yet it does not hold true in all
settings. Last, this was a single-center study at a large
teaching hospital, and thus, our findings may not be
11
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easily generalized to other settings. The performance of
the SERAP may also vary in different healthcare set-
tings. In the future, external validation studies are
needed to validate the SERAP at different settings and
assess its real-world performance. Prospective data col-
lection is supposed to explore the clinical value and
effect of our model in practice and further validate its
efficacy.

In conclusion, better performance in emergency
readmission risk prediction was achieved by the SERAP
than other existing scores, and accurate information
about time to emergency readmission was generated for
further temporal risk stratification and clinical decision-
making.
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