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Abstract

11b-hydroxysteroid dehydrogenase 1 (11b-HSD1) catalyzes the interconversion of cortisone and cortisol within the
endoplasmic reticulum. 11b-HSD1 is expressed widely, most notably in the liver, adipose tissue, and central nervous system.
It has been studied intensely over the last 10 years because its activity is reported to be increased in visceral adipose tissue
of obese people. Epidermal keratinocytes and dermal fibroblasts also express 11b-HSD1. However, the function of the
enzymatic activity 11b-HSD1 in skin is not known. We found that 11b-HSD1 was expressed in human and murine epidermis,
and this expression increased as keratinocytes differentiate. The expression of 11b-HSD1 by normal human epidermal
keratinocytes (NHEKs) was increased by starvation or calcium-induced differentiation in vitro. A selective inhibitor of 11b-
HSD1 promoted proliferation of NHEKs and normal human dermal fibroblasts, but did not alter the differentiation of NHEKs.
Topical application of selective 11b-HSD1 inhibitor to the dorsal skin of hairless mice caused proliferation of keratinocytes.
Taken together, these data suggest that 11b-HSD1 is involved in tissue remodeling of the skin. This hypothesis was further
supported by the observation that topical application of the selective 11b-HSD1 inhibitor enhanced cutaneous wound
healing in C57BL/6 mice and ob/ob mice. Collectively, we conclude that 11b-HSD1 is negatively regulating the proliferation
of keratinocytes and fibroblasts, and cutaneous wound healing. Hence, 11b-HSD1 might maintain skin homeostasis by
regulating the proliferation of keratinocytes and dermal fibroblasts. Thus 11b-HSD1 is a novel candidate target for the
design of skin disease treatments.
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Introduction

The endogenous steroid hormone glucocorticoid (GC) is

released in response to various stressors such as physical injury

and psychological stress. It regulates biological processes including

growth, development, metabolism, and behavior [1,2]. In

mammalian cells, it induces diverse responses including differen-

tiation, proliferation, and apoptosis [3].

GC is the most effective anti-inflammatory drug for treating acute

and chronic inflammatory diseases, and has been used for more

than half a century. The major anti-inflammatory mechanism of

GC is the repression of inflammatory gene transcription factors such

as nuclear factor kB and activator protein-1 [1,4]. Topical

application of GC ointment is one of the most common treatments

for inflammatory dermatitis, and its mechanism is thought to be its

anti-inflammatory effects on keratinocytes and skin infiltrating

inflammatory cells. In addition to its strong anti-inflammatory

effects, GC also influences keratinocyte biology in other ways.

Microarray analyses have revealed that dexamethasone, a synthetic

glucocorticoid, regulates genes associated with differentiation,

metabolism, and inflammation in keratinocytes [5].

Cortisol is the endogenous GC in humans. The enzyme 11b-

hydroxysteroid dehydrogenase (11b-HSD) is known to catalyze the

interconversion between hormonally active cortisol and inactive

cortisone in cells [6,7,8]. The two iso-enzymes of 11b-HSD both

reside in the endoplasmic reticulum membrane [9]. The 11b-

HSD1 isoform, which catalyzes the conversion of cortisone to

cortisol, is widely expressed at the highest levels in the liver, lung,

adipose tissue, ovary, and central nervous system. The 11b-HSD2

isoform, which catalyzes the conversion of cortisol to cortisone, is

highly expressed in the distal nephron, colon, sweat glands, and

placenta. Because 11b-HSD1 activity is reported to be elevated in

the visceral adipose tissue of obese people, it has been studied

intensely over the last 10 years [10,11,12]. Targeted overexpres-

sion of 11b-HSD1 in adipose tissue in mice has been found to

model metabolic syndrome [13,14].

Recently, 11b-HSD1 was found to be expressed in epidermal

keratinocytes, dermal fibroblasts, and outer hair follicle root sheath
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cells. 11b-HSD1 expression increases with age in primary dermal

fibroblasts and in skin tissues [15,16]. Furthermore, Cirillo et al.

demonstrated enzymatic activity of 11b-HSDs in keratinocyte in

culture [17]. While these results suggested that 11b-HSDs have

functions in skin component cells, the in vivo functions of 11b-

HSDs, in skin homeostasis remained unclear.

In this study, we demonstrate that 11b-HSD1 is critical for skin

homeostasis, which functions by modulating keratinocyte and

fibroblast proliferation. In addition, we show the effect of topical

application of a selective inhibitor of 11b-HSD1 on mouse skin and

cutaneous wound healing, which collectively may demonstrate the

possibility of 11b-HSD1 as a novel target in treating cutaneous disease.

Materials and Methods

Cell culture
Normal human epidermal keratinocytes (NHEKs) and normal

human dermal fibroblasts (NHDFs) were purchased from DS

Pharma Biomedical (Osaka, Japan). NHEKs were cultured on type-

1 collagen-coated plates (Asahi Techno Glass, Funabashi, Japan) in

human keratinocyte serum-free medium (DS Pharma Biomedical)

supplemented with bovine pituitary extract. Dulbecco’s modified

Eagle’s medium (DMEM) containing 10% fetal bovine serum (FBS)

was used to culture NHDFs. Isolation and culture of mouse

keratinocytes and mouse fibroblasts were carried out as previously

described [18]. Full-thickness skin harvested from day 2 to day 4

newborn mice was treated with 4 mg/ml of dispase (Gibco;

Invitrogen, Paisley, UK) for 1 h at 37uC. Next, the epidermis was

peeled from the dermis. The epidermis was trypsinized to prepare

single cells. It was then incubated in Human Keratinocyte Serum

Free Medium for 6 h at 37uC under an atmosphere with 5% CO2.

Non-adherent cells were washed away with phosphate-buffered

saline (PBS) twice, and then cultured for 2–3 days in human

keratinocyte serum free medium before use in experiments. The

dermis was placed in PBS+0.05% type-1 collagenase (Sigma-

Aldrich, St Louis, MO, USA) and incubated at 37uC for 30 min

with vigorous agitation to prepare single cells. After filtration, cells

were centrifuged at 200 g for 10 min, resuspended in DMEM+10%

FBS, and incubated at 37uC and in 5% CO2. First or second

passage fibroblasts were used for experiments.

Histopathological analysis
Samples of normal skin from healthy volunteers were taken after

written informed consent. All studies were approved by the ethical

committee of Osaka University. Samples were fixed in 10%

formaldehyde for 24 h, followed by embedding in paraffin and

microtome sectioning. Slides were stained with hematoxylin and

eosin (H&E). For immunohistochemical analysis, sections were

hydrated by passage through xylene and graded ethanols. After

antigen retrieval for 10 min at 90uC in citric buffer, pH 6.0, the slides

were blocked with serum-free protein block (Dako-Cytomation,

Carpinteria, CA, USA) for 10 min, then incubated with primary

antibody overnight at 4uC (rabbit anti-11b-HSD1 antibody 1:100

dilution, Abcam, Cambridge, UK; rabbit anti-Ki-67 antibody 1:500

dilution, Novocastra Laboratories Ltd, Newcastle, UK). After

washing with tris-buffered saline (TBS) containing 0.05% Triton-

X100, slides were mounted using the Vectastain ABC kitH (Vector

Laboratories, Burlingame, CA, USA) followed by counterstaining

with haematoxylin. Rabbit IgG were used as the isotype controls. For

immunofluorescent analysis, sections were hydrated as described

above and incubated with primary antibody (rabbit anti-11b-HSD1

antibody 1:100 dilution and mouse anti-keratin 14 antibody 1:500

dilution, Abcam), followed by secondary antibody (anti-rabbit Alexa

Fluor 555 and anti-mouse Alexa Fluor 488, Invitrogen).

Western blotting
Cell samples were solubilized at 4uC in lysis buffer (0.5%

sodium deoxycholate, 1% Nonidet P40, 0.1% sodium dodecyl

sulphate, 100 mg/ml phenylmethylsulphonyl fluoride, 1 mM

sodium orthovanadate, and protease inhibitor cocktail). For in vivo

samples, skins were crushed in liquid nitrogen and solubilized at

4uC in lysis buffer. Ten micrograms of protein were separated on

SDS-polyacrylamide gels and transferred onto polyvinylidine

fluoride membranes (Bio-Rad, Hercules, CA, USA). Non-specific

protein binding was blocked by incubating the membranes in 5%

w/v non-fat milk powder in TBS-T (50 mM Tris-HCl, pH 7.6,

150 mM NaCl, and 0.1% v/v Tween-20). The membranes were

incubated with sheep anti-11b-HSD1 antibody (The Binding Site,

Birmingham, UK), rabbit anti-keratin 1 antibody (Covance,

Emeryville, CA, USA), and anti-involucrin (IVL) antibody (Santa

Cruz Biotechnology, Santa Cruz, CA, USA) at a dilution of

1:1000 overnight at 4uC or with mouse monoclonal anti-b-actin

(Sigma-Aldrich, St. Louis, MO, USA) at a dilution of 1:5000 for

30 min at room temperature. Then, the membranes were washed

three times in TBS-T for 5 min. Finally, the membranes were

incubated with either HRP-conjugated anti-rabbit, anti-mouse, or

anti-sheep antibody at a dilution of 1:10,000 for 60 min at room

temperature. Protein bands were detected using the ECL Plus kit

(GE Healthcare, Buckinghamshire, UK). The intensity of the

bands was quantified by using NIH image J software.

11b-HSD1 inhibitor treatment
11b-HSD1 inhibitor (385581) purchased from Merck (White-

house Station, NJ, USA) is a potent inhibitor of 11b-HSD1 with

.450- and .100-fold selectivity over human and mouse 11b-

HSD2, respectively [19]. The inhibitor was dissolved in DMSO

and further diluted more than 100,000-fold in culture medium (for

in vitro experiments), in a 1:1 mixture of acetone:olive oil (for in vivo

topical application), or in PBS (for in vivo wound healing). DMSO

was used as a vehicle control.

MTS cell viability assay
Cellular viability was assessed using CellTiter96H Aqueous One

Solution Cell Proliferation Assay (Promega, Madison, WI, USA).

Briefly, NHEKs or NHDFs were seeded onto 96-well plates (5000

cells/well or 500 cells/well in 100 ml medium, respectively). The

cells were allowed to attach for 24 h and then incubated with 11b-

HSD1 inhibitor or vehicle control at the indicated doses for 48 h.

Next, 20 ml of MTS reagent was added, and the cells were

incubated for 2 h. Optical density was measured at 490 nm with a

Micro Plate Reader (Bio-Rad, Hercules, CA, USA).

BrdU incorporation assay
Cell proliferation was assessed using cell proliferation ELISA,

BrdU (Roche, Basel, Switzerland) according to the manufacturer’s

protocol. Briefly, NHEKs were seeded onto 96-well plates (5000

cells/well in 100 ml medium). The cells were allowed to attach for

24 h and then incubated with 11b-HSD1 inhibitor or vehicle

control at the indicated doses for 48 h. Next, cells were labeled with

BrdU, and incubated for 4 h. BrdU incorporation was quantified by

measuring with a Micro Plate Reader (Bio-Rad) at 450 nm.

siRNA transfection
NHEKs (50,000 cells/ml) were seeded on type-1 collagen

coated plates 1 day prior to transfection. Cells were transfected

with 11b-HSD1 or control siRNAs (Invitrogen) at 50 nM using

RNAi MAX (Invitrogen), and the culture medium was replaced

6 h later. Cells were used for experiments 48 h after transfection.

11b-HSD1 in Skin Homeostasis
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RNA isolation and quantitative real time polymerase
chain reaction (rtPCR)

Total RNA was isolated from cells using the SV Total RNA

Isolation System (Promega). The product was reverse-transcribed into

first-strand complementary DNA (cDNA). Thereafter, the expression

of 11b-HSD1, 11b-HSD2, IVL, and keratin 10 (K10) was measured

using the Power SYBR Green PCR Master Mix (Applied Biosystems,

Foster City, CA) according to the manufacturer’s protocol. Glycer-

aldehyde-3-phosphate dehydrogenase (GAPDH) was used to normal-

ize the mRNA as quantified GAPDH was not affected by the

treatment. Similar results were obtained in each experiment when

another internal control, b-actin, was used to normalize the mRNA

(data not shown). Sequence-specific primers were designed as follows:

11b-HSD1, sense: 59-tctcctctctggctgggaaag, antisense: 59- gaacccatc-

caaagcaaacttg; IVL, sense: 59-tctgcctcagccttactgtg, antisense: 59-

ggaggaggaacagtcttgagg; K10, sense: 59-tgaaaagcatggcaactcac, anti-

sense: 59-tgtcgatctgaagcaggatg; Fibroblast growth factor-2 (FGF-2),

sense: 59-agagcgaccctcacatcaag, antisense: 59- actgcccagttcgtttcagt;

TGF-b, sense: 59- cacgtggagctgtaccagaa: 59- gaacccgttgatgtccactt ;

Matrix metalloproteinase-1 (MMP-1), sense: 59- gtgctaaaggtgccaatggt,

antisense: 59- tccttggggtatccgtgtag ; Collagen 1 alpha 1 (Col1a1), sense:

59- ctcctcgctttccttcctct, antisense: 59- ctcctcgctttccttcctct ; and

GAPDH, sense: 59- ggagtcaacggatttggtcgta-39, antisense: 59- gcaacaa-

tatccactttaccagagttaa-39. Real-time PCR (40 cycles of denaturation at

92uC for 15 seconds and annealing at 60uC for 60 seconds) was run

on an ABI 7000 Prism (Applied Biosystems). Samples without reverse

transcriptase (negative control) did not show any amplification.

Cortisol measurement by ELISA
NHEKs (10,000 cells/ml, 100 ml) were seeded on 96-well type-A

collagen-coated plates. The cells were allowed to attach for 24 h and

then the medium was changed to a high calcium (1.2 mM) basal

medium that did not contain bovine pituitary extract, to remove

cortisol from the culture media. The culture media were harvested

48 h later. Harvested samples were stored at 220uC until use. The

amount of cortisol in samples was measured with an Cortisol EIA kit

(Cayman Chemical Company, Ann Arbor, MI, USA).

Wound healing assay
Male C57BL/6 and C57BL/6J-ob/ob mice were obtained from

Japan Charles River, Inc. Animal care was in accordance with the

institutional guidelines of Osaka University. At 6 weeks of age,

dorsal hairs were removed by using hair removal cream (epilat,

Kracie, Inc., Tokyo, Japan). Full-thickness 15-mm wounds were

created on the backs of mice (n = 3 in each group for first

experiment and n = 4 in each group for second experiment) a day

after hair removal. 11b-HSD1 inhibitor (10 mM) or vehicle control

dissolved in PBS was applied to the wound and the wound was

covered with hydrocolloid dressing. This application was repeated

every 2 days. The wound areas were calculated by measuring the

major and minor axes on days, 0, 2, 4, 6, 8, 10, and 12 after

wounds were created.

Topical 11b-HSD1 inhibitor treatment
Eight-week-old male Hos: HR-1 mice (hairless mice) were

obtained from Japan SLC, Inc. Animal care was in accordance

with the institutional guidelines of Osaka University. Mouse dorsal

skins (n = 3 in each group for first experiment and n = 5 in each

group for second experiment) were treated with 11b-HSD1

inhibitor (50 mM) or vehicle control dissolved in a 1:1 mixture of

acetone:olive oil for 5 continuous days. One day after the last

treatment, the treated dorsal skins were harvested for histological

analysis.

Statistical analysis
The data are expressed as mean values 6 standard deviation

(SD). The unpaired Student’s t-test was used to determine the level

of significance of differences between the sample means.

Figure 1. 11b-HSD1 expression in human skin. (a) Immunohistochemical staining of 11b-HSD1 (DAB staining) in normal skin tissue. Bar = 50 mM
(b) Immunofluorescent staining of 11b-HSD1 (red) and keratin 14 (green). Bar = 100 mM (c) PCR detecting 11b-HSD1 in NHEKs and NHDFs. RT-:
samples without reverse transcriptase (negative control).
doi:10.1371/journal.pone.0025039.g001
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Results

11b-HSD1 expression in the skin
First, the expression of 11b-HSD1 in healthy skin was

examined. 11b-HSD1 was broadly expressed in all layers of the

epidermis and in dermal fibroblasts (Figure 1a). Its expression was

stronger in the cytoplasm of supra-basal cells, and only weakly

detected in basal cells. This was also confirmed by double staining

with both the anti-11b-HSD1 antibody and the basal cell marker,

anti-K14 (Figure 1b). The expression of 11b-HSD1 was also

detected in cultured NHEKs and in NHDFs (Figure 1c).

11b-HSD1 expression is increased by starvation or
calcium induced differentiation

We next investigated whether the starvation and differentiation

alter the expression of 11b-HSD1 in NHEKs. Starving keratino-

cytes by depriving them of pituitary extract in the culture media

retards the growth of keratinocytes. Twenty-four hours of

starvation significantly increased the expression of 11b-HSD1

(Figure 2a). NHEKs are known to differentiate when 1.2 mM

calcium is added. This treatment causes the early differentiation

markers keratin 1 (K1), K10, and IVL to increase as the cells

differentiate [20,21]. The stimulation of differentiation with

1.2 mM of calcium increased the expression of 11b-HSD1 in

NHEKs (Figure 2b and 2c). These results indicate that starvation

of essential supplements or calcium-induced differentiation

increases the expression of 11b-HSD1 in NHEKs.

11b-HSD1 regulates proliferation, but not differentiation,
of NHEKs

To determine if 11b-HSD1 modulated keratinocyte proliferation,

we investigated the effect of selective 11b-HSD1 inhibitor on the

Figure 2. 11b-HSD1 expression is increased with starvation and differentiation. (a) The relative expression of 11b-HSD1 in NHEKs assessed
by rtPCR with or without pituitary extract (pit) in culture media. GAPDH was used as an internal control. (b)Western blotting for detecting 11b-HSD1,
Keratin 1, and Involucrin 48 h after adding 1.2 mM of calcium to culture media of NHEKs. The numbers indicate the relative ratio to b-actin. (c) The
relative expressions of 11b-HSD1, Keratin 10, and Involucrin of the indicated hour after adding 1.2 mM calcium to culture media of NHEKs assessed by
rtPCR. GAPDH was used as an internal control. An asterisk indicates a statistically significant difference (*P,0.05, **P,0.01, Student’s t-test).
doi:10.1371/journal.pone.0025039.g002
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proliferation of NHEKs. Addition of 100 nM–10 mM of inhibitor to

culture medium, induced cell proliferation in a dose dependent

manner in both MTS assays (Figure 3a) and BrdU absorption assays

(Figure 3b), suggesting that 11b-HSD1 inhibits keratinoctye

proliferation. In contrast, higher doses (100 mM) of inhibitor

decreased cell viability. Knocking down 11b-HSD1 with siRNA

also reduced the viability of NHEKs (Figure 3c). These observations

suggest that basal levels of 11b-HSD1 are essential for keratinocytes

survival, and excessive loss of 11b-HSD1 activity with higher doses

of inhibitor (100 mM) or siRNA-mediated depletion, can therefore

Figure 3. 11b-HSD1 regulates proliferation but not differentiation of NHEKs. (a,b) 11b-HSD1 selective inhibitor was applied to NHEKs at
indicated dose and proliferation of the cells was assessed by MTS assay (a) and BrdU absorption (b) 72 h later. DMSO was applied as vehicle control
and epidermal growth factor (EGF) was used as positive control in MTS assay. The relative ratio compared with absorbance of vehicle control (0 mM) is
suggested. The histograms indicate means and SDs for eight independent experiments. An asterisk (*) indicates a statistically significant difference
from the vehicle treated group (P,0.05, Student’s t-test). (c) siRNA knockdown efficacy (left) and MTS assay (right) of NHEKs transfected with 11b-
HSD1 or control. Assay was performed 48 h after transfection. Transfection of si11b-HSD1 decreased the mRNA expression 11b-HSD1 more than 95%
assessed by rtPCR. GAPDH was used as an internal control. The histograms indicate means and SDs for eight independent experiments. An asterisk (*)
indicates a statistically significant difference from the vehicle treated group (P,0.05, Student’s t-test). (d) Western blotting of NHEKs for detecting
Keratin 1, and Involucrin treated with 11b-HSD1 selective inhibitor at indicated dose for 72 h with or without 1.2 mM calcium treatment. b-actin was
used as an internal control. (e) The relative expressions of Keratin 10 and Involucrin treated with 10 mM 11b-HSD1 selective inhibitor for 48 h with or
without 1.2 mM calcium treatment assessed by rtPCR. GAPDH was used as an internal control. n.s.: not significant.
doi:10.1371/journal.pone.0025039.g003
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not be used to evaluate the functions of 11b-HSD1 in cortisol

production, proliferation, or differentiation of keratinocytes.

Next, we evaluated the effects of 11b-HSD1 inhibitor on the

calcium-stimulated differentiation of NHEKs. Although calcium

treatment increased the expression of 11b-HSD1, protein and

mRNA for K1 or K10, and IVL were not affected by 1 to 10 mM

of selective 11b-HSD1 inhibitor (Figure 3d,e). These results

indicated that 11b-HSD1 might be involved in the proliferation

but not in the differentiation of NHEKs.

11b-HSD1 regulates proliferation of NHDFs
We next investigated the function of 11b-HSD1 in NHDFs.

Starving NHDFs by reducing medium concentrations of FBS from

10% to 1% for 24 h retards cell growth. The expression of 11b-

HSD1 was significantly enhanced in starvation conditions

(Figure 4a). Furthermore, similarly to the effects on keratinocytes,

the selective 11b-HSD1 inhibitor at doses of 100 nM and 1 mM

induced proliferation of NHDFs, demonstrating that 11b-HSD1

also negatively regulates NHDFs proliferation (Figure 4b). Next,

the effect of 11b-HSD1 inhibitor on the expression of fibrogenic

cytokines and fibroblast growth factors was evaluated (Figure 4c).

However, inhibition of 11b-HSD1 at these doses did not affect the

expression of Col1a1, MMP-13, TGF-b, or FGF-2. This indicates

that 11b-HSD1 was not involved in collagen metabolism, and

inhibits the proliferation of NHDFs via pathways independent of

the autocrine effects of these cytokines and growth factors.

Topical application of 11b-HSD1 inhibitor induces
hyperproliferation of the epidermis

To investigate the function of 11b-HSD1 in vivo, hairless mouse

skin was exposed to 11b-HSD1 inhibitor. 11b-HSD1 is also

expressed in the epidermis and fibroblasts of murine skin in

C57BL/6 mice and Hos: HR-1 (hairless) mice (Figure 5a,b,d,e).

The expression of 11b-HSD1 was also detected in cultured

primary mouse keratinocytes and in cultured primary dermal

fibroblasts derived from C57BL/6 and Hos: HR-1 mice

(Figure 5c,f). Application of 50 mM selective 11b-HSD1 inhibitor

to the dorsal skin of Hos: HR-1 mice for five continuous days

induced acanthosis (Figure 5g). The epidermal thickness was

significantly higher in selective 11b-HSD1 inhibitor treated groups

than control groups (Figure 5h). In addition, the number of Ki-67

positive cells was significantly higher in 11b-HSD1 inhibitor

treated skin than in vehicle treated skin (Figure 5i,j). These results

demonstrate that 11b-HSD1 inhibitor also promotes the prolifer-

ation of keratinocytes in vivo.

Figure 4. 11b-HSD1 regulates proliferation of NHDFs. (a) The relative expression of 11b-HSD1 in NDHF assessed by rtPCR with 10% FBS or 1%
FBS in culture media. GAPDH was used as an internal control. (b) 11b-HSD1 selective inhibitor was applied to NHDFs cultured in DMEM containing 2%
FBS at indicated dose and proliferation of the cells was assessed by MTS assay 72 h later. DMSO was applied as vehicle control. The histograms
indicate means and SDs for eight independent experiments. An asterisk (*) indicates a statistically significant difference from the vehicle treated
group (P,0.05, Student’s t-test). (c) The relative expressions of Col1a1, MMP-1, FGF-2, TGF-b treated with 11b-HSD1 selective inhibitor at indicated
dose for 48 h assessed by rtPCR. GAPDH was used as an internal control.
doi:10.1371/journal.pone.0025039.g004
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Figure 5. Selective inhibitor of 11b-HSD1 proliferates keratinocytes in murine skin. (a, d) Immunohistochemical staining of 11b-HSD1
(DAB staining) in C57BL/6 mouse (a) and Hos: HR-1 (hairless) mouse (d) skin tissue. Bar = 50 mM. (b, e) Immunofluorescent staining of 11b-HSD1 (red)
and keratin 14 (green) in C57BL/6 mouse (b) and Hos: HR-1 mouse (e) skin tissue. Bar = 100 mM. (c, f) PCR detecting 11b-HSD1 in primary mouse
keratinocytes and primary mouse dermal fibroblasts of C57BL/6 mouse (c) and Hos: HR-1 mouse (f). RT-: samples without reverse transcriptase
(negative control). (g–j) Representative H&E staining (g) and Ki-67 staining (i) of 11b-HSD1 selective inhibitor or vehicle (1:1, acetone:olive oil) treated
skin of Hos: HR-1 mice. Bar = 100 mm. (h) Epidermal thickness of vehicle and inhibitor treated mice. Intrafollicular epidermal thickness was calculated
by averaging five locations in each section. Three sections from each mouse were evaluated. Bars show mean epidermal thickness 6 SD of vehicle-
treated mice (n = 5) and inhibitor-treated mice (n = 5; *P,0.01, Student’s t-test). (j) The percentage of Ki-67 positive cells. Analyses were performed by
counting the total number of basal cells and cells expressing nuclear Ki-67 stain. Three sections from each mouse were evaluated. Bars indicate mean
6 SD of vehicle-treated mice (n = 5) and inhibitor-treated mice (n = 5; *P,0.05, Student’s t-test).
doi:10.1371/journal.pone.0025039.g005
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11b-HSD1 inhibitor promotes wound healing in C57BL/6
mice

Taken together, these findings demonstrate that 11b-HSD1

regulates the proliferation of keratinocytes and fibroblasts. We

therefore hypothesized that 11b-HSD1 inhibitor would promote

wound healing. The keratinocytes at wound edges are hyperpro-

liferative, thus the epidermis becomes thick in this region, with

increased Ki-67 positive cells (Figure 6a–d). Interestingly, the

intensity of 11b-HSD1 detected with immunohistochemical staining

was lower in wound edge keratinocytes than in non wound

keratinocytes in the same section (Figure 6e,f). The intensity of 11b-

HSD1 did not differ between wound edge fibroblasts and non-

wound fibroblasts (Figure 6e,f inserts). Because our data show that

11b-HSD1 negatively regulates the proliferation of keratinocytes,

we considered that the decreased expression of 11b-HSD1 in

wound edge keratinocytes might be promoting their proliferative

state. To investigate whether selective 11b-HSD1 inhibitor could

promote wound healing, we applied 10 mM 11b-HSD1 inhibitor

every other day to wounds created on the dorsal skin of C57BL/6

mice. The wound areas were significantly smaller in the 11b-HSD1

inhibitor treated group than the vehicle treated group (Figure 6g,h).

The number of Ki-67 positive cells was significantly higher on day2

and day4 wound edge epidermis in the 11b-HSD1 inhibitor treated

group than the vehicle treated group (Figure 6i).

Figure 6. The role of 11b-HSD1 in wound healing of C57BL/6 mice. (a–f) H&E (a, b), Ki-67 (c, d), and 11b-HSD1 (e, f) staining of ulcer edge and
non ulcer skin of the same section. Inserts: high magnification of the fibroblasts. Bar = 100 mm. (g) Macroscopic view of wound healing on day 10. A
15-mm wound was created on the back of 6-week-old male mice and wound closure was monitored with application of vehicle or 11b-HSD1
inhibitor every other day. (h) Reduction of wound area on days 2, 4, 6, 8, 10, and 12. The histograms indicate means and standard deviations for four
mice in each group. An asterisk indicates a statistically significant difference (*P,0.05, Student’s t-test). (i) Representative Ki-67 staining in day2
wound edge skin and the percentage of Ki-67 positive cells in day2 and day4 wound edge epidermis. Analyses were performed by counting the total
number of basal cells and cells expressing nuclear Ki-67 stain. Bars indicate mean 6 SD of vehicle-treated mice (n = 6) and inhibitor-treated mice
(n = 6; *P,0.05, Student’s t-test). Bar = 100 mm.
doi:10.1371/journal.pone.0025039.g006
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11b-HSD1 inhibitor promotes wound healing in ob/ob
mice

We finally assessed wound healing in obese/obese (ob/ob) mice, the

model of impaired wound healing. In ob/ob mice, the dermal layer

was thinner, and the subcutaneous adipose layer was thicker, than in

age-matched wildtype mice (Figure 7a). Interestingly, the expression

of 11b-HSD1 was significantly higher in the skin extract of ob/ob

mice, however, the expression did not differ in the epidermal extract

and the fibroblast extract (Figure 7b,c). These data suggest that

increased subcutaneous adipose tissue in ob/ob mice is responsible for

increased expression of 11b-HSD1 in the skin extract. Notably,

application of 10 mM 11b-HSD1 inhibitor every other day improved

wound healing more in ob/ob mice than in C57BL/6 mice (Figure 7d

and 7e). The number of Ki-67 positive cells was significantly higher

on day2 wound edge epidermis in the 11b-HSD1 inhibitor treated

group than the vehicle treated group (Figure 7f).

Figure 7. Selective 11b-HSD1 inhibitor enhance wound healing in ob/ob mice. (a,b) Representative H&E staining (a) and 11b-HSD1 staining
(b) of 6-week-old male wildtype and ob/ob mice. Bar = 50 mm. (c) The relative expressions of 11b-HSD1 in epidermis, fibroblasts, and whole skin
extract of wildtype and ob/ob mice assessed by rtPCR. GAPDH was used as an internal control (P,0.05, Student’s t-test). (d) Macroscopic view of
wound healing on day 8. A 15-mm wound was created on the back of 6-week-old male ob/ob mice and wound closure was monitored with
application of vehicle or 11b-HSD1 inhibitor every other day. (e) Reduction of wound area on days 2, 4, 6, 8, 10, and 12. The histograms indicate
means and standard deviations for four mice in each group. An asterisk indicates a statistically significant difference (*P,0.05, Student’s t-test). (f)
Representative Ki-67 staining in day4 wound edge skin and the percentage of Ki-67 positive cells in day2 and day4 wound edge epidermis. Analyses
were performed by counting the total number of basal cells and cells expressing nuclear Ki-67 stain. Bars indicate mean 6 SD of vehicle-treated mice
(n = 3) and inhibitor-treated mice (n = 3; *P,0.05, Student’s t-test). Bar = 100 mm.
doi:10.1371/journal.pone.0025039.g007
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Discussion

The present study shows that 11b-HSD1 is a regulator of

keratinocyte and fibroblast proliferation. We found that the

expression of 11b-HSD1 is higher in the cytoplasm of supra-basal

differentiating cells than in basal proliferating cells of the normal

epidermis, and that the inhibition of 11b-HSD1 increases the

proliferation of keratinocytes and fibroblasts. We also report that

topical application of a selective 11b-HSD1 inhibitor promotes

keratinocyte proliferation and wound healing.

Skin is one of the most chronically stress-loaded tissues because

it faces the outside environment and is exposed to stressors

including bacteria, ultraviolet radiation, and mechanical stimula-

tion. Thus, it makes intuitive sense that skin expresses the

functional cortisol activating enzyme 11b-HSD1. Specifically,

our experiments using immunofluorescence staining revealed that

11b-HSD1 is expressed in the supra-basal area of the epidermis.

This expression pattern of 11b-HSD1 is different from previous

reports [17]. However, 11b-HSD1 expression being limited to the

supra-basal epidermal area seems reasonable, considering that

11b-HSD1-mediated suppression of excessive proliferation in

differentiated keratinocytes might contribute to maintain adequate

epidermal thickness. In addition to its known anti-inflammatory

properties, glucocorticoid (e.g., cortisol and corticosterone) is

known to regulate the proliferation of keratinocytes and prolong

epidermal turnover time [22,23,24,25]. Consistent with this, we

have shown that selective inhibition of 11b-HSD1 promotes the

proliferation of keratinocytes both in vitro and in vivo, suggesting

that intracellular activators of cortisol would negatively regulate

keratinocyte proliferation (Figure 3 and 5). Hence, we conclude

that topical application of selective 11b-HSD1 inhibitor has the

potential to be an effective treatment to stimulate the proliferation

of keratinocytes. However, we observed that high doses of selective

11b-HSD1 inhibitor and siRNA knock down of 11b-HSD1

decreased the viability of keratinocytes. Thus, it is important to

determine the optimal dosage to stimulate proliferation without

unwanted toxic effects. Unexpectedly, the selective 11b-HSD1

inhibitor did not influence calcium-induced differentiation of

keratinocytes. As calcium-induced differentiation in vitro differs

from in vivo differentiation, further study may needed to determine

if 11b-HSD1 plays a functional role in keratinocyte differentiation.

Glucocorticoids are known to increase in response to stress or

medical therapy, and impair wound healing because they inhibit

proliferation of cells and proinflammatory cytokine production [26,27].

In this study, we showed that 11b-HSD1 inhibitor significantly

promotes cutaneous wound healing. We think the decrease in the

expression of 11b-HSD1 in keratinocytes at wound edges might be a

normal physiological mechanism that promotes the proliferation of

keratinocytes during wound healing. Thus, the selective 11b-HSD1

inhibitor might promote wound healing because it supports this

mechanism. The selective 11b-HSD1 inhibitor also promotes the

proliferation of NHDFs in vitro, and the effect of the inhibitor on

fibroblasts also might assist wound healing. The effect of inhibitor on

endothelial cells and inflammatory cytokines, which also are important

factors in wound healing, needs to be evaluated in the future.

It is intriguing that the inhibitor has a stronger effect on wound

healing in ob/ob mice, a model of impaired wound healing. These

mice exhibit severe diabetes and obesity syndromes, phenotypes

mediated by the loss of the ob gene product: the 16 kDa cytokine

leptin [28,29]. The expression of 11b-HSD1 is elevated in stromal

vascular cells and mature adipocytes isolated from the adipose tissue

of ob/ob mice [30]. Interestingly, the expression of 11b-HSD1 was

also elevated in the skin extract of ob/ob mice (Figure 7c). The

selective 11b-HSD1 inhibitor promoted wound healing in ob/ob

mice, almost to the same level as the inhibitor treated group of

C57BL/6 mice. Thus, we hypothesize that increased expression of

11b-HSD1 in ob/ob mouse skin might play an important role in

delayed wound healing in ob/ob mice. The mouse skin extract is

composed of epidermis, dermis, subcutaneous adipose tissue, and

cutaneous muscular tissue. It was recently reported that subcuta-

neous adipose tissue is an important regulator of dermal fibroblast

proliferation in high-fat diet induced obese mice [31]. It is possible

that not only keratinocytes and fibroblasts, but also the subcutane-

ous adipose layer, which is markedly increased in ob/ob mice, could

be a source of 11b-HSD1 in ob/ob mice as the expression of 11b-

HSD1 did not differ in the epidermal extract and the fibroblast

extract. We think that the 11b-HSD1 inhibitor might also act on the

subcutaneous adipose tissue to accelerate wound healing in ob/ob

mice, although further study is needed to test this theory.

Obesity is a global problem that affects 400 million adults

worldwide [12,32]. Adipose tissue overexpression of 11b-HSD1 is

observed in human obesity, and inhibition of 11b-HSD1 has been

proposed to be of potential therapeutic benefit to patients with

obesity and type 2 diabetes mellitus [33,34,35]. Our results suggest

that in addition to systemic administration of 11b-HSD1 inhibitor,

topical application of 11b-HSD1 inhibitor is potentially effective for

the treatment of the chronic wounds of obese and diabetic patients.

In summary, the present study identifies a novel role for 11b-

HSD1 in the promotions of keratinocyte and fibroblast prolifer-

ation. Targeting 11b-HSD1 could be a novel approach to treat

chronic wounds, and skin diseases with aberrant proliferation.
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