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Abstract 52 

The relatively low representation of admixed populations in both discovery and fine-53 
tuning individual-level datasets limits polygenic risk score (PRS) development and 54 
equitable clinical translation for admixed populations. Under the assumption that the 55 
most informative PRS weight for a homogeneous sample varies linearly in an 56 
ancestry continuum space, we introduce a Genetic Distance-assisted PRS 57 
Combination Pipeline for Diverse Genetic Ancestries (DiscoDivas) to interpolate a 58 
harmonized PRS for diverse, especially admixed, ancestries, leveraging multiple 59 
PRS weights fine-tuned within single-ancestry samples and genetic distance. 60 
DiscoDivas treats ancestry as a continuous variable and does not require shifting 61 
between different models when calculating PRS for different ancestries. We 62 
generated PRS with DiscoDivas and the current conventional method, i.e. fine-tuning 63 
multiple GWAS PRS using the matched or similar ancestry samples. DiscoDivas 64 
generated a harmonized PRS of the accuracy comparable to or higher than the 65 
conventional approach, with the greatest advantage exhibited in admixed individuals.  66 
 67 

Introduction/Main 68 

Individuals who are not of European ancestry remain underrepresented in genome-69 
wide association studies (GWAS), which at least partly explains why polygenic risk 70 
score (PRS) performance is generally reduced in this population when compared 71 
with individuals of European ancestry1. Within the constraints of existing data, the 72 
current principal solution to increase the PRS accuracy among non-European 73 
individuals is to fine-tune a combination of PRS derived from multiple populations or 74 
multiple traits with the individual-level data of a training cohort2–6. However, PRS 75 
accuracy decays as the genetic distance between the fine-tuning and testing 76 
samples increases7. Relative to the vast diversity across the genetic ancestry 77 
continuum, the existing and near-term individual-level datasets that can be used for 78 
fine-tuning PRS combinations remains very sparse. Most existing individual-level 79 
genotype data are mainly collected from single-ancestry populations and therefore 80 
admixed populations are left underrepresented or are largely excluded from analysis 81 
8–11. Additionally, fine-tuning and testing samples that are labeled as “from the same 82 
superpopulation” are often truly genetically heterogeneous 10,12–15, leading to variable 83 
accuracy within such samples.  84 
 85 
PRS analysis across diverse ancestries may also be limited by inconsistency. The 86 
raw PRS distributions of the same model varies by ancestry and therefore the raw 87 
PRS values for individuals of different genetic ancestries should not be directly 88 
compared without ancestry correction16–18. Although prior research16,18,19 has shown 89 
that regressing out the top principal components of ancestry (PCA) from the PRS can 90 
unify the PRS distributions of different ancestries (i.e., the mean and standard 91 
deviation of corrected PRS sampled from different populations can become very 92 
close), the inconsistency is only partially solved. In the application of PRS across 93 
diverse ancestries, one would have to use one PRS model for all the individuals, 94 
causing inconsistent PRS accuracy, or use several discrete PRS models for different 95 
individuals approximating superpopulations also causing inconsistent PRS modelling 96 
and accuracy.  97 
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 98 
Given these issues and the increasing clinical use of PRS20–22, PRS generation for 99 
diverse and admixed genetic ancestries with more consistent accuracy and more 100 
unified PRS distributions is critically needed. We devised a method, DiscoDivas, a 101 
Genetic Distance-assisted PRS Combination Pipeline for Diverse Genetic 102 
Ancestries, to generate PRS across the genetic ancestry continuum. This method is 103 
based on the recent observation7 that the PRS accuracy in the testing data decays 104 
approximately linearly as the genetic distance between the fine-tuning and samples 105 
increases, and that the genetic distance can be approximated by Euclidian distance 106 
of PCA based on the global ancestries7.  Based on this observation, we assumed that 107 
the most informative PRS weights for a sample can be linearly interpolated from the 108 
currently available PRS weights that are fine-tuned in the ancestries surrounding it in 109 
the global ancestry-based PCA space with the interpolation weights based on the 110 
Euclidian distance of the PCA. In summary, DiscoDivas calculates PRS for diverse 111 
and admixed genetic ancestries whose genetic data may not be sufficiently powerful 112 
alone to train a PRS model by linearly interpolating the multiple PRS fine-tuned in 113 
ancestries whose genetic data are more available. We evaluated its performance in 114 
simulated and empiric data. 115 
 116 

Results 117 

Overview of DiscoDivas 118 

DiscoDivas combines PRS fine-tuned in different fine-tuning samples - generally from 119 
different single-ancestry populations - to linearly interpolate PRS for individuals of 120 
diverse genetic ancestries, treating ancestry as a continuous variable. The rationale 121 
for PRS combination is based on the observation that the correlation of the most 122 
informative PRS weight for two samples of different ancestry drops as the genetic 123 
distance, represented by Euclidean distance of global ancestry-based PCA, 124 
increases7. Therefore, the best PRS weight for an ancestry representation can be 125 
linearly interpolated from other PRS weights fine-tuned in other ancestries with the 126 
additional consideration of the genetic distance between the samples (Figure 1).  127 
 128 
Under the same principle of interpolating the PRS weight, the best PRS can be 129 
interpolated from several PRS calculated using the weight fine-tuned in other 130 
ancestries. Since generating individual-specific PRS weights in a testing dataset 131 
causes redundant calculation and given the difficulty of normalizing information from 132 
different datasets, we combine the PRS instead of the SNP weights. The PRS of 133 
individuals in the testing sample is a linear combination of PRS based on the SNP 134 
weights fine-tuned in different fine-tuning samples: 135 

���� � ∑
 �

�, �
���

�, �
     136 

where ���
�, �

 is the PRS of testing individual � calculated using the weight fine-tuned 137 
in the fine-tuning sample �; �

�, �
 is the combination coefficient mainly based on the 138 

reciprocal of the PCA Euclidean distance between the testing individual and median 139 
point of the fine-tuning sample 	� ,�. Note that the input PRS and PCA should be of 140 
the same scale: all the individuals are projected to the same PCA space based on a 141 
global ancestry reference panel and the PRS input ���

�, �
 is the raw PRS regressed 142 

out the top PCs and then standardized. Additionally, we recommend including all 143 
available discovery GWAS for PRS in each PRS model fine-tuned in the single-144 
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ancestry sample to maximize the PRS accuracy, as indicated in Figure 1. 145 
Nevertheless, DiscoDivas is a flexible framework that allows the different sets of 146 
discovery GWAS and fine-tuning method used in different fine-tuning samples. 147 
 148 
In addition to the PCA distances, other factors are included in the model. First, since 149 
some fine-tuning samples are more correlated than others (e.g., EAS and SAS are 150 
more correlated than AFR and EUR), the combination coefficients should be further 151 
modified by these correlations, which can also be extracted from the PCA Euclidean 152 
distances. Second, since PRS fine-tuned in each of the fine-tuning samples may be 153 
of differing qualities (e.g., when the PRS model fine-tuned in different samples are 154 
based on GWAS of different sample sizes or populations), the quality of the PRS 155 
trained with each of the training data will vary and should be taken into account when 156 
combining the PRS. Thus, the combination coefficient  �

�, �
 in the previous formula is 157 

a function of multiple factors: 158 

 ��, � � � � 1
	�,�

 , �, ���   
where 

�

��,�

  is the reciprocal of PCA Euclidean distance between the individual � and 159 

the fine-tuning sample �; � is the matrix of PCA Euclidean distance between fine-160 
tuning samples; �� is the parameter describing the quality of training fine-tuning 161 
samples. A more detailed description of defining  �

�, �
 is given in the supplementary 162 

method section entitled ‘Methodological Details of DiscoDivas’. 163 
 164 
The PRS input for DiscoDivas in this study was the multi-GWAS PRS fine-tuned in 165 
AFR, EAS, EUR, and SAS fine-tuning samples with the conventional method pipeline 166 
as mentioned above (see the following section titled “Overview of multi-population 167 
GWAS PRS model” for more detailed information of the input PRS). The interpolation 168 
of these four PRS is based on the PCA calculated using the 1000 Genomes 169 
reference panel. For most of the PRS analysis conducted in in the present study, the 170 
input PRS of DiscoDivas are based on the same set of discovery GWAS and the 171 
fine-tuning datasets are sufficiently large to generate a stable result. Therefore, we 172 
assumed that all the input PRS can be viewed as of equal quality and their parameter 173 
for PRS quality �� can be viewed as a constant value in the present study. 174 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 14, 2025. ; https://doi.org/10.1101/2024.11.09.24316996doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.09.24316996
http://creativecommons.org/licenses/by-nc/4.0/


5 
 

Overview of multi-population GWAS PRS model 175 

 176 
Figure 1: The workflow of comparing DiscoDivas with the existing method. Left: The ideal situation 177 
for the existing method is to fine-tune a PRS model that contains multiple GWAS with matched fine-178 
tuning data, which is not currently available for many under-represented populations. Right: DiscoDivas 179 
first fine-tunes the PRS in the available ancestries, which are currently AFR, EAS, EUR, and SAS, and 180 
interpolates PRS for diverse ancestry groups based on these fine-tuned PRS. In this plot, POP refers to 181 
any ancestry for which the PRS is to be calculated.  182 

 183 
A common approach for constructing PRS is to include as much genome-wide 184 
association study (GWAS) summary statistic data as possible in the discovery 185 
data5,23,24. The GWAS data is typically then processed by PRS methods that will 186 
adjust the SNP effect size using a set of hyper-parameters. Individual-level data of an 187 
independent fine-tuning sample is used to fine-tune the hyper-parameters across 188 
PRS methods and the combination of the fine-tuned PRS. The resulting PRS is 189 
expected to perform the best in samples of matched ancestry with the fine-tuning 190 
sample.  191 
 192 
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The current approach, as shown in the left panel of Figure 1, is to use the multi-193 
GWAS PRS fine-tuned in the matched sample or the closest approximation when the 194 
matched sample is unavailable. The pipeline of adjusting SNP effect sizes and 195 
combining information from different GWAS varies widely. Without loss of generality, 196 
we built the following pipeline as a representation of the current conventional method: 197 
we first adjusted the SNP effect size of each of the summary statistical GWAS 198 
datasets by a Bayesian method and then chose the most predictive PRS from all the 199 
PRS generated under different hyper-parameters. For simulated GWAS data, we 200 
used PRS-CS25  to adjust the SNP effect size and LDpred226 for real GWAS. Then 201 
we used the fine-tuning data to first select the most predictive PRS based on each 202 
GWAS and then to train the linear combination of the most predictive single-GWAS 203 
PRS with a linear regression model. The final PRS model generated from each of the 204 
fine-tuning datasets is a linear combination of PRS. For the empiric data set, the PRS 205 
were fine-tuned controlling for the following covariates: top 20 PCA, sex, and age. 206 
We used AFR, EAS, EUR, SAS, AMR, and admixed samples to fine-tune the PRS. A 207 
more detailed description of generating PRS weight from the one fine-tuning data 208 
was given in Supplementary method section entitled ‘Methodological Details of PRS 209 
Construction Using a Single Fine-tuning Dataset’.  210 
 211 

Simulated data results 212 

Summary-level GWAS used as discovery data were generated based on simulated 213 
genotype of AFR, EAS, EUR, and SAS population based on 1000 Genomes27 214 
reference as described in the previous publication provided by Zhang et al6. Fine-215 
tuning and testing samples were simulated based on UKBB genotype data.  From 216 
each ancestry group of AFR, EAS, EUR, SAS, and other (OTH) for admixed 217 
individuals whose PCA information was not matched with any of the five ancestries 218 
by 1000 Genome reference definition, 1.3k individuals were used as the training fine-219 
tuning datasets (See supplementary method section entitled ‘Generating data for 220 
simulation analysis’).  The phenotype of discovery, fine-tuning, and testing data were 221 
generated using the same pipeline and parameters: the phenotypes of 100, 300, 222 
1,000, or 10,000 causal SNPs and heritability = 0.6 were simulated. Scenarios of 223 
shared causal SNP with effect size constant across different ancestries and shared 224 
causal SNP with effect size varying across population are both simulated. We used 225 
up to 100,000 simulated individuals from AFR, EAS, EUR, and SAS to generate the 226 
discovery summary statistic GWAS dataset with PLINK228 and left the remaining 227 
samples out for other downstream analyses. 228 
 229 
We primarily focused on the PRS performance in the admixed testing cohort. 230 
DiscoDivas, which is based on PRS fine-tuned in AFR, EAS, EUR, and SAS, was 231 
compared with the conventional PRS fine-tuned in the matched admixed fine-tuning 232 
sample in scenarios of different causal SNP numbers, different discovery GWAS 233 
sample sizes, and different causal SNP distribution across ancestry (See Figure 2) 234 
 235 
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 236 
Figure 2 Relative R2 increase of DiscoDivas over the conventional PRS fine-tuned in a matched 237 
sample when tested in admixed individuals. The x-axis shows the simulated number of causal SNPs. 238 
The horizontal bar shows the mean relative R2 increase and the color of the horizontal bar indicates the 239 
p-value of the paired t-test of DiscoDivas PRS R2 and conventional PRS R2, with cyan being p-240 
value<0.0005, dark blue being p-value<0.05 and grey being p-value>0.05. In panels a, b, and c, the 241 
causal SNP effect sizes are constant across different populations. The annotation texts on the top of 242 
each panel shows the sample size of discovery GWAS of different populations and the distribution of 243 
causal SNP effect sizes.  244 

 245 
Although the comparison between DiscoDivas and the conventional method of fine-246 
tuning PRS with matched ancestry sample in a single test iteration usually showed 247 
no statistical significance due to the small numeric differences, the paired t-test of 248 
DiscoDivas R2 and the conventional PRS R2 over the 20 iterations better clarified 249 
significant differences. When effect sizes of causal SNPs were held constant across 250 
different ancestries (Figure 2 panel a, b, and c), the PRS generated by DiscoDivas 251 
had comparable accuracy with the PRS fine-tuned using matched data. We noticed 252 
that when the sample size of non-European discovery GWAS dropped and the 253 
dataset was relatively more Eurocentric, the advantage of DiscoDivas became less 254 
statistically significant. In Figure 2 panel d, we compared DiscoDivas and the 255 
conventional PRS method of fine-tuning the PRS with matched ancestry in the 256 
scenario where causal SNPs were shared across all populations, but the effect sizes 257 
varied linearly in the PCA space. The advantage of DiscoDivas over conventional 258 
PRS method was more obvious in this scenario than when the effect sizes were 259 
constant across populations (Figure 2 panel a and d), presumably because 260 
personalized PRS combination with DiscoDivas better captured the changing effect 261 
sizes for the admixed testing sample. In all the scenarios tested, the advantage of 262 
DiscoDivas was least statistically significant when the number of causal SNPs was 263 
10,000 but still significant when the number of causal SNPs was 1,000. Notably, the 264 
accuracy of both DiscoDivas and the conventional PRS method was the lowest when 265 
the number of causal SNPs was 10,000 (Supplementary Figure 1), indicating that the 266 
difference of the two PRS methods became less obvious when the input data 267 
became increasingly underpowered.  268 
 269 
When predicting the individuals that are usually classified as single ancestries, i.e. 270 
AFR, EAS, EUR, and SAS, DiscoDivas showed no statistically significant difference 271 
or a slight advantage over the conventional PRS method (Supplementary Figure 2). 272 
When predicting AMR individuals, we used admixed fine-tuning data (OTH) to fine-273 
tune the conventional PRS due to the small sample size of the AMR dataset. The 274 
PRS performance when testing in the AMR dataset was similar as in admixed data 275 
but the statistical significance was weaker, potentially due to the small sample size 276 
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and the high heterogeneity of the AMR dataset. In general, DisocDivas showed its 277 
clearest advantage over the conventional method of fine-tuning PRS with matched 278 
PRS when the testing data and the fine-tuning data for the conventional method were 279 
of different ancestries. 280 
 281 
 282 

Biobank data results 283 

We downloaded publicly available summary statistical data of body-mass index (BMI), 284 
high-density lipoprotein cholesterol (HDL), low-density lipoprotein cholesterol (LDL), 285 
total cholesterol (TC), triglycerides (TG), systolic blood pressure (SBP), diastolic 286 
blood pressure (DBP), coronary artery disease (CAD), and diabetes mellitus (DM2) 287 
and adjusted the SNP effect size using LDpred2 as described previously5.  288 
 289 
For the quantitative traits, we used the fine-tuning samples of AFR, EAS, EUR, SAS, 290 
and admixed (OTH) ancestry to fine-tune the model. The remaining UKBB samples 291 
were used as the testing data. The results for empiric quantitative trait data were 292 
highly aligned with the simulation results (Figure 4): DiscoDivas showed a robust 293 
advantage over the conventional PRS method of fine-tuning PRS with matched or 294 
similar ancestry samples when compared across the 7 traits in the admixed testing 295 
dataset. When predicting AFR, EAS, EUR, and SAS, DiscoDivas and the 296 
conventional PRS method had similar performance. The results of both methods in 297 
AMR testing dataset had large deviations due to the small sample size and greater 298 
genetic heterogeneity of the AMR data.       299 

 300 
 301 

 302 
Figure 3 Relative R2 increase of DiscoDivas over the conventional PRS fine-tuned in a matched 303 
sample. The x-axis shows the population in which the PRS was tested. We used OTH as the fine-tuning 304 
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dataset for the test in both OTH and AMR due to the absence of matched AMR training data. The 305 
horizontal bar shows the mean of relative increase, and the line-type of the bar indicates the p-value of 306 
paired t-test of DiscoDivas PRS R2 and conventional PRS R2, with the solid bar being p-value <0.05 and 307 
dotted bar being p-value>0.05. 308 

For the binary traits coronary artery disease (CAD) and type 2 diabetes (DM2) 309 
(Figure 4), we used the AFR, EAS, EUR, SAS, AMR, and OTH (i.e., unclassified) 310 
samples from AoU as the fine-tuning data and tested in AFR, EAS, EUR, SAS, and 311 
OTH individuals in UKBB and AFR, EAS, EUR, SAS, and AMR individuals in MGBB. 312 
The DiscoDivas PRS were based on the PRS fine-tuned in AFR, EAS, EUR, and 313 
SAS and used the default assumption that the PRS fine-tuned from all the samples 314 
were of similar quality even though the sample sizes of both discovery GWAS and 315 
the fine-tuning samples were not balanced across different ancestries. AMR in UKBB 316 
was excluded because of the small sample size (N=669).  317 
 318 
The PRS fine-tuned in different single samples and the DiscoDivas PRS had similar 319 
performances. It also appeared that some of the fine-tuning sample could be 320 
underpowered: generally, we expect the PRS fine-tuned in the matched sample to 321 
perform the best in the testing samples, but PRS fine-tuned in larger fine-tuning data 322 
performed better than PRS fine-tuned in smaller fine-tuning data in general. For 323 
example, the PRS fine-tuned in EAS AoU data performed worse than other PRS in 324 
both MGBB and UKBB EAS data and had low accuracy in other testing data as well; 325 
the CAD PRS fine-tuned in EUR performed better than all the other PRS in all the 326 
testing data and the effective sample size of EUR CAD fine-tuning data was much 327 
larger than all the other fine-tuning data.  328 
 329 
 330 

 331 
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 332 
Figure 4 PRS performance for coronary artery disease (CAD) and type 2 diabetes (DM2) tested in 333 
UKBB and MGBB. The plot shows OR per SD with the error bar showing 95% CI. The sub-panels show 334 
that population of the testing sample and the different colors show the method for generating the PRS, 335 
either fine-tuning in a single sample or combining the PRS using DiscoDivas. 336 

 337 

Discussion 338 

We propose a new method, DiscoDivas, to interpolate the PRS for diverse, especially 339 
admixed, ancestries with a generalized framework that does not requiring binning 340 
into discrete ancestries. Our results shows that the accuracy of DiscoDivas was 341 
comparable to or greater than the conventional method, i.e. fine-tuning using the 342 
matched population sample when available. In addition, when generating PRS for a 343 
wide range of ancestries, DiscoDivas did not require shifting from several sets of 344 
PRS weights fine-tuned in discrete samples while remaining matched with the 345 
ancestry information. Our method provides a new solution to generate PRS for 346 
underrepresented, generally admixed, populations and as well as generate a 347 
harmonized PRS model across different ancestries. 348 
 349 
The performance of our method depends on the quality of both the discovery GWAS 350 
data and the fine-tuning data. As shown in the simulation test, discovery GWAS 351 
datasets that represent diverse ancestries with sufficient sample size will increase 352 
the accuracy of interpolated PRS generated by DiscoDivas. On the contrary, 353 
Eurocentric and underpowered discovery GWAS datasets would limit the advantage 354 
of DiscoDivas over the conventional PRS method. This might partly explain the 355 
limited advantage of DiscoDivas when predicting binary traits: the discovery GWAS 356 
datasets were highly Eurocentric and the GWAS, especially the non-European 357 
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cohorts, could be more underpowered than quantitative trait GWAS. Furthermore, the 358 
PRS fine-tuned in fine-tuning datasets of insufficient sample size will be overfitted 359 
and cannot be used to fairly evaluate the performance of either the conventional PRS 360 
method or DiscoDivas. We aimed to address this issue by only using traits that 1) 361 
had effective sample sizes larger than 200 in all the fine-tuning samples, and 2) had 362 
high-quality phenotyping data in both the fine-tuning datasets and the testing 363 
datasets, However, Asian populations were largely under-represented in the current 364 
public biobanks: the effective sample size of many binary traits in EAS or SAS can be 365 
as small as <200 even in AoU, the most diverse and large-scale largely publicly-366 
available biobank we had access to. This limited our choice for binary traits to only 367 
CAD and DM2. One additional limitation of our method is that DisoDivas does not 368 
consider the local ancestry information, which improve PRS predictions in various 369 
research24,29,30, especially PRS prediction of newly admixed populations31.  370 
 371 
Our research underscores the notion that non-European populations, both admixed 372 
and singe-ancestry populations, remain largely under-represented in the existing 373 
genetic data. Furthermore, some potential extensions of our method will not become 374 
possible until we collect more diverse and larger datasets. First, our method has not 375 
been designed nor tested for extrapolating data, e.g. generating PRS for continental 376 
African samples based on African American, European, and Asian samples. Even 377 
though it is mathematically plausible to alter our method to extrapolate the PRS, we 378 
lack data such as continental African samples to test the method. Secondly, we 379 
currently only consider the assumption that the most informative genome-wide PRS 380 
weight shifts linearly in the PCA space. Although more complicated PRS interpolation, 381 
e.g. interpolation guided by local ancestry information 24,29,30, pathway-specific32,33 382 
and annotation-guided34 PRS weights and polynomial interpolation35,36, can possibly 383 
further improve the PRS accuracy, training such complicated models would require 384 
collecting much larger and more diverse datasets than the existing data. Finally, 385 
additional biological insights could be revealed by interpolating PRS if genetic data of 386 
all the involved diverse ancestries are of sufficient power. In this case, the differences 387 
between interpolated PRS and the PRS trained using the matched ancestry would 388 
indicate the population- or sample- specific factors absent in the interpolation model, 389 
e.g. population-specific genetic variance37,  complicated population stratification 390 
involving cofounding factors38,39, sample/ancestry-specific modifiers like local 391 
adaptation38, gene x environment interactions40 or other factors that contribute to the 392 
genetic variant frequency or effect size in these samples/ ancestries.  393 
 394 
In conclusion, our method provides a new option to treat the ancestry information as 395 
a continuous variable and interpolate a harmonized PRS for diverse ancestries. 396 
Notably, although our method was developed primarily to calculate PRS when the 397 
matched fine-tuning datasets were unavailable, our research showed that 398 
successfully interpolating PRS required sufficient input data and highlighted the need 399 
to collect genetic data for underrepresented populations. We believe that more 400 
diverse and larger data collected in the coming future will enable the development of 401 
new methods of interpolating PRS and the elucidation of the genetic basis of 402 
complex traits. 403 
 404 
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Methods 405 

Calculation of 1000 Genomes-based PCA and Euclidean 406 

distance 407 

We use 1000 Genomes as the reference panel for PCA calculation. The PCA should 408 
be based on SNPs that are constantly included in as many samples as possible to 409 
enable the use of wide-ranging discovery GWAS and fine-tuning datasets. We 410 
started with the Hapmap3 SNPs for this set of SNPs, which has been widely used as 411 
a subset of SNPs that approximates the feature of genome-wide common SNPs in 412 
many recent studies that involve multi-ancestry prediction 6,25,26,41. We further filtered 413 
for the SNPs likely to be frequently genotyped or imputed with relatively high quality 414 
by most samples based on the 1000 Genome data: Hapmap3 SNPs were first 415 
extracted from the five super-populations, Africans (AFR), Admixed Americans 416 
(AMR), East Asians (EAS), Europeans (EUR) and South Asians (SAS) of the 1000 417 
Genomes. Secondly, SNPs described as the following were excluded: 1) of minor 418 
allele frequency lower than 1% in any of the super-population, 2) of minor allele 419 
frequency lower than 5% in the combined 1000 Genomes data, and 3) in the long-420 
range LD region (25Mb – 35Mb by hg19 assembly on chromosome 6 and 7Mb – 421 
13Mb on chromosome 8). To calculating the PCA loading, the QC’ed SNPs of the 422 
five super-populations were merged then pruned using the PLINK2 function “indep-423 
pairwise” with the parameter “200 100 0.1” - namely the pruning was performed using 424 
window size = 200kb, step size = 100, and phased-hardcall-r2= 0.1. The principal 425 
components and the SNP loadings are calculated using PLINK2 function “pca” with 426 
the parameter “allele-wts” based on the pruned SNPs. 427 
 428 
Based on the protocol suggested on the PLINK2 website (https://www.cog-429 
genomics.org/plink/2.0/score#pca_project), we projected samples for fine-tuning and 430 
PRS testing into the PCA space as describe above by calculation the linear score, i.e. 431 
the sum of alternative alleles weighted by the SNP effect size, using the PLINK2 432 
function “score” with the SNP loadings as effect size. The original online protocol 433 
suggested linear score should be first scaled to standard variation and then rescaled 434 
by multiplying the square root of eigenvalue. However, the actual standard deviation 435 
of a sample in the same PCA space varies with the homogeneity and the ancestry of 436 
the sample. Forcing the PCA of all the samples to have the same standard deviation 437 
will cause inconsistent scaling when the samples can be of different ancestries. 438 
Therefore, we directly calculated the PCA from sum basic linear score based on the 439 
SNP loadings as generated above without any further scaling. The PCA in this study 440 
was the sum basic linear score calculated using the PLINK2 function “score” with the 441 
parameter “cols=+scoresums'”. For large samples whose genotype data were divided 442 
into per-chromosome files, the same commands were used to calculate per-443 
chromosome score and the genome-wide score was the sum of the score of all the 444 
autosomes.  445 
 446 
In DiscoDivas’ default setting, the genetic distance between two individuals is defined 447 
as the Euclidian distance between the PCA of the two individuals. When the genetic 448 
distance calculation involves a sample, we use the median point to present the whole 449 
sample.  450 
 451 
We also explored the relationship between number of PCs included in the calculation 452 
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and the Euclidean distance calculated (Supplementary Figure 9) and the distance 453 
calculated converged when the number of PCs was larger than 6 in our tests. In our 454 
analysis we use the top 10 PCs to calculate the PCs.  455 
 456 

Genetic ancestry reference 457 

We noticed that the protocol of generating top PCs for ancestry references varied in 458 
previous publications. In our pilot test (see supplementary resuts section entitled 459 
‘Pilot test of generating PCA based on less QC’ed SNPs’), we compared the ancestry 460 
reference based on Hapmap3 SNP without any QC and found the result to be highly 461 
correlated. We used the same set of PCs based on QC’ed SNP as described in 462 
section ‘Calculation of 1000 Genomes-based PCA and Euclidean distance’ for both 463 
genetic ancestry reference and Euclidean distance calculation for data consistency. 464 
 465 
Random forest model of 100 trees was trained based on the 1000 Genome data. The 466 
out-of-bag estimate of error rate stabilize at the level of 0.28% after the number of 467 
PCs passed 5. We used the model using the top 6 PCs to infer the genetic ancestry 468 
of UK Biobank individuals and the Mass General Brigham Biobank individuals. The 469 
genetic ancestry of an individual was assigned to any of the five ancestries 470 
represented in the 1000 Genomes reference data, i.e. AFR, AMR, EAS, EUR and 471 
SAS, if the highest probability of an individual belonging to that ancestry passed a 472 
threshold. If none of the ancestries had a probability above the threshold, the 473 
individuals were assigned as other (OTH), which indicated that the individual was of 474 
admixed ancestries. With the consideration of the sample size and confirmed by 475 
visual inspection, the threshold of probability for UK Biobank and the Mass General 476 
Brigham Biobank was 0.9 and 0.8 respectively. 477 
 478 

Data 479 

UK Biobank 480 
The UK Biobank (UKBB) is a volunteer sample of approximately 500,000 adults aged 481 
40-69 upon enrollment living in the United Kingdom recruited since 200642. UKBB 482 
data used in this research were first QC’ed with the following process: Remove the 483 
individuals meeting the criteria that indicate low genotype quality or contamination: 1) 484 
have missing genotype rate larger than 0.02; 2) have genotype-phenotype sex 485 
discordance; 3) are identified as having excess heterozygosity and missing rates; 4) 486 
are identified as putatively carrying sex chromosome configurations that are not 487 
either XX or XY; 5) appeared to have unreasonably large numbers of relatives. From 488 
the remaining samples, individuals from a group of multiple individuals that are closer 489 
than 3rd-degree relatives were retained. 415,402 individuals were left after the QC. 490 
390,037 were self-identified as EUR, 7,039 AFR, 8,652 non-Chinese Asian (ASN), 491 
1430 Chinese (CHN) and 6572 unknown or not answered, and 1672 as admixed 492 
(MIX). The genetic ancestry referred from PC was largely correlated with the self-493 
reported race, with 385,038 EUR, 7,450 AFR, 8,298 SAS, 2,163 EAS, 669 AMR and 494 
11,784 other (OTH) or admixed.  495 
 496 
In the PRS test, UKBB samples were grouped by their genetic ancestry (see section 497 
‘Genetic ancestry reference’). The fine-tuning datasets for the single-ancestry 498 
populations (AFR, EAS, EUR and SAS) were based on 1.3k randomly selected 499 
samples whose self-report ancestry matched with their genetic ancestry and the 500 
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probability of random forest = 1. The fine-tuning dataset for admixed ancestry (OTH) 501 
is 1.3k randomly selected samples of individuals of OTH genetic ancestry (see 502 
Supplementary Figure 3). AMR didn’t have its corresponding fine-tuning dataset due 503 
to its small sample size and we used OTH fine-tuning datasets as a proxy since the 504 
two genetic ancestries had similar PCA. The remaining individuals of UKBB were 505 
used as testing data.  506 
 507 
The quantitative trait of the UKBB samples was the measurement collected after the 508 
participants enrolled. The lipid trait measurement was adjusted for cholesterol-509 
lowering medication by dividing TC by 0.8 and LDL by 0.7 as before43. Cases of 510 
coronary artery diseases (CAD) are defined using the definition described 511 
previously24; Cases of diabetes are defined as ever report the following code: E10X, 512 
E11X, E12X, E13X, and E14X where X can be any integer between 0 to 9 in the 513 
ICD10 diagnosis code.  514 
 515 
UKBB participants provided consent in accordance with the primary IRB protocol, 516 
and the Massachusetts General Hospital IRB approved the present secondary data 517 
analysis of the UKBB data under UKBB application 7089.  518 
 519 

Mass General Brigham Biobank 520 
The Mass General Brigham Biobank (MGBB) is a volunteer sample of approximately 521 
142,000 participants receiving medical care in the Mass General Brigham health care 522 
system recruited starting 2010. 53,306 MGBB participants underwent genotyping via 523 
Illumina Global Screening Array (Illumina, CA). MGBB genotype data was quality 524 
controlled, imputed and assigned one of the populations AFR, AMR, EAS, EUR, SAS 525 
using K-nearest neighbor model as described previously44. The phenotype data of 526 
CAD and diabetes are drawn from PheCodes based on International Classification of 527 
Diseases codes, Nineth (ICD9)110 and Tenth (ICD10) revisions, from the EHR as 528 
described previously32. MGBB participants provided consent in accordance with the 529 
primary IRB protocol, and the Massachusetts General Hospital IRB approved the 530 
present secondary data analysis. 531 
 532 

All of Us Research Program 533 
The All of Us (AoU) Research Program is a volunteer sample of more than one 534 
million United States residents recruited starting 2016. AoU aims to engage 535 
communities previously underrepresented in biomedical research in the United 536 
States and beyond45. In the present analysis, genetic data from the v7 245,394 537 
participants who were genotyped using short read whole genome sequencing 538 
(srWGS) data.  Hapmap3 SNPs were extracted for the callset with the threshold of 539 
(AF) > 1% or population-specific allele count (AC) > 100. Related individuals were 540 
pruned according to the information provided by AoU. Due to the inclusive data 541 
collection, we didn’t excluded individuals whose self-report gender were different with 542 
their assigned sex at birth and used the combination of self-report gender and 543 
assigned sex as one of the covariates. The predicted ancestry information was 544 
provided by AoU46. The phenotypes were defined as described in previous research 545 
by Buu et al47. 546 
 547 

Simulated data 548 
The simulated GWAS summary statistics were based on simulated genotype data 549 
based on 1000 Genomes reference6. Only Hapmap3 SNPs were included in the 550 
simulation. Causal SNPs were randomly selected from the Hapmap3 SNPs and 551 
simulated per allele effect size following normal distribution. The ladder of causal 552 
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SNP number was 100, 1000, 3000, 10000 and the heritability in each of the 553 
population was 0.6. The causal SNP effect size was simulated as either constant 554 
across populations or varying linearly in the PCA space. 555 
The phenotype is the sum of genetic burden and non-genetic factor:  556 

���������� �  
 ����,�  ��  

where the ����������  and ��  were the phenotype and non-genetic factor of individual 557 
�; �� was the effect size of causal SNP �, and ��,�  was the number of risk alleles of 558 
individual � in SNP �.  559 
 560 
We used the PLINK228 to calculate the genetic burden based on the simulated causal 561 
SNPs and effect size and used R to simulate the non-genetic factors, scale the 562 
genetic burden and non-genetic factor, and generate a phenotype of heritability set to 563 
be 0.6. We used up to 100k individuals per population to generate the summary 564 
statistical GWAS as the discovery data for the PRS test. The rest simulated data 565 
were left out for the fine-tuning and testing datasets. The summary statistics GWAS 566 
were generated based on the simulated genotype data and phenotype data using the 567 
‘--glm’ function of PLINK2. 568 
 569 
In addition to the completely simulated data, we generated more realistic fine-tuning 570 
and testing datasets of a wider ancestry range by using the QC’ed genotype data 571 
from UKBB described in the section ‘Biobank data.’ We simulated the genetic burden, 572 
non-genetic factor, and phenotype based on the real-life UKBB genotype data with 573 
the same pipeline and parameters. A more detailed description of simulating the data 574 
were given in section ‘Generating data for simulation analysis’ in the supplementary 575 
text.  576 
 577 
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