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ABSTRACT: Macromolecular drug candidates and nano-
particles are typically tested in 2D cancer cell culture models,
which are often directly followed by in vivo animal studies.
The majority of these drug candidates, however, fail in vivo.
In contrast to classical small-molecule drugs, multiple barriers
exist for these larger molecules that two-dimensional approaches
do not recapitulate. In order to provide better mechanistic
insights into the parameters controlling success and failure and
due to changing ethical perspectives on animal studies, there is
a growing need for in vitro models with higher physiological
relevance. This need is reflected by an increased interest in 3D
tumor models, which during the past decade have evolved
from relatively simple tumor cell aggregates to more complex
models that incorporate additional tumor characteristics as well as patient-derived material. This review will address tissue culture
models that implement critical features of the physiological tumor context such as 3D structure, extracellular matrix, interstitial
flow, vascular extravasation, and the use of patient material. We will focus on specific examples, relating to peptide-and protein-
conjugated drugs and other nanoparticles, and discuss the added value and limitations of the respective approaches.

■ INTRODUCTION

In current cancer research, drug candidates are still primarily
tested in 2D monolayer cultured cell models. If initial experi-
ments are successful, these in vitro studies are often directly
followed by animal experiments. However, many compounds
that show promising results in vitro perform only poorly in
animal models or ultimately fail in clinical trials.1 This lack of
success is based on the fact that the complexity of a tumor
and its environment is in sharp contrast to the simplicity of
immortalized cell lines growing in a monolayer. Also, with the
ambition to reduce the number of animal experiments, there
is increasing demand for in vitro tumor models that mimic
in vivo characteristics more accurately.2,3 Tumor cells that
grow in a monolayer culture on a glass or plastic bottom are
stretched out, which causes cytoskeletal rearrangements, and
have limited cell−cell contact. In contrast, culturing tumor
cells in a 3D setting resembles the in vivo architecture and
tumor microenvironment more closely due to the more natural
morphology of cells, the presence of extracellular matrix,
pH and oxygen gradients, and in some cases the presence of
interstitial flow.4−6 This complexity leads to increased hetero-
geneity due to nutrient gradients and to growth characteristics
that differ from the two-dimensional situation. In particular,
for peptide conjugates and larger biologicals, drug penetration
is a limiting factor since cells are less accessible due to their

tight 3D arrangement, which cannot be captured by 2D tumor
cultures.
In the simplest case, a 3D tumor model consists of aggregates

of tumor cells, or spheroids, that mimic small, nonvascularized
tumor deposits as they are encountered in several cancer types,
such as epithelial ovarian cancer.7 Spheroids increase the
relevance of in vitro results compared to 2D cell cultures, since
they show a drug resistance pattern more comparable to that of
solid tumors.8−10 More complex models were developed
alongside the development of organ-on-a-chip microfluidic
approaches. These efforts resulted in designs that mimic the
in vivo tumor microenvironment better and that reinstate
barriers that are encountered by macromolecular drugs.
In practice, the complexity of model systems may become a

limiting factor. Therefore, the choice for a tumor model should
be based on the balance between predictive power for a specific
research question and simplicity and robustness of the model.
Here, we will review tumor models and their applications

in the testing of peptide and protein-conjugated drugs and other
macromolecular compounds and nanoparticles. First, we will
describe the components and characteristics of the tumor
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microenvironment to illustrate the critical barriers that these
molecules face on their way to their final targets, such as the
vascular endothelium, the dense extracellular matrix, and the
binding site barrier. Then we will discuss possibilities to
incorporate these features into 3D tumor models. Instead of
providing an exhaustive review of 3D tumor models, we will
focus on representative examples relating to macromolecular
drug and nanoparticle testing. Even though not all examples
directly deal with peptide or protein conjugates, as not all
models have yet been tested with such conjugates, the
conclusions are also relevant for this class of drug candidates.

■ TUMOR MICROENVIRONMENT
Tumor cells reside in a dynamic environment comprising
various cell types such as immune cells and cancer-associated
fibroblasts, extracellular matrix (ECM), interstitial flow, and
signaling molecules. This tumor microenvironment (TME)
plays an important role in tumor progression and metastasis
formation, and the physical properties of the TME are greatly
influencing drug delivery (Figure 1).
The ECM is a compact matrix of proteins, glycosaminogly-

cans, and signaling molecules that supports its surrounding
tissue.11 Generally, the ECM in tumors is denser than in normal
tissue, although there are large differences in ECM between
different tumor types. Lymphomas and certain neuroblastomas
have minor ECM and are therefore considered stroma-
poor.12,13 In contrast, other tumors, especially pancreatic

cancers, have a very compact matrix, which is a result of the
excessive production of matrix molecules. As often seen in
different types of cancer, the resulting compact matrix inhibits
penetration of large molecules (Figure 1B).14−16

Apart from the physical boundary that the ECM imposes, a
high density of target molecules on malignant cells, such as
receptors targeted by peptide conjugates, can also inhibit
penetration of macromolecular drugs through a mechanism
called the binding site barrier (BSB). Originally, the importance
of the BSB was recognized because antibodies accumulated
mostly in the perivascular region, without penetrating deeper
into the tumor. The antibodies were captured by the first
antigen they encountered and were therefore unable to enter
deeper into the tissue.17,18 Since antibodies typically show a
very high affinity toward their target protein, penetration goes
along with target saturation, meaning that BSBs are more
prominent with low drug concentrations.19 The BSB also exists
for non-antibody drug delivery vehicles such as nanoparticles.20

Of note is that nonspecific binding can play an important role
in the BSB as well, depending on the targeting moiety.21

Before macromolecular compounds encounter the ECM,
they first have to extravasate from blood vessels into the
interstitial space. In tumors, the vascular endothelium is often
poorly organized, leading to an increased permeability for
macromolecules larger than 40 kDa.22,23 The degree of
leakiness varies greatly between different tumor types which
is a consequence of different numbers and sizes of gaps

Figure 1. Schematic representation of the different barriers that a macromolecular drug encounters and options to mimic these in a 3D tumor model.
(A) Leaky vasculature is due to a fenestrated endothelium as a consequence of disorganized neovascularization. Porous membranes and self-
assembling or aided microvasculature within a microfluidic device are typically used to mimic this barrier. (B) Extracellular matrix is used in static and
fluidics based culture methods. (C) Cellular environment is made up of tumor cells and other cells, including cancer-associated fibroblasts and
immune cells. Co-cultures of tumor and other cells have been developed for several 3D culture systems. (D) High interstitial fluid flow and high
pressure are an effect of leaky vasculature, dense ECM, high cell density, and disorganized lymphatic drainage system. This can be mimicked in
microfluidic systems where fluid is either actively pumped (e.g., syringe pump-driven) or passively forced (e.g., gravity flow) through the cellular and
ECM layer. (A−C) are by nature present in a tumor explant model and (D) flow characteristics can be mimicked using microfluidics. ECM,
extracellular matrix.
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between endothelial cells (Figure 1A).24 For small molecules,
this variability matters little. For larger particles however,
leakiness of the endothelium is a critical parameter.22

When endothelial leakiness is combined with inefficient
lymphatic drainage, larger particles accumulate in the tumor,
whereas small particles diffuse out of the TME (Figure 1D).25

This phenomenon is called the enhanced permeability and
retention (EPR) effect and is seen in most tumors. However,
the extent of the EPR varies between different tumor types and
within individual tumors. As an example, a recent study in dogs
found the effect to be much more pronounced in carcinomas
than in sarcomas.26 A prime reason for the difference between
sarcomas and carcinomas is the higher growth rate of the latter,
which leads to more dysfunctional and leaky tumor vessels.
Similar differences have been observed between fast- and slow-
growing tumors in rat prostate carcinoma models.27

In addition, the extravasation of fluids, together with high cell
and ECM density, fibroblast-mediated contraction of the ECM,
and dysfunctional lymphatic vessels, leads to an increased
interstitial fluid pressure (IFP). High IFP has a negative effect
on drug penetration, particularly of larger compounds such as
nanoparticles. This effect increases toward the center of tumors,
where the IFP is often much greater than at the periphery.6,28

A high IFP thus counteracts the EPR. The presence of a high IFP
has been confirmed for many tumors, including breast cancer,
colorectal cancer, head and neck cancer, and melanoma.29−33

■ MULTICELLULAR TUMOR SPHEROIDS
Multicellular tumor spheroids (MCTSs) constitute the most
fundamental 3D culture model that is also amenable to high
throughput.5 Generally, MCTSs are clumps of cells with a
diameter of 100 to 1000 μm. The 3D arrangement within an
MCTS leads to increased cell−cell contacts compared to cells
cultured in a monolayer. These differences in cell−cell contacts
in turn underlie many of the gene and protein expression
changes when compared to their monolayer counterparts.34−37

Also, since the cells adhere to each other rather than to a glass
or plastic bottom, they tend to grow slower and show more
resistance to chemotherapeutics that are aimed at rapidly
proliferating cancer cells.8,9 In spite of their simplicity, MCTSs
mimic several relevant in vivo features such as oxygen gradients,
matrix deposition, and hindered diffusion.
MCTSs can be generated in several ways and common

methods include the hanging drop method, liquid overlay, or
spinner flasks.4 Although technically different, all methods have
in common that they deprive cells of contacts to a growth-
promoting surface so that contacts are established only between
cells. Mostly, immortalized cell lines are used to generate
MCTSs, but it is also possible to use primary cells such as
tumor cells derived from malignant ascites (fluid accumula-
tion in the peritoneal cavity) in epithelial ovarian cancer.38

The addition of ECM materials like collagen, Matrigel, or
methylcellulose can promote MCTS formation but is often not
necessary from a technical point of view.4,39 Whether to include
ECM compounds in a model depends on the tumor type that is
being mimicked, since, as mentioned above, in vivo tumors
show large variations in stroma content.
There have been several studies in which MCTSs were

employed to elucidate the molecular mechanisms of pen-
etration of nanoscale drug delivery systems. For example, small
gold nanoparticles of 2 and 6 nm were able to penetrate
throughout the MCTS, whereas 15 nm gold nanoparticles
accumulated on the rim and penetrated poorly into the

spheroid core.40 Concerning the ECM, it was demonstrated
that a thick collagen network in MCTSs resulted in low
penetration depth for polystyrene nanoparticles and that
penetration of particles <100 nm could be significantly
enhanced by addition of collagenase. This effect was greater
for particles of 40 nm than for particles of 20 nm since the latter
were already able to penetrate the spheroids relatively
unhindered.15 Particles larger than 100 nm only showed
minor penetration into the spheroid (<5% particles in the
core), with only minor improvement upon collagenase treat-
ment. These findings indicate that particle size and ECM
density are important factors that determine penetration.
In order to further enhance penetration for nanoparticles of a

size up to 100 nm, some groups have explored possibilities of
functionalizing micelles with different targeting moieties such as
antibodies, transferrin, or single-chain variable fragments.41−44

In all these cases, a higher penetration was found for targeted
constructs. Nevertheless, delivery via targeting moieties carries
the risk of retention by a BSB. This is illustrated by a study
from Miao et al., who developed a static spheroid model
consisting of a co-culture of UMUC3 bladder carcinoma cells
and 3T3 fibroblasts. In this model the researchers used the BSB
concept to explain differences in uptake characteristics of lipid-
coated calcium phosphate nanoparticles that were either
functionalized with the anisamine ligand, which targets the
sigma receptor, or remained unfunctionalized. It was found that
targeted particles were captured to a larger extent by sigma-
receptor expressing tumor-associated fibroblasts as compared to
nontargeted particles, which penetrated further into tumor cell
spheroids.20 Small particle size (∼18 nm) and high receptor
binding affinity contributed to a more prominent BSB. These
results were reproduced in an animal model, demonstrating the
value of the spheroid model.20 Another example where the
spheroid model was validated with in vivo data was for an
internalizing-RGD (iRGD) peptide−drug conjugate where
iRGD conjugates showed more tumor penetration than RGD
conjugates in both models.45 The tumor-homing peptide iRGD
targets tumors by binding to integrin, after which it is cleaved
by tumor proteases, exposing the positively charged CendR
motif. This motif then binds to neuropilin-1, which is also
present on many tumors, leading to an increased vascular per-
meability and the promotion of tumor penetration. Several
other studies that employed iRGD conjugates and investigated
them both in vitro in a spheroid model and in vivo have
provided further validation of the spheroid model. In each case,
it has been found that iRGD conjugation enhanced tumor
penetration both in vitro and in vivo.45−47

■ MICROFLUIDICS
The examples above demonstrate that also in static culture
conditions key characteristics of tumors can be reproduced.
Nevertheless, in the absence of fluid flow, the exchange of
nutrients, waste products, and other compounds, as well as the
uptake of drugs, solely relies on diffusion. In reality, however,
the uptake of macromolecular drug candidates, in contrast to
small-molecule drugs, depends more on convection than on
diffusion.28 The degree of convection in tumors is governed by
hydrostatic and osmotic pressure gradients over the endothelial
barrier of the tumor vasculature. In healthy tissue, there is a
small net outward pressure, but in tumors there can be both an
net outward or inward pressure. In general, osmotic pressure is
higher inside tumors.28 The degree to which this pressure is
counterbalanced by increased hydrostatic pressure in the
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interstitium, however, varies greatly between tumors, though in
most cases it results in a higher level of inward convection, and
thus a higher net flow into the tumor.48 The variability can be
explained by differences in the tumor or tissue-dependent
microenvironmental factors, most of which were discussed
before, including the intravascular pressure, the density of cells
and matrix components, the tendency of the tissue to expand
(i.e., the compliance), and the functionality of the lymph
channels.
Through soft lithography and microfluidic technology it is

possible to create more advanced tumor models for the study
of distribution and activity of peptide and protein conjugates as
well as of nanoparticles. These designs can be collectively referred
to as tumor-on-a-chip models, a subset of organ-on-a-chip

models.49 Overall, with the systems that were developed so far,
three major innovative elements were introduced in compar-
ison to static tumor models: compartmentalization, controlled
gradients, and perfusion.50 Here, the focus will lie on compart-
mentalization and perfusion because these are the most relevant
for drug delivery studies in 3D models.
In the simplest embodiment, MCTSs are exposed to flow, by

continuously perfusing hanging drops, entrapment of cells in
microwells, or placing preformed MCTSs in a microfluidic
device.51−53 More advanced models also incorporate the
ECM as a physical transport barrier in the model, for instance,
by seeding cells in a hydrogel.54,55 The most complex models
co-culture tumor cells with different cell types, for instance,

Figure 2. Examples of 3D culture techniques. (A) Top left: Design of a tumor-microenvironment-on-chip. The two-layered 3D microfluidic platform
consisted of a capillary vessel compartment (red) that was positioned on top of a tumor cell-containing compartment (blue), which was in turn
separated from two lymph channels (green). All channels were patterned in polydimethylsiloxane (PDMS), which is the most commonly used
material for microfluidic chips. In the capillary vessel compartment, a monolayer of endothelial cells was grown on a Matrigel-coated polycarbonate
membrane. In this top compartment the nanoparticles were introduced. In the bottom compartment, containing the tumor channel, tumor cells were
embedded in a collagen matrix. Bottom left: Top view of the bottom compartment. The position of the capillary channel is indicated, but not visible
as it is directly above the tumor interstitial channel. Right: Tumor cell growth after loading (day 0) and after 3 days culture on the microfluidic
system. A microscope image of the tumor interstitial channel is presented. Inlets and outlets were connected to fluid columns, thereby introducing
height differences which resulted in a fluid flow. The scale bar indicates 300 μm. Reprinted from Kwak et al., Copyright (2014), with permission from
Elsevier.56 (B) Left: A schematic overview of a vascularized micro-organ platform. The system consisted of 100-μm-high tissue chambers and
microfluidic channels patterned into an 8 mm PDMS layer. This layer was bonded to a 1 mm PDMS layer that was subsequently bonded to a glass
coverslip. The central tissue chambers were connected to microfluidic side channels via capillary burst valves that retained the mixture of cells and
ECM inside the chambers. Loading of the endothelial cell−ECM suspension was achieved through the indicated gel loading ports. Height differences
in the media reservoirs attached to the inlets and outlets enabled a gravity-driven fluid flow through the microfluidic channel toward the tissue
chamber. Right: A microscope image of a tissue chamber of the central part of the chip showing a fully developed vascular network after 7 days.
Endothelial cells are shown in red and were visualized by confocal microscopy. The supporting stromal cells were not labeled. An outward growth of
the endothelial cells into the microfluidic channels could be observed. The scale bar indicates 100 μm. Reprinted from Sobrino et al., Copyright
(2016), with permission from The Royal Society of Chemistry.58 ECM, extracellular matrix; PDMS, polydimethylsiloxane.
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endothelial cells in order to mimic the endothelial barrier that
drug delivery systems need to overcome.56−58

In an early microfluidics study from Ng et al., in which
interstitial flow was mimicked using a microfluidic device, the
authors found that the penetration of 500 nm nanoparticles in
Matrigel with fibroblasts was virtually absent without flow,
and increased to ∼60 μm in the presence of flow.54 This
considerable difference illustrates the crucial role of including
interstitial flow to mimic those situations where this plays a
role in vivo. In this study, IFP was considered to be within the
physiological range.6,54 However, as the authors also pointed
out, the density of Matrigel was probably lower than that of the
dense ECM surrounding a tumor, which could lead to an

overestimation of particle penetration.54 This example shows
that critical degrees of freedom of such systems are the ability
to reproduce interstitial flow, IFP, and ECM density for a
certain tumor type. In a more recent on-chip dynamic model,
Kwak et al. showed that the accumulation of nanoparticles was
not influenced so much by the density of the collagen matrix
but rather depended on the density of the seeded cells within
the matrix (Figure 2A).56

As indicated before, delivery of macromolecular drugs is
also dependent on their ability to extravasate from capillaries
surrounding the tumor cells. Therefore, the endothelial barrier
has also been implemented into tumor models. Some groups
mimicked a leaky endothelial barrier by placing a porous

Figure 3. Examples of tumor explant cultures (A) 7-day culture of 300 μm tumor slices obtained from a single tumor. The tumor slices were cultured
under constant orbital movement. Blue, nuclear staining, DAPI; Red, DNA synthesis marker, EdU. The scale bar indicates 100 μm. Reprinted from Naipal
et al. (2015), under the Creative Commons Attribution 4.0 International License.62 (B) Microfluidic platform for the study of microdissected tissues. Left:
Schematic showing the structure of the microfluidic platform and the loading approach using a micropipette tip. Middle: Picture of the microfluidic device
containing microdissected tumor tissues that were captured in the square traps. The scale bar indicates 2 mm. Top right: Zoomed image of microdissected
tumor tissues captured in the square traps. The scale bars indicate 100 μm. Bottom right: Microdissected tumor tissues of 22Rv1 or PC3 xenografts were
analyzed by confocal microscopy (maximum projection images) and by flow cytometry. The viability of nontreated microdissected tissues for each sample
is given below the respective image. The dye for viability was Cell Tracker Green (green) and for dead cells propidium iodide (red). Reprinted from
Astolfi et al. (2016), under the Creative Commons Attribution 4.0 International License.64 EdU, 5-ethynyl-2′-deoxyuridine.
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membrane between the fluid and the cellular compartment.56,59

Efficient extravasation only occurred for particles much smaller
than the nominal pore size of the membrane.56 A possible
explanation is that the nominal pore size represented a
maximum, and many pores were smaller. Interestingly, this
heterogeneity is also found in patients where leaky vessels in
some tumor regions coexist with areas that contain much more
well-developed and less leaky endothelial linings.60

Instead of using a fenestrated membrane as a rather simple
representation of the endothelial barrier, several other methods
have been developed to directly implement microvasculature.
These methods vary from self-organizing blood vessels using
stem cells and/or organ-specific cells, to microfluidic approaches
where endothelial cells are grown on a predefined membrane or
ECM-like structure, to hybrid models.57,58,61 These systems vary
greatly in complexity and in the way that tumor characteristics
are mimicked. A self-organizing, perfusable microvasculature
was for example impermeable for FITC-dextran molecules with
a molecular weight of 70 kDa, and was therefore less leaky than
many tumor vessels in vivo, in which molecules of that size can
extravasate.57 The microvasculature functioned very well when
incorporated into the tumor model (Figure 2B),58 but since it
was not leaky, it would be less predictive when the EPR effect is
to be studied.

■ EX VIVO TUMOR CULTURE
The models discussed so far employed in vitro adapted cell
lines. These approaches have the advantage of standardization,
but this advantage comes at the expense of a natural tumor
architecture. In this respect, tumor explant cultures are very
different from the previously mentioned 3D culture methods.
Explant culture does not follow a bottom-up approach in which
all components are added separately, but rather uses a top-
down approach in which the primary tumor, with all its hetero-
geneous features, is utilized as a model. The general principle
behind this culture method is that primary tumor tissue is
excised during surgery and subsequently cultured under
laboratory conditions. Critical in these culture systems is, how-
ever, the size of the samples. Since the vasculature of the
excised tumor does not retain its functionality, the supply of
nutrients and oxygen solely relies on diffusion, and lack of these
will cause necrosis in the center of larger tumor deposits.
To overcome this problem, two general strategies have been

developed. The first strategy is to slice the tumor into ∼300 μm
slices. Such slices are thin enough to allow sufficient nutrient
supply, but also thick enough to preserve histological features
(Figure 3A).62,63 The second method is to microdissect the
tumor into cylindrical, spheroid-like, deposits of a few hundred
micrometers in diameter (Figure 3B).64 These deposits can
then be incorporated into a flow-containing model, with or
without an endothelial barrier-mimicking component, employ-
ing the techniques discussed above. To our knowledge,
however, mimicking the endothelial barrier has not yet been
performed in models containing explant cultures.
The major advantage of explants is that cells from a primary

source do not undergo any in vitro adaptation. Another
advantage is that the histology and TME of the specimen are
left intact which gives the model barrier features that are
virtually unchanged from the in vivo situation. Such an accurate
representation of extracellular matrix characteristics is currently
unfeasible using artificial materials. This key advantage ironically
also causes the greatest downside, as there is considerable
heterogeneity between different tumor samples and even within

a single tumor. The larger variation requires that larger
numbers of samples need to be employed in order to reach
statistically and/or biologically significant results.
In a study by Dong et al., delivery of chitosan-coated PLGA

nanoparticles incorporating antisense oligonucleotides against
telomerase was tested on tumor slices generated from tumors
of non-small cell lung cancer patients and compared against a
monolayer culture of primary cells that originated from the
same tumor.65 Indeed, there was heterogeneity within and
between samples, and telomerase activity could vary greatly
between tumor samples and different cell types within a tumor
slice. Telomerase inhibition was, however, effective and
relatively comparable to monolayer immortalized cell line
culture. Also, the nanoparticles could penetrate throughout the
whole tumor slice.
Due to the previously mentioned difficulties and hetero-

geneity, one may expect that these complex models will
complement the standardized methods described above at a
later stage of drug development. First, they can provide valuable
information on the potential heterogeneity of clinical responses.
Second, a thorough assessment of the functional histological
context in which a drug candidate shows activity is possible.

■ DISCUSSION AND FUTURE PERSPECTIVES
Research published so far demonstrates that in contrast to 2D
models, 3D models are able to capture critical features of
tumors and their environment, which are necessary to predict
the in vivo behavior of macromolecular drugs and targeted
conjugates. Very clearly, there is no one-size-fits-all solution.
Tumors are highly heterogeneous, leading to enormous
differences in the relevance of the EPR effect and of the param-
eters governing penetration. For all macromolecules, pene-
tration is critical, and while targeted conjugates may enhance
cellular internalization rates, the BSB effect can conversely limit
effectiveness.
Advances with respect to the incorporation of different

barriers in 3D tumor models for the assessment of drug delivery
are constantly being made, a development that occurs in
parallel with, and may profit from, advances made in model
development for other barriers such as skin, lung, and
intestine.66 In practice, care has to be taken when choosing a
model. For instance, while it is a great achievement that self-
organizing microvasculature models can be generated, they do
not recapitulate the EPR effect and this should be taken into
account when designing a model.
So far, the most popular 3D in vitro model for investigating

peptide- and protein-conjugated drugs has without doubt been
the static spheroid model, as can be seen in Table 1, where a
representative overview is given of the different types of protein-
and peptide conjugates that have been studied with this model.
Most studies used a simple spheroid model that consisted of
a single type of cancer cell, whereas some studies used more
advanced spheroid models like complex cocultures that
attempted to mimic the endothelial barrier.67−69 A key outcome
measure has been the penetration depth. However, the presence
of static conditions means that outcomes may have been biased
toward systems that diffuse well, rather than those that rely on
convection as the main transport mode. Notably, more advanced
on-chip 3D models have thus far mainly been performed with
“model” nanoparticles such as dextran or polystyrene beads, sug-
gesting a strong focus on the development of these systems even
in recent years, rather than on their practical application. Never-
theless, given the arguments that we have laid out in this review,
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we believe that future studies would benefit from aiming to
introduce more barriers and more physiologically relevant con-
ditions.
To make an adequate choice for the design of a 3D model, it

is of utmost importance to have detailed information about the
barriers that are present in the tumor type that is being
modeled. However, the validation that the in vitro model
correctly represents the physiological situation is a challenge.
Features of patient tumors are not necessarily reflected by
animal models, which often employ tumors that grow very
rapidly.60 Animal models that deal with spontaneous tumors,
rather than xenografts, are more valuable, but typically also
more laborious, and, for obvious reasons, few opportunities
exist for well-controlled studies in patient tumors in situ.
In conclusion, key requirements for the application of 3D

tumor models as a predictive tool for macromolecular drug
development are the understanding of the tumor physiology
and the ability to mimic this in a relevant way. This notion is

represented by a workflow in which technical innovation
enables the implementation of insights from animal and clinical
studies, as well as key physical principles. The cross-validation
of the results from 3D tumor models in patient and animal
studies then allows for model refinement and improves the
ability to provide predictive answers on the efficacy of drug
candidates in an in vivo setting (Figure 4).
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Figure 4. Workflow for the development of an optimal 3D model that is highly predictive for the behavior of a potential drug candidate in a clinical
setting. The results obtained from studies in a 3D model are used to make a prediction on the outcome of in vivo studies or guide the design of
improved drug candidates, and are in turn validated with data from animal and clinical studies. Knowledge of physical principles can be used to
further improve the model, and the evidence obtained will in turn lead to more knowledge of physical principles that are difficult to study in animal
models and patients. Technical innovations allow the incorporation of novel features, as well as provide avenues for novel or automated analysis
methods that can enhance the robustness or increase the throughput of the model.

Table 1. Representative Examples of Peptide- and Protein-Conjugated Drugs That Have Been Tested in Static Spheroid
Models

conjugate class (poly)peptide coupled moiety/particle refs

peptide-
conjugated
nanoparticles

CGKRK, CTR, GICP, IL13p, mastoparan, MMP2-
sensitive peptide, penetratin, Pep-1, R8, RGD variants,
SAPSp, tat, T7, TGN, TH-Lip, tLyp-1, tumstatin

chitosan, iron oxide particle, lipid-based particle, paclitaxel
nanocrystallites, PAMAM dendrimer, liposome,
polymeric particle (e.g., PEG−PCL, PEG−PLA, PEG−
PTMC, PLGA−chitosan), quantum dot

45−47,67−97

other peptide
conjugatesa

RGD oligonucleotide 98,99

protein-
conjugated
nanoparticles

antibody, collagenase, scFv, TRAIL, transferrin albumin particle, lipid-based particle, liposome, micelle,
polystyrene particle

15,41−44,82,87,100−102

other protein
conjugatesa

albumin, antibody, immunotoxin small-molecule drug, fluorophore, oligonucleotide,
radiolabel

16,98,99,103−106

aThe class of “other conjugates” includes all conjugates that are not nanoparticles.
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