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Abstract

Recent studies showed that wave intensity analysis (WIA) provides clinically valuable infor-

mation about local and global cardiovascular function. Wave intensity (WI) is computed as

the product of the pressure change and the velocity change during short time intervals. The

major limitation of WIA in clinical practice is the need for invasive pressure measurement.

Since vessel wall displacement can be measured non-invasively, the usage of WI will be

expanded if the vessel wall dilation is used instead of pressure in derivation of WI waveform.

Our goal in this study is to investigate the agreement between wall displacement-based WI

and the pressure-based WI for different vessel wall models including linear elastic, nonlinear

and viscoelastic cases. The arbitrary Eulerian Lagrangian finite element method is

employed to solve the coupled fluid-structure interaction (FSI). Our computational models

also include two types of vascular disease-related cases with geometrical irregularities,

aneurysm and stenosis. Our results show that for vessels with linear elastic wall, the dis-

placement-based WI is almost identical to the pressure-based WI. The existence of vessel

irregularities does not impact the accuracy of displacement-based WI. However, in a visco-

elastic wall where there is a phase difference between pressure and vessel wall dilation, dis-

placement-based WI deviated from pressure-based WI. The error associated with this

phase difference increased nonlinearly with increasing viscosity. This results in a maximum

error of 6.8% and 7.13% for a regular viscoelastic vessel wall and an irregular viscoelastic

vessel wall, respectively. A separate analysis has also been performed on the agreement of

backward and forward running waves extracted from a decomposition of the displacement-

based and pressure-based WI. Our findings suggest that displacement-based WI is a reli-

able method of WIA for large central arteries that do not show viscoelastic behaviors. This

can be clinically significant since the required information can be measured non-invasively.
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Introduction

It is well accepted that arterial waveform analysis provides clinically valuable information

about local and global cardiovascular function. Due to the complex dynamic interactions of

hemodynamic waves (e.g., pressure and flow), extracting clinically reliable information about

the state of health or disease remains a significant challenge to modern medicine [1]. Pressure

and flow pulse waves in large arteries are composed of forward running waves originated by

the ventricle and backward running (reflected) waves created by the vascular network. Under-

standing the physics of these forward and backward waves is necessary for extracting physio-

logical information relevant to clinical practice. Several methods such as Fourier (impedance)

methods and wave intensity analysis (WIA) have been introduced for decomposing hemody-

namic waves in the arterial system into their forward and backward components. The Fourier

analysis method (impedance method), in particular, relies on the normal periodicity of the car-

diac cycle to compute the hemodynamic impedance in the frequency domain [2]. Therefore,

this method is not useful for many applications in which the timeline of certain events is

important [3]. This method additionally assumes a linear relation between the pressure and

flow rate at each harmonic frequency.

WIA was introduced by Parker and Jones as an alternative time domain method for sepa-

rating forward and backward waves based on the method of characteristics—without needing

to assume linearity or periodicity since it relies on the solution of conservation equations in

the time domain [4]. In this method, wave intensity (WI) is computed as the product of the

blood pressure change and the velocity change during short time intervals [5]. A positive value

of WI indicates that forward-traveling waves predominate while a negative value indicates that

backward-traveling waves predominate. WIA can also be used to compute physiologically rele-

vant indices such as local pulse wave velocity [6]. Since WI is in units of power per area (an

index of energy per unit area carried by waves), the WIA method can determine wave direc-

tionality as well as the magnitude of the energy transferred by the waves [5]. WIA has been

used in hemodynamic studies throughout the cardiovascular circulatory network including

the ascending aorta [7], carotid arteries [8], pulmonary circulation [9], and coronary arteries

[10], and has demonstrated promising abilities in providing clinical insights useful for early

diagnosis in cardiovascular diseases.

Although the WIA can provide valuable information in clinical study and cardiovascular

research, this method requires simultaneous measurement of both pressure and flow waves at

the same location (which makes it clinically challenging). In current clinical practice, simulta-

neous pressure and velocity measurements can be obtained invasively using sensor-tipped

guidewires [11] (e.g., ComboWire, Volcano Inc). In general, invasive procedures are more

expensive, may cause patient discomfort/pain, and have a higher risk of clinical complications.

Therefore, non-invasive evaluation of WI [12] is prudent to expand the clinical utility and effi-

cacy of this method. Already, blood velocity can be easily measured non-invasively with imag-

ing modalities such as echocardiograms and phase contrast (PC) magnetic resonance imaging

(MRI). The non-invasive version of WIA can use the diameter change of the vessel wall instead

of invasively measured blood pressure waves. This technique has been explored in order to

evaluate important hemodynamic indices such as pulse wave velocity [13] or WI [14]. As an

example, Khir et al. have shown the separation of WI into its forward and backward directions

using the non-invasively measured diameter of a flexible tube’s wall and the corresponding

flow velocity [12]. However, it is well-known that blood vessels exhibit complex and viscoelas-

tic properties that are attributed to the smooth muscle cells. This viscoelasticity may introduce

a phase difference between the pressure and wall deformation [15] which may subsequently

introduce an error in the non-invasive evaluation of WI.
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Our goal in this study is to investigate the agreement between non-invasive wall displace-

ment-based WI and the pressure-based WI. Computational fluid dynamics (CFD) with Fluid-

Solid interaction (FSI) has been employed to simulate pressure and flow waves in various ves-

sel models. In the mammalian cardiovascular system, arteries can be roughly divided into two

types: i) proximal large arteries that show linear elastic behavior (under normal conditions)

and ii) distal small arteries that demonstrate viscoelastic and nonlinear (stress-strain) behavior

[16]. In this study, the wall models have included linearly elastic, non-linear, and viscoelastic

arterial walls. Additionally, we have examined the accuracy of displacement-based WIA for

cases with downstream geometrical irregularities such as aneurysm (relevant to abdominal

aortic aneurysm) and stenosis (relevant to atherosclerosis). The systematic research work con-

ducted here provides the fundamental groundwork for utilizing the non-invasive displace-

ment-based WIA technique to measure the clinically relevant quantities such as WI.

Materials and methods

Physical model

In order to comprehensively investigate the WI in different arteries, we have considered two

cases: (1) vessel walls with no viscoelastic behavior representing large central arteries such as

aorta and carotid artery, and (2) vessel walls with considerable degree of viscoelasticity repre-

senting the small and muscular arteries. The generalized Maxwell model was considered for

the viscoelastic wall (Fig 1). In this model, a linear spring μ0 is connected in parallel to n terms

of Maxwell elements, where each element is composed of a linear spring and a viscous dashpot

[17]. In the ith Maxwell element, the spring has an elastic modulus μi and the dashpot has a vis-

cous coefficient ηi. The σ and ε in Fig 1 are the stress and strain for the whole system, respec-

tively [18]. Specifically, we utilized the first two terms of generalized Maxwell viscoelastic

model which consisted of an elastic part with Young’s modulus E1, the viscous part with

Young’s modulus E2, and the damping coefficient of the dashpot η.

The extension tube boundary model [19] was used as the outflow boundary model to

acquire physiologically relevant solutions for pressure, diameter, and velocity waves. This out-

flow boundary model can capture the compliance, resistance, and wave reflections of the

downstream vasculature [19], and it consists of a straight elastic tube connected to a rigid

Fig 1. Schematic representation of the Generalized Maxwell model on the left (A) and the standard solid viscoelastic model on the right (B).

https://doi.org/10.1371/journal.pone.0224390.g001
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contraction tube (Fig 2). We first studied a simple case of a straight vessel with uniform thick-

ness and a circular cross-section (Fig 2A). Following this case, vessel models with geometrical

irregularities (sudden dilation or constriction) were investigated to evaluate the accuracy of

the displacement-based WIA in the presence of vascular diseases such as stenosis and aneu-

rysm (Fig 2B and 2C). The same outflow boundary model was used in all these cases.

The geometrical and outflow parameters of the vessel models (see Fig 2) are provided in

Table 1. The geometric data, such as the radius and the length of the bulge in aneurysm and

stenosis cases, are chosen within the average psychological range [20]. To characterize the

viscoelasticity of the vessel wall, the relaxation modulus (E(t)) is utilized in response to

strain loading for the Maxwell-type standard solid viscoelastic material model. This

dynamic modulus includes the effects of E1 and E2 as shown in Fig 1B. In all simulations,

blood is assumed to be a incompressible and Newtonian fluid with the properties shown in

Table 1.

Theoretical considerations

Prior to introducing our computational model, it is beneficial to consider an analytical model

for vessel wall displacement with standard solid viscoelastic model. The constitutive relation-

ship (stress-strain) can be considered as [15]

sðtÞ þ a1 _sðtÞ ¼ mεðtÞ þ b1
_εðtÞÞ; ð1Þ

where a1, m, b1 are constants and a1 = η / E1, m = E2, b1 = η (E1+ E2) / E1.
The relaxation modulus E(t), in response to strain loading for Maxwell-type standard solid

viscoelastic material model, is then given by

E tð Þ ¼ E1 þ ðE0 � E1Þe
� t
t0 ; ð2Þ

where E1 = E2, E0 = E1 +E2, and the relaxation time is defined as τ0 = η / E1. Hence, the

dynamic modulus in response to harmonic strain excitation of the standard solid viscoelastic

Fig 2. (A) Straight vessel connected to the outflow boundary condition, (B) Abdominal aortic aneurysm and (C) Stenosis cases connected to the same outflow

boundary to capture the effect of truncated downstream vasculature.

https://doi.org/10.1371/journal.pone.0224390.g002
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model can be expressed as [21, 22]

E ioð Þ ¼
E2

1
E2 þ ðE1 þ E2ÞðoZÞ

2

ðE2
1
þ ðoZÞ

2
ÞðE1 þ E2Þ

þ i
E1

2oZ

ðE2
1
þ ðoZÞ

2
ÞðE1 þ E2Þ

: ð3Þ

Using the above viscoelastic model, the displacement-strain relation can be derived from

the momentum balance of the arterial wall as

rs
@2u
@t2
þ div σ þ f ¼ 0; ð4Þ

where u is wall displacement vector, σ is wall stress tensor, and f is body force vector. In order

to facilitate the calculation, the above equation can be written in the cylindrical coordinate sys-

tem. Since the vessel is symmetric, the radial equation of motion in a cylindrical vessel (in the

absence of external body forces) with the assumption of the incompressibility of the vessel wall

is given by [23]

rs
@2ur

@t2
¼
@srr
@r
þ
srr � syy

r
: ð5Þ

For the cases considered in this work, this equation is subjected to the boundary condition

given by

srrjr¼RinðtÞ ¼ � pðtÞ and srrjr¼RoutðtÞ ¼ 0: ð6Þ

Here, t and r denote time and radial coordinates respectively, ρs is the vessel wall density, ur
is the radial displacement of the wall, σrr is the radial stress, σθθ is the circumferential stress, p
(t) is the pressure, Rin(t) is the inner radius of the vessel wall, and Rout(t) is the outer diameter

of the vessel wall. Since the arterial wall is thin and has small asymmetrical deformations, it

Table 1. Parameters employed for computational modeling.

Material Properties

Symbol Description Value

Ew,1 Young’s modulus of the straight vessel 1×105 Pa

Ew,2 Young’s modulus of the boundary model 2×105 Pa

h Wall thickness of the elastic boundary tube 0.1 cm

L2 Length of the elastic boundary tube 10 cm

L1 Length of the straight vessel 20 cm

r3 Internal radius of the straight vessel 1 cm

γ Contraction ratio of the rigid boundary tube 0.5

υ Poisson ratio of straight vessel and elastic boundary 0.45

ρs Density of straight vessel and elastic boundary 1 g/cm3

μ Viscosity of the fluid 0.0051 Pa�s

ρf Density of the fluid 1050 kg/m3

η Viscosity of the aorta wall 1000–12000 Pa�s

Aneurysm

L3 Length of the bulge for aneurysm case 4 cm

r4 Internal radius of the bulge for aneurysm case 1.865 cm

Stenosis

L4 Length of the bulge for stenosis case 2 cm

r5 Internal radius of the bulge for stenosis case 1.55 cm

https://doi.org/10.1371/journal.pone.0224390.t001
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can be treated as a membrane [21, 24]. In the thin-walled theory for the blood vessel, the axial

strain can be calculated by employing Hooke’s law for an isotropic medium as

εzz ¼
1

E
szz � m syy þ srrð Þ; ð7Þð

where μ is the Poisson ratio. In addition, from the membrane assumption, the corresponding

radial and axial stresses are

srr ¼ 0

szz ¼ msyy
: ð8Þ

(

In circumferential direction, we have

εyy ¼
ur

r0

¼
1

E
syy � mszzð Þ ¼

syy
E

1 � m2ð Þ; ð9Þ

Thus

syy ¼
E

1 � m2

ur

r0

; ð10Þ

where r0 is the radius of the aorta wall before deformation, and ur is the wall displacement in

radial direction. It can be assumed that the flow waveform is periodic so that all variables can

be expressed in terms of different harmonics of the fundamental frequency. Without loss of

generality, a single harmonic of the pressure wave can be considered as the sinusoidal function

given by

pðtÞ ¼ P sin ot: ð11Þ

Because of the linearity of Eqs (1) and (4), the stress and strain also have the same frequency

of oscillation as the pressure. In the complex form (which greatly simplifies the analysis), the

pressure, stress and strain can be written respectively as

p ¼ Reðp̂eiotÞ; ð12Þ

s ¼ ReðŝeiotÞ; ð13Þ

ε ¼ Reðε̂eiotÞ: ð14Þ

Here, “Re” denotes the real part, and “^” denotes the complex amplitude. Substituting Eqs

(12–14) into Eq (1) and rearranging terms gives

ŝ ¼ E
1þ iot2

1þ iot1

ε̂ ¼ Êε̂; ð15Þ

where Ê is the complex young’s modulus for the relaxation function, ŝ and ε̂ are the complex

stress and strain. Combining Eq (15) with wall motion Eqs (7–10), governing Eq (5) and the

boundary condition (6), the displacement expression in complex form can be written as [25]

u ¼
2Rout pð1þ o2t1t2Þ

Eðg2 � 1Þð1þ o2t2
2Þ
sinot þ

2Rout poðt1 � t2Þ

Eðg2 � 1Þð1þ o2t2
2
Þ
cosot: ð16Þ

For the Maxwell-type standard solid viscoelastic model, we have τ1 = η / E1, τ 2 = η (E1+ E2) /
E1E2, E = E2/(E1+ E2). Hence, according to Eq (16), even for the simple harmonic of the pressure
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waveform, there will be a complex relationship between the pressure and vessel wall displace-

ment in the presence of the viscoelasticity. This complexity motivates the need for the develop-

ment of mathematical frameworks or numerical simulations, as described in what follows, for

further analyzing the problem.

Numerical model

Governing equations. An arbitrary Lagrangian-Eulerian (ALE) formulation is used for the

analysis of the fluid flow with moving boundaries. The ALE formulation can directly be coupled

with the Lagrangian formulation in the solid domain [26]. To solve the pressure and flow fields in

the fluid domain, Navier-Stokes equations for the homogenous, incompressible and Newtonian

fluid are employed. For coupling the fluid-solid interface, the fundamental conditions of displace-

ment compatibility with respect to a no-slip condition and traction equilibrium are applied as [27]

r
!
� V!¼ 0; ð17Þ

rf
@V!

@t
þ ðV!� W�!Þ � r

!
V!

 !

þ r
!
p ¼ mr2V!þ Fb

!
; ð18Þ

Vf
�!
¼ _us
!
; ð19Þ

n!� sf
!¼ n!� ss

!; ð20Þ

where V!¼ ðvy;vzÞ is the flow velocity vector, p is the static pressure, ρf is the fluid density, μ is the

dynamic viscosity, W�! is the velocity of the arbitrary Lagrangian-Eulerian (ALE) frame, Fb
!

is the

body force, Vf and _us are the velocity of the fluid and structure at the interface respectively, σf is the

fluid stress tensor, and σs is the solid stress tensor. For the solid domain, we consider two cases:

Elastic wall condition

The dynamic motion of the wall can be calculated by the Lagrangian form of the balance of

the momentum equations as [28]

sij;j þ Fi ¼ rs _ui_; ð21Þ

where σij is the stress tensor, Fi is the external force, ui is the displacement vector, and ρs is the

wall density. The stress tensor can be expressed as [29]

sij ¼ lεkkdij þ mðεij þ εjiÞ; ð22Þ

where λ and μ are Lame parameters, and l ¼ Eu
ð1� uÞð1� 2uÞ

; m ¼ G ¼ E
2ð1þuÞ

. Note that the bulk

modulus which describes the volumetric elasticity of the material can also be calculated by

K ¼ E
3ð1� 2uÞ

.

In order to examine the vessel wall displacement in a non-linear regime, we have utilized

the nonlinear elastic stress-strain data input in tabular for, extracted from Fig 3. This material

model is useful for large displacement and small strain analysis.

Viscoelastic wall condition

Considering large deformation but small strain theory, the mechanical behavior for an ino-

tropic and quasi-linear viscoelastic material can be expressed in tensor notation as [30]

Sij tð Þ ¼ 2G 0ð Þeij tð Þ þ 2
R t

0
eijðt � tÞ

dGðtÞ
dt

dt; ð23Þ
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skk tð Þ ¼ 3K 0ð Þεkk tð Þ þ 3
R t

0
εkkðt � tÞ

dKðtÞ
dt

dt; ð24Þ

where t is the time, Sij ¼ sij � 1

3
dijskk is the deviatoric stress, σij is the stress, δij is the Kronecker

delta, eij ¼ εij � 1

3
dijεkk is the deviatoric strain, εij is the strain, and G(t) and K(t) are shear and

bulk modulus respectively. To solve the above convolution integrals, the full-time history of

the deformation and material variables must be considered—a challenging task. Alternatively,

we can characterize the viscoelastic behavior of the material as relaxation functions that are

described by exponential series [31]. This method takes advantage of recursive equations for

evaluation hereditary integrals (Eqs (23 and 24)). Considering the generalized Maxwell model,

we can express the shear and bulk modulus by Prony series expansions as

G tð Þ ¼ G1 þ
PN

i¼1
Gie

� t
Wi ; ð25Þ

K tð Þ ¼ K1 þ
PN

i¼1
Kie

� t
gi ; ð26Þ

where N is the number of chains in the Maxwell model, G1 and K1 are the steady-state shear

and bulk modulus respectively, Gi and Ki are the coefficients, and ϑi and γi are the relaxation

times in the Prony series expansions. Since we are using a standard viscoelastic model in this

study, we consider only the first chain (N = 1) in the Prony series for the material properties.

With the viscoelastic material properties in hand (evaluated by Eqs (25 and 26)), we can

numerically compute the discretized convolution integrals of Eqs (23) and (24).

Fig 3. Stress-Strain data used for nonlinear case analysis. The red curve indicates the output stress-strain region.

https://doi.org/10.1371/journal.pone.0224390.g003
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Boundary conditions. At the inlet, a physiological flow waveform (similar to [19, 32])

with a flat velocity profile is imposed and scaled to give a cardiac output (CO) of 4.6 L/min. In

the fluid domain, a constant normal traction of Pend = 10.5mmHg is imposed at the end of out-

flow boundary model, while in the solid domain, zero normal traction is imposed on the outer

surface of the straight vessel and outflow boundary [19]. To simulate the effect of truncated

vasculature, an extension tube boundary model was used for the outflow boundary condition

at the terminal of the abdominal aorta. This boundary model extends the computational

model with a straight elastic tube connected to a contracted rigid tube. The parameters of the

outflow boundary condition model are given in Table 1, where the contraction ratio is the

ratio of the radius of the rigid boundary tube (after the contraction) to the original radius

(before the contraction) [33]. In all simulations, CO, the parameters of the outflow boundary

condition, and the shape of the inflow wave were kept constant.

Wave intensity analysis. WIA is based on the method of characteristics which has been

used in analogous problems in gas dynamics. In this method, the hyperbolic system of one-

dimensional equations of motion in z and t is transformed into a system of ordinary differen-

tial equations along the two families of the characteristics defined as dz
dt ¼ U � c, where U is the

average velocity over the cross section and c ¼
ffiffiffiffiffi
A
r@A
@P

q
is the speed of propagation [5]. Following

an impermeable assumption for the wall, the Riemann invariants can be defined on the charac-

teristic lines as

dR� ¼ dU �
1

rc
dP: ð27Þ

Solving for dP and dU, their corresponding product can be derived as

dI ¼ dPdU ¼
rc
4

dR2

þ
� dR2

�

� �
; ð28Þ

where dI is defined as the WI in units of power per unit area (e.g. W/m2). Based on Eq (28),

the contribution of the forward running wave (dR+) to the WI is always positive, while the con-

tribution of the backward running wave (dR−) to the WI is always negative. Therefore, if dI>0,

the forward waves are dominant; and if dI<0, the backwards (reflected) waves are dominant.

This allows one to easily determine wave propagation at each time. If the incremental waves

are assumed to be additive, the WI can be further decomposed into purely forward (+) and

purely reflected (-) waves [34] as

dIþ ¼
1

4rc
ðdP þ rcdUÞ2; ð29Þ

dI� ¼
� 1

4rc
ðdP � rcdUÞ2: ð30Þ

As can be noted from Eqs (29) and (30), simultaneous increments of pressure and flow

(velocity) are needed to compute WI. Our focus in this study is to compare the pressure-based

WI waveform (obtained based on the pressure and velocity) with the displacement-based WI

(obtained from velocity and vessel wall displacement). Based on Eq (16), we can rewrite the

wall displacement as

D ¼ DR ¼ R̂sinðot þ φÞ; ð31Þ

where R̂ is the amplitude for the vessel wall displacement, and φ is the phase difference

between the vessel wall displacement and pressure harmonic. We can further assume that
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vessel wall displacement amplitude ðR̂Þ and pressure inside the tube (P) are correlated by the

proportionality coefficient in the short time interval (which depends on the wall modulus of

elasticity, inner and outer diameter, and viscoelasticity parameter of the wall (τ1,τ2)). Hence,

we can introduce an alternative parameter similar to the WI, defined to be dID, which is the

product of the increment in diameter and the flow given by

dID ¼
1

k̂
dD� dU; ð32Þ

where k̂ is the proportionality coefficient. In order to compare the above parameter with the

WI that is defined based on the pressure and flow, we can further non-dimensionalize these

two parameters by dividing each one over the maximum value in the cycle. From this, we can

compare the waveform obtained based on these two variables at each site. The non-dimensio-

nalized variables are denoted with asterisks: DI�D for dimensionless displacement-based WI

and DI�P for dimensionless pressure-based WI.

Computational model. In order to solve the equations of solids and fluids numerically,

an ALE finite element method with the two-way coupling scheme of fluid-structure interaction

is employed at each time step [29]. The fluid domain is modeled with 17,416 total number of

four-node 3D axisymmetric elements, while the solid domain is modeled with 2,420 total

number of nine-node 2D axisymmetric elements. The linearized equation of the coupled sys-

tem was solved with the direct or non-iterative solution technique [35]. A Newton-Raphson

iteration scheme was used for the time integration with a time step of 0.00125s. Further simu-

lations with different time steps and grid sizes confirm that these results are independent of

spatial and temporal discretization. For the same spatial discretization, the pressure wave solu-

tions for time steps of 0.000625s and 0.00125s reveal a maximum relative error at the middle of

the straight vessel of less than 3%. Similarly, for the same time step, doubling the number of

spatial elements reveals a maximum relative error of less than 3%. The commercial package

ADINA 9.4 (ADINA R&D, Inc., MA) is used to run all simulations. Each simulation is started

at rest with no loading condition, and the simulation is carried out to at least 10 cycles in order

to ensure that the mean pressure reaches an oscillating steady state condition.

Results

Regular vessel wall condition

Elastic wall condition. Based on Eq (31), φ is the phase difference between the propagated

pressure and vessel wall displacement (which depends on the wall material behavior). Utilizing

the standard viscoelastic wall model introduced in Eq (5), the vessel wall displacement in

response to a harmonic of pressure was described in Eq (16). Therefore, the phase difference

between the pressure and vessel wall displacement can be given by

φ ¼ tan
oðt1 � t2Þ

ð1þ o2t1t2Þ

� �

ð33Þ

All the parameters on the right-hand side of Eq (28) are real and positive values. However,

note that Eq (33) is derived for a single pressure harmonic in a linear standard viscoelastic

case.

It is not clear if different pressure harmonics interact linearly with each other in a viscoelas-

tic wall under physiological conditions. Therefore, we compared the pressure-based WI (inva-

sive in practice) with displacement-based WI (non-invasive in practice) numerically using the

CFD-FSI model described in method section. Fig 4 shows the pressure and the vessel wall
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displacement waveforms from of our numerical simulation that demonstrates convergence to

a steady-state oscillatory condition. WI results for the linear and nonlinear elastic cases are

demonstrated in Fig 5.

Fig 6 shows the decomposition of both the displacement-based and pressure-based wave

intensities into forward and backward running waves (see Eq (28)). Since the goal is to com-

pare the shape of the displacement-based and the pressure-based wave intensity components,

we have not scaled the forward and backward running waves and hence report their absolute

amplitudes.

Viscoelastic wall condition. Fig 7 demonstrates the pressure and the vessel wall displace-

ment waveforms from of our numerical simulation of a viscoelastic wall that demonstrates

Fig 4. (A) The vessel wall displacement and (B) pressure reaches a steady state condition in elastic wall condition.

https://doi.org/10.1371/journal.pone.0224390.g004

Fig 5. Comparison of the WI that is defined based on the pressure versus the one that is defined based on the diameter for (A) a linear elastic wall, and (B) a nonlinear

hyper elastic wall conditions. DI�D is the dimensionless displacement-based WI and DI�P is the dimensionless pressure-based WI (see the text for details).

https://doi.org/10.1371/journal.pone.0224390.g005
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convergence to a steady-state oscillatory condition. As shown in this figure, there are clear dif-

ferences between the extracted vessel wall displacement profile and the pressure profile (e.g.,

the relative height of the dicrotic notch).

WI results for viscoelastic vessel wall condition cases are demonstrated in Fig 8. Results of

different wall viscosities (within the physiological range) are demonstrated in Fig 8B. The root

mean square error (RMSE) for all cases (wall viscosities: 1000Pa�s, 3000Pa�s, 6000Pa�s, 9000Pa�s

and 12000Pa�s) are shown in Table 2. Note that the RMSE is defined as RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Pn
t¼1

et2
q

,

where n is number of points within a cardiac cycle and et ¼ jDI�D � DI�Pj.
Ratios of WI peaks are demonstrated in Table 2. The ’peakRD+’ is defined as the ratio of the

first positive peak over the second positive peak for the displacement-based WI. The ’peakRD-’

is defined as the ratio of the first positive peak to the first negative peak for the displacement-

based WI. The ’peakPD+’ is defined as the ratio of the first positive peak to the second positive

peak for the pressure-based WI. The ’peakPD-’ is defined as the ratio of the first positive peak

to the first negative peak for pressure-based WI.

Fig 9 shows the decomposition of the displacement-based and pressure-based wave intensi-

ties into forward and backward running waves for the viscoelastic wall condition with a wall

viscosity of 6000Pa�s.

Irregular vessel wall condition

Elastic wall condition. Fig 10 shows the results at point A and point B (see Fig 2) in a lin-

ear elastic vessel wall with downstream irregular geometric features in the form of an aneu-

rysm (Fig 10A) or a stenosis (Fig 10B).

Viscoelastic wall condition. Results of displacement-based WI (DI�D) and pressure-based

WI (DI�P) of a viscoelastic aneurysmal vessel is shown Fig 11A. The point-by-point absolute

error (et) between DI�D and DI�P at different levels of wall viscosity (1000 Pa�s<η<12000 Pa�s)
during a complete cardiac cycle is depicted in Fig 11B.

Fig 6. Forward (red) and backward (blue) running components of the wave intensity for the displacement-based wave intensity (A) and pressure-based wave

intensity (B) under the elastic wall condition.

https://doi.org/10.1371/journal.pone.0224390.g006
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In the presence of an aneurysm, Fig 12 shows the decomposition of the displacement-based

and pressure-based wave intensities into forward and backward running waves for the visco-

elastic wall condition with a wall viscosity of 6000Pa�s.

Fig 13A shows the results of DI�D and (DI�P) for a viscoelastic stenotic vessel. Fig 13B demon-

strates the point-by-point error (et) between DI�D and DI�P at different levels of wall viscosity

(1000 Pa�s<η<12000 Pa�s) during a complete cycle.

Fig 7. (A) Vessel wall displacement and (B) pressure reach steady state conditions in viscoelastic wall conditions. Steady state (C) Vessel wall displacement and

(D) pressure during one cardiac cycle.

https://doi.org/10.1371/journal.pone.0224390.g007
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In the presence of stenosis, Fig 14 shows the decomposition of the displacement-based and

pressure-based wave intensities into forward and backward running waves for the viscoelastic

wall condition with a wall viscosity of 6000Pa�s.

The RMSE (between DI�D and DI�P) over the full cardiac cycle and the different peak ratios

of WI waveforms for all viscoelastic vessels with geometrical irregularities—aneurysm or ste-

nosis—are provided in Table 3.

Discussion

In this study, we examined the impact of vessel wall nonlinearity and viscoelasticity on the

accuracy of the displacement-based WI (which can be measured non-invasively in clinical

practice using imaging modalities) compared with the original pressure-based formulation of

WI (which requires invasive measurement in clinical practice). We have used computational

vessel models utilizing an Arbitrary Lagrangian-Eulerian Finite Element method in order to

facilitate our study. It has been shown recently by Segers et al. [36] that wave reflections play a

prominent role in conducting wave analysis and determining the characteristic parameters

(such as pulse wave velocity) from the combination of pressure, velocity, or cross-sectional

waveforms. To account for the effects of wave reflection, an extension tube boundary model

has been utilized in our simulations to capture the compliance, resistance, and wave reflections

of the downstream vasculature.

Fig 8. (A) Comparison of the WI that is defined based on the pressure versus the one that is defined based on the diameter for viscoelastic wall condition. (B)

The calculated error between the two wave intensities for different vessel wall viscosities.

https://doi.org/10.1371/journal.pone.0224390.g008

Table 2. RMSE and the peak ratios for the regular vessel wall.

Straight Vessel

η (Pa�s) 1000 3000 6000 9000 12000

RMSE 0.0380 0.0682 0.0545 0.0421 0.0333

PeakRD+ 1.0073 1.0087 1.0331 1.0239 1.0199

PeakRD- -1.8023 -1.6685 -1.6796 -1.7014 -1.7250

PeakRP+ 1.0034 1.0384 1.0301 1.0297 1.0305

PeakRP- -1.9753 -2.2265 -2.1322 -2.0420 -1.9811

https://doi.org/10.1371/journal.pone.0224390.t002
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The error associated with displacement-based WI (compared with the pressure-based WI)

is the result of the phase difference (φ) between the pressure and vessel wall dilation. Based on

the theoretical analysis of a single pressure harmonic (Eq 33), it can be concluded that the

effect of viscoelastic behavior of the vessel wall is not considerable as long as viscoelastic time

relaxation coefficients (τ1 and τ2) are negligible. Since the dependency of φ on τi (i = 1 and 2)

is nonlinear (see Eq 33), there will be a subsequent nonlinear and complex relationship

between the error of DI�D and the degree of viscoelasticity (e.g. η) when τi (i = 1 and 2) become

considerable.

Results from numerical simulations of a linearly elastic vessel wall demonstrate that the

pressure-based WI (DI�P) is identical to displacement-based WI (DI�D). As shown in Fig 5 for

Fig 9. Forward (red) and backward (blue) running components of the wave intensity for the displacement-based wave intensity (A) and pressure-based wave

intensity (B) under the viscoelastic wall condition with wall viscosity of 6000 Pa.s.

https://doi.org/10.1371/journal.pone.0224390.g009

Fig 10. Comparison of the WI that is defined based on the pressure versus the one that is defined based on the diameter for elastic wall condition for (A) aneurysm,

and (B) stenosis cases.

https://doi.org/10.1371/journal.pone.0224390.g010
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nonlinear and non-viscoelastic wall vessels, there is no phase lead or lag between DI�P and

DI�D. However, the WI peak ratios of DI�P and DI�D are different in vessels with nonlinear

stress-strain relationships (even in the absence of viscoelasticity). Results of vessels with visco-

elastic wall properties, on the other hand, demonstrate that there is a phase difference between

the DI�P and DI�D waveforms (Fig 8A). This phase difference results in errors between DI�P

and DI�D (et), as shown in Fig 8B. In general, the error grows with increasing η. However, the

error displays a nonlinear dependency with increasing viscosity (see Fig 8B and Table 2) as

predicted by the aforementioned analytical model. In Table 2, the errors between DI�P and

DI�D waveforms for different viscoelastic cases are reported as RMSE. The results from our

Fig 11. (A) Comparison of the WI that is defined based on the pressure versus the one that is defined based on the diameter for viscoelastic wall condition in the

aneurysm case. (B) Calculated error between the two wave intensities for different vessel wall viscosities.

https://doi.org/10.1371/journal.pone.0224390.g011

Fig 12. Forward (red) and backward (blue) running components of the wave intensity for the displacement-based wave intensity (A) and pressure-based wave

intensity (B) under the viscoelastic wall condition with wall viscosity of 6000 Pa.s in the presence of aneurysm.

https://doi.org/10.1371/journal.pone.0224390.g012

On the accuracy of displacement-based wave intensity analysis: Effect of viscoelasticity and nonlinearity

PLOS ONE | https://doi.org/10.1371/journal.pone.0224390 November 1, 2019 16 / 23

https://doi.org/10.1371/journal.pone.0224390.g011
https://doi.org/10.1371/journal.pone.0224390.g012
https://doi.org/10.1371/journal.pone.0224390


straight viscoelastic vessel wall model suggest that the maximum corresponding error associ-

ated with displacement-based WI is bounded around 6.8%. One of the main advantages of

WIA is the ability to decompose the wave at any time and location into its forward and back-

ward running components (see Eq (28)). Forward waves in the vasculature are mostly caused

by the heart, and backward waves are the result of reflections. This decomposition reveals

more aspects of the wave dynamics when the forward and backward waves are of similar mag-

nitude (so that the net wave intensity is small even though the waves can be large). The results

from Figs 6 and 9 show that the backward and forward waves from displacement-based WI in

elastic and viscoelastic cases have the same features as the backward and forward waves from a

pressure-based WI.

Fig 13. (A) Comparison of the WI that is defined based on the pressure versus the one that is defined based on the diameter for viscoelastic wall conditions in

the stenosis case. (B) Calculated error between the two wave intensities for different vessel wall viscosities.

https://doi.org/10.1371/journal.pone.0224390.g013

Fig 14. Forward (red) and backward (blue) running components of the wave intensity for the displacement-based wave intensity (A) and pressure-based wave

intensity (B) under the viscoelastic wall condition with wall viscosity of 6000 Pa.s in the presence of stenosis.

https://doi.org/10.1371/journal.pone.0224390.g014
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The timings of WI peaks contain information about the physics of waves in the vascular

network and provide insight into the underlying cardiovascular pathology and pathophysiol-

ogy [10, 37–39]. For example, in the case of aortic WI analysis, the first peak corresponds to

the initial compression caused by a left ventricle contraction (positive peak), the second peak

corresponds to the reflection of the initial contraction (negative peak), and the third peak

corresponds to the dominant forward wave at the end of systole (which is again positive).

Therefore, it is of great clinical importance to be aware of the order of the non-invasive dis-

placement-based WI error in capturing peaks. As shown in Table 2, the peak ratio for DI�P

and DI�D are similar. However, the error associated with the ratio of the first positive peak to

the second positive peak is much smaller than the error in the ratio of the first positive peak to

the first negative peak.

In order to encourage more widespread deployment of displacement-based WIA, we con-

sidered two types of vascular disease-related geometrical irregularities: aneurysm and stenosis.

These two cases impose opposite effects on wave reflection; an aneurysm act as an open-end

reflection site, but stenosis operates as a closed-end reflection site. The first type, an aneurysm,

is defined as a permanent localized dilation of a vessel (similar in dimension to an adult

human aorta) with at least a 50 percent increase in the diameter compared with the expected

normal diameter [40]. Although most aneurysms are asymptomatic, they are observable with

MRI or other non-invasive measurement techniques [41]. MRI or echo imaging of an aneu-

rysm provides information about the size, but it does not provide reliable information about

the stability or rupture risk of an aneurysm. Recent studies have shown that the pulsatile

hemodynamics play a significant role in risk evaluation of an aneurysm [42, 43]. The second

type of irregularity considered, a stenosis, is a localized narrowing in the arterial lumen that is

typically the result of atherosclerosis [44]. Our analysis shows that the DI�P and DI�D wave-

forms are almost identical if the vessel wall is purely elastic, though there exist negligible differ-

ences that might be associated with simplifications in the numerical model. Similarly to the

straight vessel condition, there is a phase difference and lag effect between the DI�P and DI�D

for viscoelastic cases as demonstrated in Figs 11 and 13. As the viscous effect increases (η
increases), the error will grow in general. However, the error shows nonlinear fluctuation with

increasing viscosity (see Fig 11, Fig 13 and Table 3). Similar to the straight vessel case, this is

also in agreement with the analytical model of Eq (33). As demonstrated in Table 3 for the vis-

coelastic vessels with irregular wall conditions, the maximum corresponding error associated

Table 3. RMSE and the peak ratios for the irregular vessel wall in the presence of aneurysm and stenosis.

Aneurysm

η(Pa�s) 1000 3000 6000 9000 12000

RMSE 0.0370 0.0489 0.0473 0.0401 0.0330

PeakRD+ 1.0148 1.0083 1.0002 1.0049 1.0116

PeakRD- -4.4166 -2.9432 -2.4772 -2.3684 -2.3613

PeakRP+ 1.0124 1.0459 1.0319 1.0155 1.0039

PeakRP- -4.6529 -3.7658 -3.2592 -2.9796 -2.8126

Stenosis

η(Pa�s) 1000 3000 6000 9000 12000

RMSE 0.0515 0.0713 0.0674 0.0573 0.0493

PeakRD+ 1.0018 1.0135 1.0132 1.0014 1.0071

PeakRD- -2.1433 -2.1022 -2.1041 -2.1176 -2.1430

PeakRP+ 1.0113 1.0245 1.0257 1.0251 1.0243

PeakRP- -2.8815 -3.2327 -3.0631 -2.8503 -2.7260

https://doi.org/10.1371/journal.pone.0224390.t003
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with displacement-based WI is around 7.13%. In addition, for both the aneurysm and stenosis

cases, the displacement-based WI and the pressure-based WI have been decomposed into

their forward and backward running components (Figs 12 and 14). For the aneurysm case, the

shape of the forward and backward running components is almost identical for the displace-

ment-based and pressure-based wave intensities. For the stenosis case, although the shape of

the forward running wave is almost identical for the displacement-based and pressure-based

wave intensities, there is some disagreement for the backward running waves between the dis-

placement-based and pressure-based wave intensities. This can be attributed to the nature of

stenotic irregularities, resulting in the presence of the closed-end reflection site in the vessel.

However, the effect of this disagreement on the total magnitude of the measured WI is not sig-

nificant for the displacement-based and pressure-based wave intensities. Lastly, it should be

noted that similarly to the straight viscoelastic vessel case, the error associated with the ratio of

the first positive peak over the second positive peak (between the DI�P and DI�D) is much

smaller than the error in the ratio of the first positive peak over the first negative peak (see

Table 3).

So far, WIA has expanded our knowledge in arterial physiology and pathophysiology in the

systemic circulation [45], cerebral vasometer tone [46], and pulmonary circulation [47]. Lots

of effort has been made regarding the coronary WIA [48], myocardial infarction [49] and

ischaemic heart disease [50]. In addition, the WI decomposition into the forward running and

backward running waves has provided further information into cardiovascular physiology and

the direction of the blood into the coronary arteries [51]. However, the current requirement of

having invasive measurements of pressure and flow is a limitation for WI applications. The

systematic research work conducted here provides a fundamental groundwork for expanding

the usage of the non-invasive displacement-based WIA technique into the broader clinical

environment.

Limitation of the study

With regards to the CFD model, blood was assumed to be an incompressible Newtonian fluid

and the truncated vasculature was modelled with an extension tube boundary model. These

are reasonable assumptions in that they don’t affect the conclusion of this manuscript. Regard-

ing the boundary conditions, we have imposed a flat velocity profile at the inlet of the straight

vessel to simulate the pulsatile flow behavior in the system. Although the fluid in this study is a

viscous flow, the flat velocity profile has more features in common with the entry flow regime

than the fully developed parabolic flow profile. In addition, as the wave characteristics in this

study are measured far from the inlet, the influence of the flow profile beyond the inlet bound-

ary is negligible. Hence, this boundary condition should provide accurate results for this study.

Lastly, in this study, we have only considered the simplified geometry of straight vessels in

and, therefore, the curvatures and bifurcations have been excluded. The complexity of the

geometry may provide subtle changes of the pressure and diameter wave; however, this will

have minimal impact on the behavior that has led to the overall conclusion of our findings.

Conclusion

Our results suggest that for large arteries demonstrating linear elastic behavior (such as the

carotid artery or the aorta), the displacement-based WI is almost identical to the pressure-

based WI. This is clinically significant since displacement-based WI can be measured non-

invasively (as opposed to the pressure-based WI, which requires invasive measurement tech-

niques). Our results indicate that the existence of vessel wall abnormalities such as an aneu-

rysm or stenosis does not impact the accuracy of displacement-based wave intensity. Our
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results additionally indicate that wall viscoelasticity creates a phase difference between pressure

and vessel wall dilation that results in a deviation of displacement-based WI when compared

with pressure-based WI. This is the source of error between DI�P and DI�D and, as predicted

by the analytical model, this error increases nonlinearly with increasing viscosity. However, at

maximum, this viscoelasticity error is only 6.8% for the regular vessel wall (straight) and 7.13%

for the irregular vessel wall (in the presence of aneurysm and stenosis) for the cases considered

in this manuscript. In addition, our results show that the error associated with the ratio of the

first positive peak over the second positive peak (between the DI�P and DI�D) is much smaller

than the error in the ratio of the first positive peak over the first negative peak for both regular

and irregular vessel cases. Hence the results of this study ultimately suggest that, although uti-

lizing displacement-based WI introduces errors into WI analysis for vessels with viscoelastic

behavior (which mainly exist in only small-size vessels), these errors are small and are an

acceptable compromise in order to enable measurements of WI non-invasively (which is of

great clinical importance).
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18. Valdez-Jasso D, Bia D, Zócalo Y, Armentano RL, Haider MA, Olufsen MS. Linear and nonlinear visco-

elastic modeling of aorta and carotid pressure–area dynamics under in vivo and ex vivo conditions.

Annals of biomedical engineering. 2011; 39(5):1438–56. https://doi.org/10.1007/s10439-010-0236-7

PMID: 21203846

19. Pahlevan NM, Amlani F, Gorji MH, Hussain F, Gharib M. A physiologically relevant, simple outflow

boundary model for truncated vasculature. Annals of biomedical engineering. 2011; 39(5):1470–81.

https://doi.org/10.1007/s10439-011-0246-0 PMID: 21240638

20. Peattie RA, Riehle TJ, Bluth EI. Pulsatile flow in fusiform models of abdominal aortic aneurysms: flow

fields, velocity patterns and flow-induced wall stresses. Journal of Biomechanical Engineering. 2004;

126(4):438–46. https://doi.org/10.1115/1.1784478 PMID: 15543861

21. Chow JC, Apter JT. Wave propagation in a viscous incompressible fluid contained in flexible viscoelas-

tic tubes. The Journal of the Acoustical Society of America. 1968; 44(2):437–43. https://doi.org/10.

1121/1.1911100 PMID: 5665522

22. Keramat A, Tijsseling A, Hou Q, Ahmadi A. Fluid–structure interaction with pipe-wall viscoelasticity dur-

ing water hammer. Journal of Fluids and Structures. 2012; 28:434–55.

23. Holzapfel GA, Gasser TC, Ogden RW. A new constitutive framework for arterial wall mechanics and a

comparative study of material models. Journal of elasticity and the physical science of solids. 2000; 61

(1–3):1–48.

24. Bathe K-J, Zhang H, Ji S. Finite element analysis of fluid flows fully coupled with structural interactions.

Computers & Structures. 1999; 72(1–3):1–16.

25. Middleman S. Transport phenomena in the cardiovascular system: John Wiley & Sons; 1972.

26. ADINA R. ADINA theory and modeling guide–volume III: ADINA CFD & FSI. Watertown, Mass. 2005.

27. Bathe M, Kamm R. A fluid-structure interaction finite element analysis of pulsatile blood flow through a

compliant stenotic artery. Journal of Biomechanical Engineering. 1999; 121(4):361–9. https://doi.org/

10.1115/1.2798332 PMID: 10464689

28. Bathe K, Zhang H, Wang M. Finite element analysis of incompressible and compressible fluid flows with

free surfaces and structural interactions. Computers & Structures. 1995; 56(2–3):193–213.

29. Bathe K-J. Finite element procedures: Klaus-Jurgen Bathe; 2006.

On the accuracy of displacement-based wave intensity analysis: Effect of viscoelasticity and nonlinearity

PLOS ONE | https://doi.org/10.1371/journal.pone.0224390 November 1, 2019 21 / 23

https://doi.org/10.1016/j.jbiomech.2004.05.039
http://www.ncbi.nlm.nih.gov/pubmed/15713284
https://doi.org/10.1007/s003800200037
http://www.ncbi.nlm.nih.gov/pubmed/12434197
https://doi.org/10.1152/ajpheart.00480.2014
http://www.ncbi.nlm.nih.gov/pubmed/25659483
https://doi.org/10.1152/jappl.2000.89.4.1636
https://doi.org/10.1152/jappl.2000.89.4.1636
http://www.ncbi.nlm.nih.gov/pubmed/11007606
https://doi.org/10.1088/1361-6579/aae8a0
http://www.ncbi.nlm.nih.gov/pubmed/30475745
https://doi.org/10.1097/HJH.0000000000001886
http://www.ncbi.nlm.nih.gov/pubmed/30645209
https://doi.org/10.1115/1.4004532
http://www.ncbi.nlm.nih.gov/pubmed/21950896
https://doi.org/10.1007/s10439-010-0236-7
http://www.ncbi.nlm.nih.gov/pubmed/21203846
https://doi.org/10.1007/s10439-011-0246-0
http://www.ncbi.nlm.nih.gov/pubmed/21240638
https://doi.org/10.1115/1.1784478
http://www.ncbi.nlm.nih.gov/pubmed/15543861
https://doi.org/10.1121/1.1911100
https://doi.org/10.1121/1.1911100
http://www.ncbi.nlm.nih.gov/pubmed/5665522
https://doi.org/10.1115/1.2798332
https://doi.org/10.1115/1.2798332
http://www.ncbi.nlm.nih.gov/pubmed/10464689
https://doi.org/10.1371/journal.pone.0224390


30. Holzapfel GA, Gasser TC, Stadler M. A structural model for the viscoelastic behavior of arterial walls:

continuum formulation and finite element analysis. European Journal of Mechanics-A/Solids. 2002; 21

(3):441–63.

31. Park S, Schapery R. Methods of interconversion between linear viscoelastic material functions. Part I—

A numerical method based on Prony series. International Journal of Solids and Structures. 1999; 36

(11):1653–75.
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