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Abstract: Clean water and the increased use of renewable energy are considered to be two of the main
goals in the effort to achieve a sustainable living environment. The fulfillment of these goals may
include the use of solar-driven photocatalytic processes that are found to be quite effective in water
purification, as well as hydrogen generation. H2 production by water splitting and photocatalytic
degradation of organic pollutants in water both rely on the formation of electron/hole (e−/h+) pairs at
a semiconducting material upon its excitation by light with sufficient photon energy. Most of the
photocatalytic studies involve the use of TiO2 and well-suited model compounds, either as sacrificial
agents or pollutants. However, the wider application of this technology requires the harvesting of a
broader spectrum of solar irradiation and the suppression of the recombination of photogenerated
charge carriers. These limitations can be overcome by the use of different strategies, among which
the focus is put on the creation of heterojunctions with another narrow bandgap semiconductor,
which can provide high response in the visible light region. In this review paper, we report the
most recent advances in the application of TiO2 based heterojunction (semiconductor-semiconductor)
composites for photocatalytic water treatment and water splitting. This review article is subdivided
into two major parts, namely Photocatalytic water treatment and Photocatalytic water splitting,
to give a thorough examination of all achieved progress. The first part provides an overview on
photocatalytic degradation mechanism principles, followed by the most recent applications for
photocatalytic degradation and mineralization of contaminants of emerging concern (CEC), such as
pharmaceuticals and pesticides with a critical insight into removal mechanism, while the second part
focuses on fabrication of TiO2-based heterojunctions with carbon-based materials, transition metal
oxides, transition metal chalcogenides, and multiple composites that were made of three or more
semiconductor materials for photocatalytic water splitting.

Keywords: TiO2 heterojunction; semiconductor coupling; water treatment; photocatalytic degradation;
photocatalytic water splitting; H2 production
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1. Introduction

Nowadays, accessible clean water and energy resources are among the highest priorities for
sustainable economic growth and societal wellbeing. Water supports life and is a crucial resource for
humanity; it is also at the core of natural ecosystems and climate regulation. Water stress is primarily a
water quantity issue, but it also occurs as a consequence of a deterioration of water quality and a lack of
appropriate water management [1]. Environmental problems that are associated with water pollution
have been a persistently important issue over recent decades, correlated negatively with the health
and ecosystem. Activities of the Water JPI’s Strategic Research and Innovation Agenda focus on, among
others, new materials and processes, energy efficiency, thus supporting key enabling technologies for
clean water and wastewater treatment [2]. EU Energy Strategies 2020, 2030, and 2050 set increasing
standards for the reduction of greenhouse gas emissions by 20, 40, and 80–95%, respectively, which is
achievable by significant investments in the development and application of new low-carbon and
renewable energy technologies [3]. In light of increased energy demands and the need to reduce
greenhouse gas emissions, the focus has been turned from the fossil fuels toward renewable energy
resources and vectors: solar, wind, tides, waves, geothermal, biomass, biofuels, and hydrogen (H2) [4].
Alternative fuels are required to have as small environmental footprint, and be storable and economical,
whereas H2 satisfies the first two conditions. The research over the last decades has been focused on
fulfilling the third requirement, which triggers its production by solar energy, a largely available and
intrinsically renewable energy resource, through water splitting. It should be emphasized that H2, as a
fuel, possesses higher heat content than gasoline (per unit mass) [5].

The pioneering work of Fujishima and Honda [6] for H2 production by photoelectrochemical water
splitting while using TiO2 photoanode and Pt cathode opened the potential possibilities for generating
this energy vector, i.e., fuel, directly from water and solar energy. Works by Bard and Frank in 1977 [7],
exhibiting photocatalytic oxidation of CN to CNO−, and by Ollis et al. [8], studying the photocatalytic
degradation of organic contaminants in water, practically opened a new research field within new
water purification technologies. H2 production by water splitting and photocatalytic degradation of
organic pollutants in water both rely on the formation of electron/hole (e-/h+) pairs at a semiconducting
material upon its excitation by light with sufficient photon energy [9–12]. These processes, which can
be conducted under environmentally friendly and mild conditions, are economically viable, possessing
a potential of becoming effective methods to produce clean energy and water, owing to their low-cost,
long-term stability, and usage of solar energy [13].

A well-suited model catalyst for photocatalytic studies is TiO2. Its wide application has been
promoted, due to: (i) high photocatalytic activity under the incident photon wavelength of 300 < λ <3
90 nm and (ii) multi-faceted functional properties, such as chemical and thermal stability, resistance to
chemical breakdown, and attractive mechanical properties [14,15]. However, harvesting a broader
spectrum of solar irradiation involves the lowering of the band gap of semiconducting material, whilst
inhibiting the recombination of photogenerated charges. Strategies, including doping with non-metals,
incorporation or deposition of noble metals (ions), and material engineering solutions that are based on
composites formation using transition metals, carbon nanotubes, dye sensitizers, conductive polymers,
graphene (oxide), and semiconducting materials, present viable solutions for set tasks [9,10,15,16].
It is of great importance to combine TiO2 with narrow band gap semiconductors with visible light
response to obtain an effective composite for photocatalytic applications. The obtained synergistic
effect between two or more semiconductors will then promote efficient charge separation, sufficient
visible light response, and high photocatalytic performance. With the dramatic increase of the papers
published related to these topics, a comprehensive review is desirable, providing a general overview on
processes occurring while using TiO2-based heterojunction (semiconductor) systems for photocatalytic
water purification and water splitting. Despite reviews focusing on TiO2–based semiconductor
composites [17,18], those focusing on the removal of contaminants of emerging concern (CECs) are
quite scarce. In addition, this review also summarizes TiO2-based nanocomposites for photocatalytic
water splitting providing insight into effectiveness of a variety of materials groups representing the
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alternative for replacing the utilization of expensive, toxic, and non-abundant materials. The first
part of the review focuses on TiO2–based heterojunction (semiconductor-semiconductor coupling)
composites, being selected on the basis of band gap energies suitable to make heterojunctions with
documented applications providing promising results in CECs treatment and stability of prepared
materials, and also respecting their most recent applications for the photocatalytic degradation of
CECs (i.e., demonstrating the current focus within the field), such as pharmaceuticals and pesticides,
with critical insight into the pollutants removal mechanism. The second part targets the most recent
achievements in the field of fabrication of TiO2-based heterojunctions with carbon based materials,
transition metal oxides, transition metal chalcogenides, and multiple composites that were made of
three or more semiconductor materials for photocatalytic water splitting.

2. Photocatalytic Water Treatment

The general mechanism of semiconductor photocatalysis (Figure 1) is composed of three main steps:
1. e−/h+ pairs are generated on the surface of the semiconductor under illumination with the required
wavelength or energy; then, 2.) photogenerated charges (i.e., e−/h+) migrate to the surface of the
semiconductor; and lastly, 3.) e− and h+ induce redox reactions on the surface that facilitate destruction
of organic pollutants [19,20]. As stressed above, TiO2 is still the most studied and widely used material
for photocatalytic degradation reactions. However, TiO2 suffers from fast e−/h+ pair recombination and
large band gap (Eg = 3.1–3.2 eV), which can only be excited under UV light irradiation. The strategies
for improving these issues are provided above, while, among them, semiconductor-coupling presents
a viable structure-properties engineering solution for the enhancement of TiO2 photocatalytic activity
due to the simultaneously reduced e−/h+ recombination rate and enhanced visible light absorption [21].
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Figure 1. Photocatalytic reaction mechanism over semiconductor material.

Three main types of heterojunction architectures are reported for TiO2/semiconductor
composites [22]. In Type I heterojunction, the conduction band (CB) of TiO2 is higher in energy
(more negative potential) when compared to the CB of semiconductor 2 and the valence band (VB) of
TiO2 is lower in energy (more positive potential) as compared to the VB of semiconductor 2 [23,24].
This leads to the accumulation of photogenerated h+ and e− in semiconductor 2. In Type II heterojunction
(where TiO2 can be semiconductor 1 or 2), the CB of semiconductor 2 is higher than the CB position
of semiconductor 1 leading to facile transfer of photogenerated e− from CB of semiconductor 2 to
CB of semiconductor 1 [25]. Meanwhile, photogenerated h+ in VB of semiconductor 1 can travel
to the VB of semiconductor 2, which facilitates efficient charge separation. Type III heterojunction
(also known as broken gap situations) [26] shares the same charge transfer mechanism, like Type
II heterojunction. In this case, the CB and VB of semiconductor 2 are higher than CB and VB of
TiO2 [27,28]. These heterojunction types are explained in detail in the context of particular material
combinations in the further text and graphically represented through Figures 2, 3 and 5–10.
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2.1. Coupling of TiO2 with Metal Oxides

2.1.1. TiO2/WO3

Tungsten oxide (WO3), which is a visible light active photocatalyst with band gap of 2.4–2.8 eV, is a
promising candidate for photocatalytic applications, due to its oxidative properties, nontoxicity, low cost,
and stability in acidic solutions. In addition, WO3 directly matches the band positions of TiO2 to form
a heterojunction (Type II Heterojunction) [29–32]. Several authors studied the application of TiO2/WO3

composites for the degradation of various CECs; either pesticides or pharmaceuticals (Table 1). Hence,
Macias et al. [24] studied the photocatalytic degradation of herbicide 2,4-dichlorophenoxyacetic acid
(2,4-D) while using TiO2/WO3 composites under natural sunlight. They reported the rather high
effectiveness of the studied system: 94.6% degradation of 2,4-D and 88.6% mineralization of overall
organic content under two and four hours of natural sunlight irradiation, respectively.

Besides, they studied the mechanisms that are responsible for forming reactive species within the
system and, based on their findings, proposed that, upon forming e−/h+ pairs under solar irradiation,
photogenerated e− from CB of TiO2 are transferred to CB of WO3. Consequently, W6+ was first reduced
to W5+ on WO3 surface, while the W5+ ions are then oxidized to W6+ by adsorbed O2 producing
superoxide anion radical (O2

•-). The photogenerated h+ in VB of WO3 are transferred to VB of TiO2

where they reacted with water (or hydroxyl ions, HO−) forming hydroxyl radicals (•OH) (Figure 2).
The generated reactive oxygen species (ROS) promoted the degradation of 2,4-D and its intermediates,
eventually yielding rather high mineralization extents, while their occurrence in the system was
confirmed through tests with common scavenging agents (e.g., tert-butanol (TB) for •OH, formic acid
(FA) for h+, and p-benzoquinone (BQ) for O2

•-) [24].
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The same composite type was used in the degradation of pharmaceuticals. Hence,
Mugunthan et al. [30] treated diclofenac (DCF) while using TiO2/WO3 composites under 4 hrs
of visible light irradiation and reported a maximum of 92% mineralization of overall organic content.
They also elucidated the DCF degradation pathway by LC/MS measurements, which included C-N
cleavage in the DCF molecule forming benzene-ring based intermediates at the first stage, and
open-ring intermediates at the later stage, which were eventually mineralized. Such findings were
quite similar to other studies employing •OH based processes in the degradation of DCF ([33,34]),
thus implying the important role of formed ROS, primarily •OH, in the case of TiO2/WO3 solar driven
photocatalysis as well. Arce-Sarria et al. [35] studied the performance of TiO2/WO3 composite for the
degradation of another pharmaceutical, Amoxicillin (AMX), in pilot scale reactor, where they achieved
64.4% degradation.
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Table 1. Photocatalytic degradation of contaminants of emerging concern (CECs) over TiO2/WO3 composites.

Catalyst Target
Pollutant

Initial
Concentration/Working

Volume
((mg L−1) /mL)

Experimental Conditions Reaction
Time Removal Extent (%) Reference

TiO2 - WO3
(0.5 g/L )

2,4-dichlorophenoxy
acetic acid

50
(in 250 mL)

Light Source: natural sunlight
11AM-4PM;

pH = 4
120 min 94.6

(TOC = 88.6) [24]

TiO2 - WO3
(0.6 g/L) Diclofenac 25

(in 100 mL)
Light Source: 400 W Metal Halide Lamp;

pH = 5 240 min TOC = 91 [30]

TiO2 - WO3
(0.1 g/L) Amoxicillin 100

(in 25,000 mL)
CPC Reactor with accumulated energy

550,000 J/m2 NA 64.4 (@ 550 kJ/m2) [35]

(WO3/TiO2-C)
(1.0 g/L) Diclofenac 10

(in 300 mL)

Light Source: 1500 W Xenon Lamp with
filter(λ > 290 nm) ;

pH = 7
NA

100 (@ 250 kJ/m2)
(TOC = 82.4 @ 400

kJ/m2)
[32]

(WO3/TiO2-N)
(1.0 g/L) Diclofenac 10

Light Source: 1500 W Xenon Lamp with
ID65 solar filter;

pH = 6.5
NA

100 (@ 250 kJ/m2)
(TOC = 100 @400

kJ/m2)
[31]

NA—not available.
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Besides “pure” TiO2/WO3 composite, several authors studied the performance of its enriched analogues
(Table 1). Hence, Cordero-García et al. [32] studied DCF degradation by WO3/C-doped TiO2 and reported
100% DCF degradation and 82.4% mineralization of the overall organic content under 250 kJ/m2 and 400 kJ/m2

of solar-accumulated energy, respectively. They also stated that the WO3/C-doped TiO2 composite showed
superior photocatalytic activity for the complete degradation and mineralization of DCF when comparing to
the pristine TiO2, used as benchmark material. Based on the findings on elucidated mechanisms within the
studied composite and DCF degradation pathway provided, the authors concluded that the incorporation
of elemental carbon to TiO2 crystal structure promoted the formation of a C2p-hybridized valence band
that lowered the band gap of TiO2 by mixing with O2p orbitals. As a result, upon visible light irradiation,
TiO2 generates e−/h+ pairs, where the photogenerated e− are promoted to the Ti 3d states (VB), thus reducing
Ti4+ to Ti3+. Ti3+ can be easily oxidized by WO3 due to the differences in the reduction potential between
TiO2 (−0.70 V vs NHE) and WO3 (−0.03 V vs NHE). Subsequently, W6+ traps photogenerated e− to form
its reduced state W5+, while the redox reaction occurs further by returning to its original oxidation state
in reaction with adsorbed O2 on the composite catalyst surface (similarly as discussed above in the case
of “pure” TiO2/WO3), thus leading to improved charge separation and the formation of ROS, which
contributed in DCF degradation and mineralization of formed intermediates. The same authors studied the
degradation of DCF with another enhanced WO3/TiO2 composite (N-doped TiO2), and again reported high
degradation and mineralization rates; 100% according to both indicators under 250 kJ/m2 and 400 kJ/m2 of
solar-accumulated energy, respectively [31]. They stressed that the same mechanism that was responsible
for the enhancement of photocatalyst activity in C-doped WO3/TiO2 composite [32] also improved the
performance of N-doped WO3/TiO2 [31].

2.1.2. TiO2/Fe2O3

Iron oxide (α-Fe2O3) is a promising candidate for photocatalytic applications, due to its abundance,
nontoxicity, low cost, stability in aqueous solutions (pH > 3), and narrow band gap (2.0–2.2 eV),
which directly matches the band positions of TiO2 to form heterojunction (Type I Heterojunction) [23,36].

Several authors report the photocatalytic degradation of CECs using TiO2/Fe2O3 composites (Table 2).
Hence, Mirmasoomi et al. [37] used TiO2/Fe2O3 as a catalyst for photocatalytic degradation of Diazinon
(DZ). The authors reported an optimized system with maximum degradation of DZ equal to 95.07% within
45 min. under visible light irradiation. In another study by Moniz et al. [23], photocatalytic degradation
of 2,4-D while using TiO2/Fe2O3 composites was investigated, reporting 100% 2,4-D degradation and
100% mineralization of overall organic content within 2 h and 3 h, respectively, using irradiation from
a 300 W Xenon Lamp. The authors found out that, when compared to the benchmark TiO2 (P25),
the TiO2/Fe2O3 composite shows superior photocatalytic activity. Based on photoluminescence and
photocurrent studies, the TiO2/Fe2O3 composite exhibits enhanced separation of e−/h+ pairs due to the
formed heterojunction. The proposed mechanism was supported with DFT studies, which firstly involved
the transfer of photogenerated e− from TiO2 CB to Fe2O3 CB. In addition, Fe2O3 binds strongly with
(dissolved) oxygen, thus aiding the photoelectron transfer. This in-situ second stage mechanism facilitates
the facile migration of h+ from the VB of TiO2 [23]. Macías et al. [24] studied the same system, TiO2/Fe2O3

composites for photocatalytic degradation of 2,4-D, but while using natural sunlight. The authors reported
96.8% 2,4-D degradation and 90.0% mineralization of overall organic content under two hours and four
hours, respectively. Contrary to the presented mechanism of Moniz et al. [23], Macias et al. [24] proposed
that the incorporation of Fe2O3 causes the photogenerated e− in CB of TiO2 to be transferred to CB of
Fe2O3, promoting the reduction of Fe3+ to Fe2+. Photogenerated h+ in VB of TiO2 are transferred to VB of
Fe2O3, which leads to the regeneration of Fe3+ and avoids the recombination of e−/h+ pairs at TiO2 surface.
In addition, Fe2O3 (Eg = 2.2 eV) can be excited by visible light irradiation producing photogenerated
e−/h+ pairs. Photogenerated e− in CB of Fe2O3 can be transferred to O2 dissolved in water to form O2

•-,
while photogenerated h+ in VB of Fe2O3 can facilitate generation of •OH eventually contributing to the
degradation of present organics [24] (Figure 3). The formation of mentioned ROS and their involvement in
degradation of targeted pollutant was confirmed through common scavenging tests using TB, FA, and BQ.
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Table 2. Photocatalytic degradation of CEC’s over TiO2/Fe2O3 composites.

Catalyst Target Pollutant

Initial
Concentration/Working

Volume
((mg L−1) /mL)

Experimental Conditions Reaction
Time Removal Extent (%) Reference

TiO2/Fe2O3
(0.1 g/L ) Diazinon 10

(in 300 mL)

Light Source: 60 W Philips
Visible lamp;
pH = natural

45 min 95.07 [37]

TiO2/Fe2O3
(10 mg)

2,4-dichlorophenoxy
acetic acid

50
(in 100 mL)

Light Source: 300 W Xenon
Lamp;

pH = natural
120 min

100
(TOC = 100 @ 150

min.)
[23]

TiO2/Fe2O3
(0.5 g/L )

2,4-dichlorophenoxy
acetic acid

50
(in 250 mL)

Light Source: natural sunlight
11AM-4PM;

pH = 4
120 min 96.8

(TOC =90 @ 240 min.) [24]

TiO2/Fe2O3
(70 mg)

Oxytetracycline
Hydrochloride

60
(in 70 mL)

Light Source: 300 W Iodine
Tungsten Lamp;

pH = 5.5
300 min 75.6 [38]

TiO2/Fe2O3
(1.0 g/L) Oxytetracycline 60

Light Source: 300 W Iodine
Tungsten Lamp;

pH = 5.5
300 min ~80 [39]

TiO2/Fe2O3/CNT
(100 mg) Tetracycline 20

(in 100mL)

Light Source: 300 W Xenon
Lamp;

pH = natural
90 min 89.41 [40]

TiO2-coated α-Fe2O3
core-shell
(100 mg)

Tetracycline
Hydrochloride

50
(in 200 mL)

Light Source: 300 W Xenon
Lamp (λ > 420 nm) ;

pH = 5. 45
Oxidant = 120 µL (30% H2O2)

90 min 100 [41]
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The photocatalytic degradation of the pharmaceutical tetracycline (TC) and its derivatives, such as
oxytetracycline (OTC), using TiO2/Fe2O3 materials has also been reported. Hence, it was found out
that, under visible light irradiation (λ = 400–750 nm), α-Fe2O3 was activated and generated e−/h+

pairs, and then photogenerated e− from CB of α-Fe2O3 moved to TiO2 trapping sites for atmospheric
O2 to form O2

•-, which was proven to largely contribute to the degradation of OTC. On the other
hand, the photogenerated h+ from VB of α-Fe2O3 primarily reacted with OH−, resulting in the
generation of •OH, which also contributed to the degradation of OTC. When compared to TiO2

reference material, the TiO2/Fe2O3 composite exhibited an enhanced photocatalytic activity under
visible light due to efficient e−/h+ separation, as stated above [38]. The same authors [38,39] also
studied the degradation mechanism of OTC while using LC/MS TOF analysis and, based on the formed
intermediates, established the OTC degradation pathway, and concluded that •OH mainly mediated
degradation. Besides, “pure” TiO2/Fe2O3, enriched analogue with carbon nanotubes (CNTs) was also
studied (Table 2). Hence, TiO2/Fe2O3/CNTs was used as the catalyst for photocatalytic degradation
of TC, under visible light illumination [40]. It was found that the effectiveness of photocatalytic
degradation of TC within 90 min. treatment using TiO2/Fe2O3/CNTs was almost twice higher when
comparing to that achieved by benchmark TiO2; 89.41% and 47.64%, respectively. The authors attributed
the improved photocatalytic efficiency to the presence of the CNT, which acted as a photogenerated e−

acceptor, thereby suppressing e−/h+ recombination [40]. In another study, the core-shell structured
α-Fe2O3 (with TiO2 shell of around 15 nm) exhibited 100% TC removal in 90 min. [41]. The degradation
improvement was ascribed to the addition of H2O2 in the system, which generated more ROS than by
the common photocatalytic mechanisms described above [41]. Hence, the contribution of H2O2 in such
a system can be described through restraining e−/h+ recombination and increasing HO• generation in
the system, as in Equation (1) [15]:

H2O2 + H+ + e− → HO•+ H2O (1)

2.1.3. TiO2/Spinel Ferrite

Spinel ferrites (MFe2O4) are metal oxides, where M is a divalent ion (i.e., Mg2+, Ca2+, Sr2+, Ni2+,
Zn2+, etc.), serving as promising candidates for photocatalytic applications due to their narrow band
gap range (1.3–2.2 eV) and magnetic properties [42,43]. Spinel ferrites band positions match TiO2,
thus possessing compatibility to form a heterojunction (Type II Heterojunction) [44–47].

The literature provides applications of MFe2O4/TiO2 materials as photocatalysts in treatment
of CECs, as in the case of previously discussed TiO2-based composites, however, it should be
noted that authors within such composites used modified TiO2 (Table 3). Hence, Chen et al. [44]
studied photocatalytic degradation of TC and its derivatives using N-doped TiO2/CaFe2O4/diatomite,
and reported 91.7% removal of TC within 150 min. under visible light irradiation. The authors studied
the composite stability and reusability; the results obtained after five cycles indicates that employed



Materials 2020, 13, 1338 9 of 44

composite is rather stable, enabling 89.2% removal of TC. They also proposed the photocatalytic
mechanism occurring within the composite; the excitation of both N-TiO2 and CaFe2O4 by visible light
leads to the formation of e−/h+ pairs (Figure 4). The photogenerated e− in CB of N-TiO2 can directly
react to adsorbed O2 generating O2

•-, while photogenerated h+ in VB of N-TiO2 directly react with
H2O and OH− producing •OH. Simultaneously, photogenerated e− in CB of CaFe2O4 can undergo
the same mechanism (i.e., reaction with O2 to produce O2

•-). In addition, the formed heterojunction
helps the migration of e− from CB of CaFe2O4 to CB of N-TiO2, and h+ from VB of N-TiO2 to VB
of CaFe2O4 (Figure 4). Such a transfer of charge carriers between the two semiconductors hinders
the recombination process and enhances the photocatalytic activity of the composite, thus leading to
more efficient generation of ROS (O2

•- and •OH) [44]; the existence of formed ROS was confirmed
through scavenging tests while using isopropyl alcohol (IPA), ammonium oxalate (AO), and BQ for
•OH, h+ and O2

•-, respectively. Such behavior is confirmed by studying the degradation pathway of
TC; it was found that the TC intermediates match those that formed through radical driven reactions
undergoing in the first step demethylation and hydroxylation. The second step considered the removal
of functional groups (amino, hydroxyl, and methyl) and further ring opening reactions that are mainly
mediated by photogenerated h+, yielding small fragments that were eventually mineralized [44].
Such a pathway confirmed the dual role of photogenerated h+, as a promotor •OH generation and as
sites for the direct oxidation of adsorbed organics. There are several other studies investigating the
application of different MFe2O4/TiO2 materials (N-doped TiO2/SrFe2O4 diatomite [46]; Ce/N-co-doped
TiO2/NiFe2O4/ diatomite and ZnFe2O4/TiO2 [47]) for the photocatalytic degradation of CECs, such as
TC, OTC, and bisphenol A (BPA). Interestingly, the same mechanisms responsible for charge transfer
and consequent generation of ROS were reported, regardless of the different M type within the spinel
ferrite part of composite and/or TiO2 (non-doped or doped with metal and/or non-metal ions).
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Table 3. Photocatalytic degradation of CEC’s over TiO2/MFe2O4 composites.

Catalyst Target
Pollutant

Initial Concentration/
Working Volume

((mg L−1) /mL)
Experimental Conditions Reaction

Time
Removal

Extent (%) reference

N-TiO2/ CaFe2O4
/diatomite
(2.0 g/L)

Tetracycline 10
(in 200 mL)

Light Source: 150 W Xenon
Lamp with UV light filter 150 min 91.7

(TOC =~80 @ 2h) [44]

N-TiO2/ SrFe2O4
/diatomite
(2.0 g/L)

Tetracycline 10
(in 200 mL)

Light Source: 150 W Xenon
Lamp with UV light filter 150 min 92

(TOC = ~80 @ 2h) [46]

Ce/N co-doped TiO2 /
NiFe2O4 diatomite

(0.5 g/L)
Tetracycline 20

(in 200 mL)
Light Source: 150 W Xenon
Lamp with UV light filter 180 min 98.2

(TOC = ~95) [45]

ZnFe2O4 / TiO2
(1.0 g/L) Bisphenol A 10

(in 200 mL)
Light Source: 300 W Xenon Lamp

pH= 7 30 min 100 [47]
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2.1.4. TiO2/Cu2O

Cu2O, a p-type semiconductor (Eg = 2.0–2.2 eV), is also a good candidate for making heterojunctions
with TiO2 (Type II Heterojunction). Hence, the photocatalytic degradation of various CECs (TC [48],
and tetrabromodiphenyl ethers [49]) using TiO2/Cu2O composite materials was reported under solar
light irradiation (Table 4). Based on the findings in the mentioned studies, the photocatalytic mechanism
of TiO2/Cu2O under solar light illumination involves the activation of both Cu2O and TiO2 to generate
e−/h+ pairs (Figure 5). Photogenerated e− in CB of Cu2O then can migrate to CB of TiO2 and, along with
photogenerated e− in CB of TiO2, react with O2 to form O2•

_. Simultaneously, photogenerated h+ in
VB of Cu2O can be directly involved in the oxidation of adsorbed organics, while photogenerated
h+ in VB of TiO2 can directly oxidize adsorbed organics or react with H2O (i.e., OH−) and generate
•OH. Besides, these h+ can also directly migrate to the VB of Cu2O, thus leading to effective charge
separation that improves the overall photocatalytic activity of the composite [48].Materials 2020, 13, x FOR PEER REVIEW 9 of 39 
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2.1.5. TiO2/Bi2O3

Bi2O3, a semiconductor with band gap range in the visible region (2.5–2.8 eV), is also a good
candidate for making heterojunctions with TiO2 (Type II Heterojunction). Studies including its application
in photocatalytic degradation of CECs (quinalphos [50] and ofloxacin [51]) under solar light irradiation
(Table 5) revealed the occurring photocatalytic mechanism. Both of the composite phases can be
activated under solar irradiation generating e−/h+ pairs (Figure 6). Accordingly, photogenerated h+ in
VB of TiO2 are involved in the production of •OH (through reactions with H2O, i.e., OH−) as of e−/h+

pairs. In addition, h+ in VB of Bi2O3 can be transferred to VB of TiO2 that contributes to the direct
oxidation of adsorbed organics or the generation of •OH [51].Materials 2020, 13, x FOR PEER REVIEW 10 of 39 
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Table 4. Photocatalytic degradation of CEC’s over TiO2/Cu2O composites.

Catalyst Target Pollutant

Initial
Concentration/

Working Volume
((mg L−1) /mL)

Experimental Conditions Reaction
Time

Removal
Extent (%) Reference

Cu2O-TiO2 supported
palygorskite

(1.0 g/L)

Tetracycline
Hydrochloride

30
(in 50mL)

Light Source: 500 Xe Lamp;
pH = 8.7 240 min 88.81 [48]

TiO2-Cu2O film Tetrabromodiphenyl
Ethers

5
(in 100 mL)

Light Source: 300 W Xenon Lamp;
pH = natural

solvent CH3OH:H2O (50:50 v/v)
150 min 90 [49]

Table 5. Photocatalytic degradation of CEC’s over TiO2/Bi2O3 composites.

Catalyst Target Pollutant

Initial
Concentration/

Working Volume
((mg L−1) /mL)

Experimental Conditions Reaction
Time

Removal
Extent (%) Reference

Bi2O3–TiO2
(50 mg) Quinalphos 25

(in 50 mL)
Light Source: Visible light with

1.56µmol/m2/s; pH = 8 100 min 92 [50]

Bi2O3–TiO2
(0.5 g/L) Ofloxacin 25 Light Source: 70.3 K lux;

pH = 7 120 min 92 [51]
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2.2. Coupling of TiO2 with Metal Sulfides

Cadmium sulfide (CdS), a metal sulfide semiconductor with a visible light range band gap
(Eg = 2.1–2.4 eV), has been proven to be compatible with TiO2, due to its higher position of CB than that
of TiO2 (Type II Heterojunction) (Figure 7) [25,52]. However, one should be aware that its application can
lead to adverse effects due to its instability, resulting in the leaching of toxic Cd2+ during treatment [53].
Although its CB and VB positions are thermodynamically favorable for photocatalytic application,
CdS as a photocatalytic material faces serious problems. Next to the above-mentioned promotion
of toxic effects, issues, like poor stability due to photocorrosion and limited separation efficiency of
photogenerated charge carriers, do not speak in favor of CdS application [54,55]. Photocorrosion is not
only related to the photogenerated h+ in semiconductor itself that oxidizes S2– and release Cd2+ to the
solution, but also with newly formed O2, where higher solubility in water leads to more dramatic levels
of photocorrosion of CdS [54,56]. However, CdS was widely investigated in photocatalytic purposes,
even in recent studies that focused on the degradation of CECs (ofloxacin, ciprofloxacin, tetracycline,
and 17α-ethynylestradiol), where it was used in various forms (nano-rods, nano-belts) [25,52,57,58]
(Table 6). Generally, upon visible light illumination, CdS is excited and generates the e−/h+ pair,
where photogenerated e− in CB of CdS migrates to CB of TiO2 and is consumed in reactions with O2 to
produce O2

•-, while h+ remain in the VB of CdS.
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Copper sulfide (CuS), which is another metal sulfide semiconductor with narrow band gap of
2.0 eV, has also been reported to be coupled with TiO2 (Type II Heterojunction) [59,60]. Jiang et al. [59]
reported a 85.5% degradation of enrofloxacin and 27.7% mineralization of overall organic content
using immobilized CuS/TiO2 nanobelts (Table 6). They elucidated the mechanisms occurring in the
composite upon excitation by solar irradiation. Hence, such broad wavelengths excited both composite
phases (CuS and TiO2) and resulted in e−/h+ pairs, while the transfer of charges was analogous, as in
the case of the CdS/TiO2 composite. Photogenerated e− in CB (−0.33 eV) of CuS underwent transfer to
CB (−0.19 eV) of TiO2 and were consumed in reactions with O2 forming O2

•-. Photogenerated h+ in
VB of CuS remained there and present potential active sites for direct degradation of organics that
were adsorbed at the CuS surface, since they cannot be involved in generation of •OH due to too
high energy band positioning. On the other hand, photogenerated h+ in VB of TiO2 can directly react
with adsorbed organics and OH− generating •OH. Chen et.al [60], incorporated Au nanoparticles to
CuS/TiO2 nanobelts structure to enhance the photocatalytic degradation ability of the composite by
capturing e− and, consequently, suppressing the recombination of photogenerated charges. As a result,
they obtained 96% degradation of OTC and 68% mineralization of the overall organic content within
one hour under artificial sunlight illumination. Accordingly, the mechanism of such enriched CuS/TiO2

composite involves, besides the above discussed mechanism, the path considering the transfer of
e− to Au, which leads to enhanced charge separation, thus delaying recombination. In such a case
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scenario, photogenerated h+ would have higher probability to react either with adsorbed organics or
with HO- in order to generate •OH (exclusively those in VB of TiO2), thus contributing to the overall
system efficiency. The involvement of formed ROS into reaction mechanisms for OTC degradation
was confirmed by scavenging tests using TB, AO, and BQ.

Molybdenum disulfide (MoS2), a two-dimensional (2D) layered metal chalcogenide with an
indirect band gap of 1.1 eV and 1.9 eV direct band gap in monolayered form, with unique structure,
low-cost, high thermal stability, and electrostatic integrity, is also a suitable candidate for forming
heterojunction with TiO2 (Type II Heterojunction) [61–63]. Hence, Kumar et al. [64] reported its
application in the photocatalytic degradation of paracetamol. Furthermore, Irandost et al. [61] applied
the modified MoS2/TiO2 composite (they used N,S-co-doped TiO2) in the photocatalytic degradation
of DCF under visible LED lamp irradiation (Table 6). Hence, the synergistic effect of dopants in TiO2

promoted its visible light activity, yielding the formation of e−/h+ pairs in both composite phases.
The mechanism of charge formation and consequent transfer was similar, as described above for
CuS/TiO2, which was excited by solar irradiation. Hence, photogenerated e− in CB of N,S-co doped
TiO2 and CB of MoS2 were able to undergo reactions with O2 forming O2

•-, while h+ in VB of TiO2

promoted •OH formation in reactions with HO- and provide the direct oxidation of adsorbed organics,
while, again, h+ in MoS2 were able to do only the latter. The importance of •OH and h+ in DCF
degradation was confirmed by trapping agents used in scavenging tests: TB and potassium iodide
(KI), respectively.

Tin sulfide (SnS2), which is a metal sulfide semiconductor with band gap of 2.2 eV [65], has also
been reported to be coupled with TiO2 (Type II Heterojunction) [66,67]. Hence, Kovačić et al. [66]
reported improved the degradation of 17β-estradiol (E2), for 51%, using SnS2/TiO2 when comparing
to the benchmark material (P25) TiO2 under solar irradiation. A similar improvement was obtained
by comparing performances of the same materials in the case of DCF degradation [67] (Table 6).
The reason for such improvement relies on the potential of photogenerated e− in CB of SnS2 to migrate
to CB of TiO2, while h+ remained at the VB of SnS2. In such case, the efficient separation of charges is
achieved, thus facilitating the improved redox reactions, enabling effective degradation of adsorbed
organics directly on the surface by h+, in spite of the limited ability of such a composite to generate
•OH. Accordingly, the adsorption has been shown as an important step in the effectiveness of the
SnS2/TiO2 composite. Kovačić et al. [67] utilized DFT calculations to study the surface interaction of
polar compounds (DCF) and non-polar compounds (memantine) at SnS2/TiO2 composite and found
that DCF was more efficiently degraded due to much higher adsorption ability in comparison to
memantine, which is one of its structure feature limitations (amine functionality).

2.3. Coupling of TiO2 with Silver- Based Semiconductors

Silver Phosphate (Ag3PO4), a promising semiconductor with narrow band gap (Eg ≥ 2.4 eV),
showed good photocatalytic performance in the degradation of organic pollutants under visible
light irradiation [68,69]. Namely, Ag3PO4 exhibits a quantum efficiency of up to 90% [68] and it
can absorb wavelengths that are shorter than ~530 nm [69]. Despite the qualities of Ag3PO4 as a
potential photocatalyst, it still suffers from limitations, such as photocorrosion, small but not negligible
solubility in water (Ksp = 1.6 × 10−16), and particle agglomeration upon synthesis [70]. To overcome
these limitations, constructing a heterojunction between Ag3PO4 and a compatible semiconductor
has attracted attention due to the increase in charge separation and production of more ROS [71].
The positions of VB and CB in TiO2 directly match the Ag3PO4 band positions, thus providing the
compatibility to form a heterojunction.

Hence, Wang et al. [72] investigated the performance of TiO2 nanotubes/Ag3PO4 quantum dots
for the degradation of TC under visible light illumination, and reported a high removal rate within a
short treatment period; 90% TC removal within 8 min (Table 7).
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Table 6. Photocatalytic degradation of CEC’s over TiO2 /Metal sulfide composites.

Catalyst Target Pollutant

Initial
Concentration/

Working Volume
((mg L−1)/mL)

Experimental Conditions Reaction
Time

Removal
Extent (%) Reference

CdS –TiO2
(50 mg)

Tetracycline
Hydrochloride

50
(in 50mL)

Light Source: 500 W Xenon
Lamp with filter (λ > 400 nm);

pH = natural
480 min 87.0 [58]

Au-CdS/TiO2 nanowire
(20 mg) Ciprofloxacin 20 Average solar light intensity =

100, 000 60 min 99 [57]

CdS/TiO2
(450 mg) Ofloxacin 10

(in 100mL)

Light Source: 85 W Oreva bulb
with 4150 lumens (λ = 450-650

nm); pH = natural
180 min 86 [52]

CdS nano-rod/TiO2
nano-belt
( 0.50 g/L)

17α-ethynylestradiol 3
(in 10 mL)

Light Source: 500 W Xenon
Lamp with filter (λ > 420 nm);

pH = natural
120 min 92 [25]

CuS/TiO2 nanobelts Enrofloxacin 5
(in 35 mL)

Light Source: 35 W Xenon Lamp;
pH = natural 120 min 85.5

(TOC = 27.7) [59]

Au-CuS-TiO2 nanobelts Oxytetracycline 5
( in 35 mL)

Light Source: 35 W Xenon Lamp;
pH = natural 60 min 96

(TOC = 68) [60]

MoS2 /TiO2
(25 mg/L) Acetaminophen 302 Light Source: Sunlight;

pH = natural 25 min 40 [64]

N,S co-doped TiO2 @MoS2
(0.98g/L) Diclofenac 0.15

( in 100 mL)
Light Source: 60 W LED lamp;

pH = 5.5 150 min 98 [61]

TiO2/SnS2 films 17β-estradiol 1.36
(in 90 mL)

Light Source: 450 W Xenon Arc
Lamp 90 min 51.0 [66]

TiO2/SnS2 films Diclofenac 31.8
( in 90mL)

Light Source: 450 W Xenon Arc
Lamp; pH = 4 60 min 76.21 [67]
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Table 7. Photocatalytic degradation of CEC’s over TiO2/Silver-Based Semiconductor composites.

Catalyst Target
Pollutant

Initial
Concentration/

Working Volume
((mg L−1)/mL)

Experimental Conditions Reaction
Time

Removal
Extent (%) Reference

Ti3+ -doped TiO2
nanotubes/ Ag3PO4

quantum dots
(0.5 g/L)

Tetracycline 10
(NA)

Light Source: 400 W Xenon Lamp;
pH = natural 8 min 90 [72]

TiO2 nanotube/ Ag3PO4
nanoparticles

(40 mg)
Ciprofloxacin 10

(in 40 mL) Light Source: 300 W Xenon Lamp 60 min 85.3 [73]

TiO2-x / Ag3PO4
(100 mg) Bisphenol A 10

(in 100 mL)

Light Source: 500 W Xenon Lamp
with filter (λ = 420 nm);

pH = natural
16 min 95 [74]

Ag2O/ TiO2 quantum dots
(0.25 g/L) Levofloxacin 10

(in 100 mL)

Light Source: 85 W Oreva CFL (4150
lumens)

(λ = 380–700 nm)
pH=4

90 min 81 [27]

Ag2O /TiO2 –zeolite
(50 mg) Norfloxacin 5

(in 100 mL) Light Source: 35 W Xenon Lamp 60 min 98.7
(TOC = 83.1) [28]
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The conventional heterojunction transfer mechanism (Figure 8a) explains that the photogenerated
h+ in the composite would be promoted from the VB of Ag3PO4 to VB of Ti3+-doped TiO2 nanotubes,
where can react with H2O or HO− forming •OH. Simultaneously, photogenerated e− from the
Ti3+-doped TiO2 nanotubes CB can react with O2 forming O2

•- or may transfer to the CB of Ag3PO4.
However, O2

•- are not formed in Ag3PO4, due to the fact that the position of its CB is lower than the
standard reduction potential of O2

•-/O2. Wang et al. [72] concluded that TC was primarily degraded
by O2

•− and photogenerated h+ based on the results of the conducted electron trapping experiments.
Accordingly, they have extended the study by proposing a Z-scheme heterojunction transfer mechanism
(Figure 8b). Under this mechanism, Ag(0) acts a recombination center, “collecting” photogenerated
e− from CB of Ag3PO4, where they undergo recombination with the photogenerated h+ from VB of
Ti3+-doped TiO2 nanotubes. In such case, photogenerated h+ on VB of Ag3PO4 might participate
in the direct oxidation reactions with adsorbed organics, while the photogenerated e− in the CB of
Ti3+-doped TiO2 nanotubes can be involved in forming desired ROS, O2

•-, thus contributing to the
enhanced performance of composite photocatalyst. Du et al. [73] applied analogue TiO2/Ag3PO4

composite employing TiO2 nanotube arrays for the degradation of ciprofloxacin (CIP) under solar
irradiation and reported that 85.3% removal of CIP within 60 min. was facilitated through the
above-mentioned mechanisms. Furthermore, Liu et al. [74] reported 95% degradation of BPA in 16 min.
using TiO2−X/Ag3PO4 under visible light irradiation (Table 7). They reported that both composite
phases, TiO2−X and Ag3PO4, were excited and generated e−/h+ pairs. Hence, photogenerated h+ in VB
of TiO2−X are promoted to VB of Ag3PO4 and contributed to the direct oxidation of adsorbed organics,
similarly as reported in the study by Wang et al. [72]. Photogenerated e− from the CB of Ag3PO4 are
transferred to oxygen vacancies (Vo) of TiO2 and contributed in reactions with adsorbed O2 generating
O2
•- (Figure 9). They also investigated the role of these species in the degradation of BPA and found,

based on monitoring BPA degradation pathway by LC/MS analysis, that intermediates are formed
through two pathways: 1) hydroxylation, through reactions with O2

•- yielding BPA-o-catechol; and,
2) direct oxidation by h+ forming isopropenylphenol and phenol, which was further oxidized by h+

yielding hydroquinone and its dehydrated form benzoquinone.
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Silver oxide (Ag2O), a visible light active photocatalyst with band gap of 1.2 eV, is another silver-based
compound with semiconducting properties. Based on the band positions (VB and CB), it represents
a promising matching candidate to form heterojunctions with TiO2 (Type III Heterojunction). Hence,
photocatalytic degradation of levofloxacin (LEV) using Ag2O/TiO2 quantum dots is reported with the
maximum of 81% LEV degradation within 90 min. of visible light irradiation [27]. Based on the proposed
mechanism under visible light illumination (Figure 10), upon excitation of Ag2O, e−/h+ pairs are formed,
whereas TiO2 is not activated due to its wide band gap. Photogenerated e− in the CB of Ag2O were
transferred to CB of TiO2 and involved in reactions with adsorbed O2 forming O2

•- that participated
in LEV degradation. In addition, photogenerated h+ in VB of Ag2O yielded the formation of •OH,
through reactions with OH−, and participated in LEV degradation as well. The authors employed
LC-MS analysis to elucidate LEV degradation pathway and, as such, establish the role of formed ROS.
Hence, parent compound LEV underwent decarboxylation of the acetyl group; hydroxylation resulting
in the formation of quinolone moieties; demethylation and the subsequent addition of hydrogen atom
generating modifications at piperazine ring; while successive •OH attack resulted in multi-hydroxylated
intermediates. Such findings confirmed the dominant role of •OH in LEV degradation.
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In another study, Gou et al. [28] investigated the application of Ag2O/TiO2/zeolite composite
for solar-driven degradation of norfloxacin (NOR) (Table 7). Besides high effectiveness (98.7% NOR
degradation and 83.1% mineralization of organic content within 60 min. treatment), they elucidated
the NOR degradation pathway, involving in the initial stage decarboxylation, defluorination or
hydroxylation of parent compound (NOR), which confirmed the involvement of both formed ROS
(O2

•- and •OH).

2.4. Coupling of TiO2 with Graphene and Graphene-Like Materials

2.4.1. TiO2/Graphene Composites

Graphene is a zero bandgap semiconductor with a sheet-like structure (i.e., it is considered as a
2D monolayer material) consisting of sp2 hybridized carbon atoms with excellent thermal conductivity,
optical transmittance, high mechanical strength, large surface area (2600 m2/g), and appreciable
charge carrier transport [75]. Under light illumination, it can achieve a reverse saturation state with
high density (˜1013 cm2) of hot electrons above the Fermi level, which can be used as a powerful
agent in redox reactions [76]. It was also found that the incorporation of graphene-based materials
(i.e., graphene oxide and its reduced form; GO and rGO, respectively) with TiO2 might suppress e−/h+

pairs recombination. As such, TiO2/graphene-based composites were employed in the photocatalytic
degradation of CECs (Table 8).
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Table 8. Photocatalytic degradation of CEC’s over TiO2/Semiconductor/graphene composites.

Catalyst Target Pollutant
Initial Concentration/

Working Volume
((mg L−1)/mL)

Experimental Conditions Reaction Time Removal
Extent (%) Reference

TiO2/ WO3/GO
(2 mg) Bisphenol A 20

( in 50 mL)
Light Source: sunlight

Ph = 7 7 h 93.2 [77]

Graphene-WO3 /TiO2
nanotube

(photoelectrodes )
Dimethyl Phthalate 10

(in 40 mL)
Light Source:

150W Xe lamps 120 min 75.9 [78]

TiO2 /ZnO/GO
(0.5 g/L) Bisphenol A 10

(in 50 mL)

Light Source: 18 UV lamps (λ
=365 nm) ;Visible metal halide
lamps(λ = 400–800 nm) pH = 6

120 min. (UV)

180 min. (Vis)

99.7 (UV)

94.9 (Vis)
[79]

TiO2 /ZnO/GO
(0.5 g/L) Ibuprofen 10

(in 50 mL)

Light Source: 18 UV lamps (λ =
365 nm) ;Visible metal halide

lamps(λ = 400–800 nm) pH = 6

120 min. (UV)

180 min. (Vis)

98.5 (UV)

79.6 (Vis)
[79]

TiO2 /ZnO/GO
(0.5 g/L) Flurbiprofen 10

( in 50 mL)

Light Source: 18 UV lamps
(λ=365 nm) ;Visible metal halide

lamps(λ= 400–800 nm) pH= 6

120 min. (UV)

180 min. (Vis)

98.1(UV)

82.2 (Vis)
[79]

ZnFe2O4/rGO/TiO2
(0.1 g) Fulvic Acid 20

(in 50 mL)
Light Source: 300 W (λ=420 nm);

Vol H2O2 = 0.8 mL, pH= 7 180 min 95.4% [80]

TiO2 /MoS2 /rGO
(0.5 g/L) Bisphenol A 10

(in 50 mL)
Light Source:

20 W (λ = 254 nm); 300 min 62.4 [81]

TiO2/BiVO4/rGO Tetracycline 10 µg/L
(NA)

Light Source: 1000 W Xe Lamp (λ
= 420 nm) with filter 120 min 96.2 [82]

TiO2/BiVO4/rGO Chlorotetracycline 10 µg/L
(NA)

Light Source: 1000 W Xe Lamp (λ
= 420 nm) with filter 120 min 97.5 [82]

TiO2/BiVO4/rGO Oxytetracycline 10 µg/L
(NA)

Light Source: 1000 W Xe Lamp (λ
= 420 nm) with filter 120 min 98.7 [82]

TiO2/BiVO4/rGO Doxycycline 10 µg/L
(NA)

Light Source: 1000 W Xe Lamp (λ
= 420 nm) with filter 120 min 99.6 [82]
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2.4.2. TiO2/Semiconductor/Graphene Composites

As described in above sections, the coupling of TiO2 with other semiconductors promotes
efficient charge transfer, eventually yielding improved photocatalytic activity. However, in most cases,
the recombination is still an existing issue that needs to be suppressed. Such a double effect can be
obtained by combining composite concept involving two semiconductors (even “pure” TiO2, which
cannot be active under visible light) with graphene-based materials. For instance, Hao et al. [77]
reported 93.2% degradation of BPA in seven hours of sunlight irradiation while using the TiO2/WO3/GO
composite. The mechanism occurring in such combined composite involved the excitation of both
TiO2 and WO3 under solar light irradiation (TiO2 utilized UV-A fraction), yielding the generation e−/h+

in both semiconductors. Hence, photogenerated e− in CB of TiO2 can directly react with absorbed O2,
producing O2

•−, or it can be transferred to CB of WO3, and then further migrate to GO enhancing charge
separation. Since the amount of adsorbed O2 is quite limited, the tendency of e− to recombine with h+

is rather favored; ~90% of pairs recombine rapidly after excitation [14]. Hence, the charge separation
represents an important factor in the evaluation of photocatalyst performance. Accordingly, in the case
of effective separation and recombination suppression, as in the case with GO, photogenerated h+ in
VB of activated composite components, e.g., of TiO2 and WO3 in the case of TiO2/WO3/GO, can be
involved in a larger amount, either directly or indirectly (through formation of •OH) in the degradation
of present organics. It should be noted that, in composites with two semiconductors, GO could also
act as redox site, attracting photogenerated e− and h+, thus promoting improved surface migration
of charges [77]. Table 8 summarizes several works regarding TiO2/semiconductor/GO composites
employed for the degradation of CECs with analogous mechanism, as mentioned above.

2.4.3. TiO2/g-C3N4

Graphitic carbon nitride (g-C3N4), a two-dimensional, metal-free polymeric π-conjugated
semiconductor material, which has attracted a lot of attention [83–91] since the pioneering work
of Wang et al. [92] in 2009, due to its high stability, visible light response with the bandgap of 2.7 eV
and non-toxicity [93], thus representing a viable candidate to be applied in photocatalytic water
treatment [80], has certainly been one of the most investigated photocatalysts inside carbon-based
nanomaterials. It can be easily synthesized through the direct pyrolysis of nitrogen-rich precursors,
such as melamine, cyanamide, dicyandiamide, and urea, but its practical application and principle
drawback is low specific surface area and high rate of electron-hole recombination [83,94,95].
Therefore, g-C3N4 modification to address shortcomings are needed, e.g., as an excellent candidate to
form heterojunction with TiO2 (Type II Heterojunction), due to their matched band positions (VB and
CB). Hence, several studies employing g-C3N4/TiO2 were focused on photocatalytic degradation of
CECs (Table 9). For instance, Yang et al. [96] reported 88.1% degradation of CIP within 180 min. under
visible light irradiation. The authors ascribed the improved photocatalytic activity to multiple effects:
(i) an increase in the surface area of the composite; (ii) good dispersity of TiO2 in g-C3N4 enabling the
intimately coupling of composite phases; and, (iii) extension of light absorption of the composite due
to low band gap of g-C3N4. Trapping experiments that were conducted revealed that photogenerated
h+ were the major reactive site involved in CIP degradation.

In another study, Li et al. [97] reported the 100% degradation of Acyclovir in 90 min. using
g-C3N4/TiO2 under visible light irradiation. However, after seven hours of continuous irradiation, any
TOC removal was not noticed, implying the formation of rather recalcitrant intermediates with high
resistance to degradation by ROS that formed within the studied system. Trapping experiments for
formed reactive species elucidated that g-C3N4/TiO2 under visible light irradiation only produced h+

and O2
•-, and not the most reactive •OH, explaining limited oxidation capability and none TOC removal

in the case of acyclovir degradation. This significant contribution proves that the use of g-C3N4/TiO2

under visible light irradiation must undergo careful laboratory tests regarding the susceptibility of
targeted organics and their intermediates to degradation by h+ and O2

•- prior to considering real scale
application [97].
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Several studies also showed that the tailoring of composite morphology promotes improved
photocatalytic efficiency. For instance, Yu et al. [98] prepared a mesoporous g-C3N4/TiO2 that was
applied to polysulfone ultrafiltration membranes for sulfamethoxazole (SMX) removal. It was found
that mpg-C3N4/TiO2 exhibit 69% SMX degradation within 30 hours of sunlight irradiation. On the
other hand, TiO2 nanosheets with exposed facets (001) (core)-g-C3N4 (shell) composite exhibit a
higher degradation rate of 2.2 mg/min., which is 36% faster when compared to TiO2 and g-C3N4

physically-mixed composite. The improved effect is ascribed to the close interaction of TiO2 and
g-C3N4 core-shell structure, whereas, in physically mixed composite the formed heterojunction is
random and non-uniform [99].

The use of support materials, such as clays [100] and polymers [101], has been also utilized
for improved adsorption capacity and the stability of g-C3N4/TiO2 composites. For instance,
Chen et al. [101] used g-C3N4–shielding polyester fiber (PET)/TiO2 for photocatalytic degradation
of sulfaquinoxaline and thiamethoxam. Interestingly, the composite removal efficiency for
sulfaquinoxaline reached 97%, after 10 consequent cycles. Furthermore, the introduction of kaolinite
with g-C3N4/TiO2 improved the surface area and adsorption capacity of the composite, leading to 92%
degradation of CIP in 240 min. of visible light irradiation [100].

An additional approach considers doping of metals and non-metals in TiO2, enhancing its light
absorption capacity from UV absorption to visible light absorption. Thus, incorporating doped TiO2

with g-C3N4 structures has also attracted great attention for the degradation of CECs. For instance,
S-Ag/TiO2 @g-C3N4 [102] was employed for the degradation of Triclosan (TS) and yielded 92.3%
degradation of TS within 60 min. under visible light irradiation. Song et al. [103] fabricated a
nanofibrous Co-TiO2 coated with g-C3N4, which was applied to TC removal; the authors reported a
consistent stability of composite photocatalyst during five consecutive cycles.

Besides doping, sensitization with dyes [104] and carbon dots [105] was also found to enhance the
light absorption capacity of g-C3N4/TiO2 composite. For example, D35 organic dye was applied next to
g-C3N4/TiO2 and it was found that the light absorption range was enhanced up to 675 nm [104]. On the
other hand, Su et al. [105] studied the application of C dots decorated/g-C3N4/TiO2 for the degradation
of enrofloxacin under visible light and assigned the observed enhancement to the upconversion
photoluminescence properties of C dots, which convert near-infrared light wavelength into visible light
wavelength [106]. As effective solutions for improving g-C3N4/TiO2 performance, the incorporation of
graphene quantum dots [107] and another semiconductor (i.e., MoS2 [108], WO3 [109]) is also reported;
such systems resulted in enhanced separation of charges and the suppression of their recombination,
thus leading to improved photocatalytic activity in the degradation of CECs.
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Table 9. Photocatalytic degradation of CEC’s over TiO2 /g-C3N4 composites.

Catalyst Target Pollutant
Initial Concentration/

Working Volume
((mg L−1)/mL)

Experimental Conditions Reaction
Time

Removal
Extent (%) Reference

g-C3N4/TiO2
(30 mg) Ciprofloxacin 10

(in 80 mL)

Light Source: 300 W Xe Lamp with
filter (λ > 400 nm)

pH = natural
180 min 88.1 [96]

g-C3N4/TiO2
(30 mg) Acyclovir 10

(in 100 mL)

Light Source: 300 W Xe Lamp with
filter (λ > 420 nm)

pH = natural
90 min 100 [97]

mpg-C3N4/TiO2
(membrane) Sulfamethoxazole 10

(in 50 mL)

Light Source: 300 W Xe Lamp
pH = natural

Flow rate = 13 mL/min.
Membrane flux = 918 L /m2 h

1800 min 69 [98]

TiO2@g-C3N4
core-shell
(100 mg)

Tetracycline 20
(in 100 mL)

Light Source: Xenon Lamp with full
spectrum

pH = natural
9 min (2.2

mg/min.) [99]

g-C3N4 –shielding
polyester/ TiO2

(130 mg)
sulfaquinoxaline 2 × 10−5 mol/L

(30 mL)
Light Source:

Q-Sun Xe-1 test, pH = 7 90 min 97 [101]

g-C3N4 –shielding
polyester/ TiO2

(130 mg)
thiamethoxam 2 × 10−5 mol/L

(30 mL)
Light Source:

Q-Sun Xe-1 test, pH = 7 180 min ~95 [101]

g-C3N4/TiO2/kaolinite
(200 mg) Ciprofloxacin 10

(in 100 mL)

Light Source: Ave. light intensity
=90 mW/cm2 ; Xe Lamp with filter (λ

> 400 nm), pH = natural
240 min 92 [100]

S-Ag/ TiO2 @ g-C3N4
(0.20 g/L) Triclosan 10

(in 100 mL)
Light Source: 250 W Xe Lamp with

filter (λ > 420 nm), pH = 7.8 60 min

92.3
(Detoxification
Efficiency=
64.3± 3.9)

[102]

Co-TiO2 @g-C3N4
(5 mg ; 2 × 2 cm2

membranes)

Tetracycline
Hydrochloride

20
(in 10 mL)

Light Source: 300 W Xe Lamp with
filter (λ > 420 nm), pH = 7 60 min. 90.8 [103]
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Table 9. Cont.

Catalyst Target Pollutant
Initial Concentration/

Working Volume
((mg L−1)/mL)

Experimental Conditions Reaction
Time

Removal
Extent (%) Reference

D35-TiO2/g-C3N4
(0.5g/L) Bisphenol A 10

(in 100 mL)
Light Source: 300 W Metal Halide
pH = 7, Oxidant = 2mM Persulfate 15 min 100

(TOC= 50) [104]

C dots decorated
g-C3N4/ TiO2

(1.0 g/L)
Enrofloxacin 4

( in 50 mL)

Light Source: 350 W Xe Lamp with
filter (λ > 420 nm)

pH = natural
60 min 91.6 [105]

graphene quantum
dots/ Mn-N-TiO2

/g-C3N4
(45 mg)

Ciprofloxacin 10
(in 80 mL)

Light Source: 300 W Xe Lamp
(320 ≤λ ≤ 780 nm), pH = 7 120 min 89 [107]

graphene quantum
dots/ Mn-N-TiO2

/g-C3N4
(45 mg)

Diethyl Phthalate 10
(in 80mL)

Light Source: 300 W Xe Lamp
(320 ≤ λ ≤ 780 nm), pH = 7 120 min 70.4 [107]

MoS2 supported
TiO2/g-C3N4

(30 mg)
Atrazine 10

(in 100 mL)
Light Source: 500 W Xe Lamp

(λ > 420 nm), pH = 7 300 min 86.5 [108]

WO3–TiO2 @g-C3N4 Acetylsalicylate 10
(in 100 mL)

Light Source: 500 W Metal Halide
pH = natural 90 min 98 [109]

WO3–TiO2 @g-C3N4 Methyl-theobromine 10
(in 100 mL)

Light Source: 500 W Metal Halide
pH = natural 90 min 97 [109]
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3. Photocatalytic Water Splitting

Photocatalytic water splitting implies a non-spontaneous process, where the light photons are used
to break the water molecules assisted by a photocatalyst, which generates photoexcited charge carriers,
i.e., e−/h+ pairs, delivering them to the solid-liquid interface, where the redox half-reactions of water
oxidation and reduction are catalyzed [110,111], analogously, as described above for photocatalytic
water treatment. The difference in water splitting is that photogenerated charges (i.e., e− and h+)
need to react with H+ as the electron acceptor adsorbed on the photocatalyst surface or within the
surrounding electrical double layer of the charged particles in order to generate H2 [112], instead of
O2 generating O2

•−, as in photocatalytic water treatment (Figure 1). The donors are the same; H2O,
however, desired the product of such reaction is O2. Figure 11 shows the principal mechanism of
photocatalytic water splitting with the use of TiO2 semiconductor nanoparticle. The VB and CB of
semiconductor or their composites have to have favorable positions in order to enable occurrence of
such reactions.
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Generally speaking, there are two competitive processes that occur inside the photocatalyst and
affect H2 evolution. Similarly as in the case of water purification, first is the charge recombination
process. Such a process reduces the excited charges for >90%, as mentioned above [14]; according
to some authors, even less than 1% of photoexcited charge carriers are able to participate in the
photo-redox reactions forming H2 [111]. Such a negative tendency can be improved by controlling
the recombination rate [75], as also described in detail in the case of the composite materials used for
water purification. The second process is the separation of photogenerated charge carriers that favor
H2 evolution, also mentioned above in the case of water purification, but here with more important
role [111].

The positions of CB and VB define the redox potential of photogenerated charge carriers. A CB
minimum (CBmin) that is smaller than 0 V vs. standard hydrogen electrode (SHE) is required for H2

generation, while the maximum of VB (VBmax) has to be higher than O2/H2O reduction potential,
by definition, in order to enable O2 evolution [112]. As mentioned above, H2 generation through
this process is non-spontaneous, needing the standard Gibbs free energy change of +237 kJ/mol
or 1.23 eV, and to accomplish water splitting under visible light irradiation, the bandgap of the
photocatalyst should be more than 1.23 eV and less than 3.0 eV [111]. The electronic structures of
diverse semiconductors fulfill the necessary conditions for the water splitting reaction, as can be seen
from Figure 12.
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Within the scope of this review are recent achievements in TiO2-heterojunction systems for
photocatalytic H2 generation. It is important to explain the separation mechanisms of charge
carriers that occur in such hybrid materials: (i) Schottky junctions—photogenerated e− migration from
semiconductor to metal surface due to a higher work function of metal than those of semiconductor,
thus forming a Schottky junction (Figure 13a); (ii) Type II heterojunction (represented in details in the
case of water purification) (Figure 13b); and, (iii) p-n Heterojunction—supply of an additional electric
field to accelerate the charge carrier transfer (Figure 13c); and, (iv) Direct Z-scheme heterojunction—e−

in the CB of second semiconductor recombined with the photogenerated h+ in the VB of the first
semiconductor, leaving the photogenerated e− in first semiconductor and the photogenerated h+ in
second semiconductor for photocatalysis (Figure 13d) [112].

The process efficiency is determined through the Quantum yield (QY) and Apparent Quantum Yield
(AQY), as described with Equations (2) and (3) [93]. The overall quantum yield is predicted to be
higher than the apparent one since the number of absorbed photons is usually less than that of incident
photons [111].

QY (%) =
Number o f reacted electrons
Number o f absorbed photons

×100 =
2 x Nubmer o f hydrogen molecules

Number o f absorbed photons
× 10 (2)

AQY (%) =
Nubmer o f reacted electrons
Number o f incident photons

× (3)

H2 generation can also be realized in the presence of sacrificial agents, which, in this case,
serve as electron donors that accept photogenerated h+ of the VB, thus enhancing the separation
of photogenerated charge carriers, which results in higher quantum efficiency [113]. Alcohols are
generally used as a h+ scavenger, and the more α-H atoms the alcohol has, the higher H2 production
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rate is achieved due to more efficient consumption of h+ in the photoreaction. The number of α-H atoms
in the alcohols can serve as the reference when selecting an appropriate scavenger for photocatalytic
reaction [112].Materials 2020, 13, x FOR PEER REVIEW 21 of 39 
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After briefly providing the basic principles to fully understand the H2 evolution through
photocatalytic water splitting, following sections are more focused on the recent achievements
in fabrication and the evaluation of different TiO2-based heterojunctions with different families of
materials, including carbon-based, transition metal oxides and chalcogenides, and multiple-based
composites consisting of three or more semiconductor materials for H2 generation.

3.1. Carbon-Based/TiO2

Among a variety of materials that are selected for the preparation of TiO2-based nanocomposites to
increase their photocatalytic efficiency, nanostructured carbon materials, such as carbon nanotubes and
graphene family nanomaterials (e.g., GO, rGO, g-C3N4), are of particular interest [114]. The advantages,
such as chemical stability, structural diversity with prominent light-absorptive, and electron transport
properties, make them promising materials for use in photocatalytic H2 generation by the water
splitting processes [115].

3.1.1. TiO2/g-C3N4

The advantages and limitations of g-C3N4 are already mentioned above in the case of water
treatment. The limitations referring to low light utilization efficiency and insufficient surface area can
be easily broken by the preparation of 2D nanomaterials, especially g-C3N4 nanosheets (CNNS) [84].
The self-assembly method of construction 2D/2D TiO2/CNNS heterojunction composites achieved a
hydrogen evolution rate (HER) of 350 µmol/h/g under visible light, in comparison with the produced
H2 with the use of pure TiO2 nanosheets (20 µmol/h/g) and g-C3N4 nanosheets (130 µmol/h/g) [85].

Liu et al. recorded another use of CNNS [84], who synthesized partially reduced TiO2−x

through NaBH4 treatments with the formation of an additional mid-gap band state (Ti3+ and oxygen
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vacancies—Ovs) to extend absorption edge. The implementation of novel design tactic in the form of a
protective carbon layer that was coated onto TiO2−x/CNNS hetero-junction photocatalyst enhanced
the photocatalytic efficiency. The H2 evolution was tested under visible and simulated solar light
with the use of triethanolamine (TEOA) as a sacrificial agent and Pt as a co-catalyst. In the case
of visible light irradiation, the highest HER was 417.24 µmol/h/g, while, under AM 1.5 irradiation,
the obtained amount was 1830.93 µmol/h/g. The enhanced photocatalytic activity that was ascribed
to the formation of Ti3+ defects was also noticed with the use of g-C3N4/Ti3+-doped TiO2 Z-scheme
system that was synthesized via the polycondensation of urea with TiO2, followed by hydrogenation
treatment [86]. UV-Vis diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy (XPS), and
electron paramagnetic resonance (EPR) have shown that hydrogenation treatment conferred Ti3+ defect
states that were below the CBmin of TiO2 and improved the visible light absorption of the composite
with the obtained HER of 1938 µmol/h/g under solar light.

Although special efforts are being made to synthesize noble-metal free nanocomposites, there is
still widespread use of Pt as a co-catalyst in H2 evolution reactions. Except for the already mentioned
TiO2−x/CNNS photocatalyst [84], TiO2/g-C3N4 composites with the use of photodeposited Pt as
co-catalyst reached HER of 4128 µmol/h/g [87] and 1041 µmol/h/g [83] under solar and visible light
irradiation, respectively. Pan et al. [88] also exhibited a high HER of 13800 µmol/h/m2 by the use of
Pt as a co-catalyst with g-C3N4/TiO2 nanofilm. Enhanced activity is also attributed to the use of a
magnetic-driven rotating frame, which was developed to enhance the mass transfer process during the
photocatalytic reaction.

The charge transfer efficiency between TiO2/g-C3N4 composite can be enhanced by the doping of
different heteroatoms, like C and K atoms. Hence, Zou et al. [89] synthesized C-doped TiO2@g-C3N4

core-shell hollow nanospheres with enhanced visible-light photocatalytic activity for H2 evolution of
35.6 µmol/h/g, which was 22.7 and 10.5 times higher than that of C-TiO2 and g-C3N4. The structure of
TiO2 hollow spheres resulted in the reflection of light within the interior cavity, thus increasing the
utilization of the light energy. Ma et al. [90] prepared a series of K intercalated g-C3N4 modified TiO2

nanobelts with enhanced light absorption, transfer efficiency, and H2 evolution efficiency of 50 µmol/h,
which is 6.4 times greater than that of pristine g-C3N4. The use of carbon atoms in the form of carbon
quantum dots (CQDs) as electron reservoirs improves the efficiency of separating the photogenerated
charge carriers. CQDs present an important class of carbon materials since their discovery in 2004 by
Xu et al. [116], with varying sizes in the range of 1–10 nm. They are good materials for photocatalytic
applications due to features, like superiority in chemical stability and low toxicity [117]. Pan et al.
synthesized he 2D carbon quantum dots modified porous g-C3N4/TiO2 nano-heterojunction [91] and
reached 6.497 µmol/h/g of produced H2 with the full spectrum absorption.

3.1.2. TiO2-G/GO/rGO

Following above-mentioned hot-electron mechanism, which can promote redox reactions, Lu et al.
explored 3D graphene materials (3DG) coupled with TiO2 [76] for efficient photocatalytic H2 production
under UV-visible light. TiO2/3DG with a 5 wt.% graphene loading that was annealed at 650 ◦C exhibited
the highest H2 evolution rate of 1205 µmol/h/g.

Yi et al. [118] synthesized a composite in which TiO2 nanobelts were supported by N-doped
graphene (NG) coordinated with a single Co atom to replace noble metals with a cost-effective
photocatalyst. Under simulated solar irradiation (Figure 14), e−/h+ pairs are formed. The transfer of
photogenerated e− from the CB of TiO2 to Co-NG was energetically favorable since the Fermi energy
level of graphene (−0.08V vs. NHE) is lower than the CB of TiO2 (−0.39 V vs. NHE). NG, with a large
specific surface area, acted as “freeway” for e− transportation, delivering e− from TiO2 to Co single-atom,
where they were trapped catalyzing H+ reduction to form H2 due to lower the overpotential needed
for Co-NG when comparing to that of NG. Co-NG/TiO2 showed HER of 677.44 µmol/h/g under the
illumination of AM 1.5 G simulated sunlight.
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GO/TiO2 nanocomposites have recently been used for H2 production via photocatalytic water
splitting under visible light through the formation of Ti-O-C bonding by unpaired π electron of GO
with TiO2 surface [114,119]. GO acts as an e− acceptor, promoting the separation of the photogenerated
e−/h+ pairs in TiO2. These nanocomposites can be synthesized by photo assisted reduction via mixing
or sonication and by sol-gel [114]. Hernández-Majalca et al. [114] enhanced the synthesis for the
GO-TiO2 nanocomposite using photoassisted anchoring and modifying GO oxidation method through
the use of microwaves. The obtained nonporous product had a specific surface area of 45 m2/g and
absorption onset of 477 nm, which made it active under visible light. Finally, the photocatalytic
activity of the nanocomposite was enhanced towards the production of H2, reaching 6500 mol/g in 8 h,
which was much higher amount when comparing to that obtained by TiO2-P25 (460 mol/g) at the same
irradiation time.

The reduced form of GO, rGO, is a two-dimensional carbon material with the role of an electron
mediator that is much superior in chemical stability and morphological diversity than GO [120].
Iwase et al. published the very first report using rGO as a e− mediator in 2011 [121]. Since then,
a number of published works were recorded for the use of rGO-based composites in photocatalytic
H2 production [75,122,123]. Recent achievements in the synthesis of TiO2/rGO composites for the
purpose of H2 generation include work from Reedy et al. [75] and Samal et al. [122]. They obtained
rather high HERs while using TiO2/rGO composites under solar and visible light: 24880 µmol/h/g and
2700 µmol/h/g of produced H2, respectively. Ida et al. undertook further investigation on TiO2/rGO
composites [123], managing to enhance the photocatalytic activity of the obtained composite by the
simultaneous doping of nitrogen on TiO2 and rGO. The following values for the HER are obtained:
TiO2 (1585 µmol/h/g) < N-TiO2 (6179 µmol/h/g) < TiO2/RGO (12244 µmol/h/g) < N-TiO2/N-RGO
(15,028 µmol/h/g).

3.1.3. TiO2/CNT

Recently, TiO2/carbon nanotubes (CNT) have been of great interest due to their high-quality active
sites, large specific surface area, and retention of charge recombination, where CNTs can act as a p-type
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semiconductor, having a role as a powerful electron sink [119]. The coupling of CNT with TiO2 forms
an advanced nanocomposite with enhanced quantum efficiency that forms heterojunction acting as
an impurity by forming Ti-O-C or Ti-C defects that enable visible light absorption and, consequently,
the creation of e−/h+ pairs and hindering e−/h+ recombination [124]. CNTs, such as single-wall carbon
nanotubes (SWCNTs) and multiwall carbon nanotubes (MWCNTs), have attracted much interest due to
their unique chemical, electrical, and optical properties [125]. Olowoyo et al. [124] prepared a series of
TiO2 nanoparticles that were modified with MWCNTs by a combined sonothermal-hydrothermal method.
The synthesized photocatalysts were examined for water splitting under batch conditions at different pH
ranges. The highest rate of H2 yield, amounting 69.41 µmol/h/g, was obtained using 2 wt.% CNT-TiO2

under visible light at pH 2. Hence, the acidic medium improved the photocatalytic feasibility of the
system due to a higher concentration of H+ ions, serving as the reactants, thus increasing the reaction rate.

Bellamkonda et al. [126] used a different approach in synthesizing CNT-G-TiO2 composites and
prepared nanocomposites via the solution-based method, in which nanocrystalline anatase TiO2 was
grown onto graphene nanosheets and carbon nanotubes. Spectroscopic and photocatalytic studies
revealed that graphene acts as an electron reservoir, while the role of CNTs is to prevent the restacking
of graphene nanosheets and provide additional electron transport channels, thereby suppressing the
recombination rate of e−/h+ pairs in the obtained composite. The combination of all these factors
resulted in increasing the HER from 19000 µmol/h/g (obtained by anatase TiO2) to 22000 µmol/h/g
(obtained by G-TiO2), and finally to 29000 µmol/h/g (obtained by CNT-G-TiO2), which is 8-fold higher
than obtained by the commercial TiO2 (Degussa P25).

The photocatalytic performance of TiO2 under visible light can be promoted by coupling both
MWCNTs and SWCNTs, as presented by Umer et al. [125]. Such an effect occurs due to their
dual natural behavior, such as reducing rapid recombination of e−/h+ pairs and providing support
in harvesting visible light. The maximum H2 evolution rate of 5486 µmol/h/g was achieved over
MWCNT/TiO2/SWCNT, which is 1.24– and 1.42–fold higher than using single CTN-TiO2 composites
(SWCNT/TiO2 and MWCNT/TiO2, respectively).

3.2. Transition-Metal Oxides/TiO2

Excellent chemical stability has opened the possibility of the application of transition metal oxides
(TMO) in the field of clean energy production. The above displayed Figure 12 contains main TMOs,
like p-type (CuO, V2O5) and n-type (TiO2, WO3, MoO3, ZnO, Fe2O3) semiconductors that are used in
photocatalytic H2 production with pertaining VB and CB energy levels. Visible-light driven TMOs with
narrow band gaps are highly desired. The most used materials within this group, such as CuO, Fe2O3,
and WO3, have the bandgap energies that allow for them to be active in the visible light region, but the low
energy levels of CB position disable them from consuming photoinduced electrons in reactions yielding
H2. By changing the morphologies of desired components and co-doping with different elements, their
CB and VB edges can be shifted toward a H2 reduction and O2 oxidation potential [127].

Some TMOs, specifically WO3, have been loaded with a different co-catalyst, like Rh, to effectively
produce H2 from water, to control the desired morphology in the form of nanorods, nanotubes, and
nanowires. Camposeco et al. [128] focused on the use of Rh-WO3 photocatalyst that was supported on
TiO2 nanotubes (Rh-WO3/NT) for H2 production via the water splitting process. WO3 alone cannot take
part in H2 production since the CB energy level of WO3 is lower than H2 reduction potential. However,
by loading with Rh nanoparticles, the enhancement in H2 production was noticed. An analysis of
energy band levels for the VB and CB that were determined by UV-Vis results and XPS spectra showed
that the presence of WO3 and Rh in the titanate nanotubes simultaneously shift the VBmax and CBmin,
thus reducing the bandgap of titanate nanotubes. 0.5 wt.% Rh– 3 wt.% WO3/NT nanocomposite
under visible light irradiation yielded HER of 87 µmol/h, while 3 wt.% WO3/NT showed much lower
effectiveness (only 13 µmol/h).

In another work, Ren et al. [129] constructed cooperative Schottky and p-n (SPN) heterojunction by
forming a NiO/Ni/TiO2 heterostructure that showed a narrower band gap, higher photocurrent density,
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and ability to absorb light in the visible region. High HER is obtained for the observed composite,
amounting 4653 µmol/h/g, which is approx. 2.3 times higher than obtained with NiO/TiO2 with a p-n
junction (2059 µmol/h/g), under visible light irradiation and by the use of Pt as a co-catalyst.

A representative example of TMOs is also hematite (Fe2O3), already referred above to as promising
visible light active photocatalyst for water treatment. The coupling of Fe2O3 with TiO2 efficiently
inhibits the recombination of photogenerated charge carriers and enhances the absorption of solar
light [130]. By the use of thermal decomposition of FeCl3 and TiCl4 as precursors, Bhagya et al. [113]
synthesized the Fe2O3-TiO2 composite and investigated its photocatalytic activity for H2 production
under the influence of different proton sources. Besides focusing on the use of TMOs for improving
photocatalytic efficiency, this work also highlights the influence of different sacrificial agents as electron
donors that consume photogenerated h+, yielding H2 production. Under simulated solar irradiation,
a very high H2 rate of 880 µmol/h, with an apparent quantum efficiency of 19.39%, is achieved while
using Fe2O3-TiO2 and diethylamine hydrogen chloride (DAH), which is much higher than that obtained
in the case without DAH (323 µmol/h). Madhumitha et al. [130] also explored the influence of different
sacrificial reagents on H2 production under a visible light source. With the optimization of parameters,
i.e., catalyst dosage, flow rate, incident light irradiation, and type of sacrificial agent, they achieved
the maximum of HER, amounting 2700 µmol/h. The increase in photoactivity was attributed to the
effective charge transfer from TiO2 to Fe2O3 and the use of EDTA, which suppressed the recombination
of photogenerated charge carriers.

Easy preparation, environmental friendliness, and good re-utilization enable the wide use of
ZnO/TiO2-based composites. Xie et al. [131] achieved high rates of H2 evolution while using ZnO/TiO2

composites with Pt as a co-catalyst. Under visible light irradiation, 2150 µmol/h/g of H2 is achieved.
Additionally, high carrier mobility can be achieved by the use of ZnO in the form of quantum dots (QDs),
which presents ideal heavy-metal free “green” modification of TiO2 composites. Chen et al. obtained the
fabrication of ZnO QDs decorated TiO2 nanowires via a facile calcination method [132]. They used the
obtained composite under solar irradiation next to Pt as a co-catalyst and achieved HER of 313.5 µmol/h.

The use of TMO QDs is also recorded in the work of Liu et al. [133], who decorated two-dimensional
TiO2 nanobelts with zero-dimensional Co3O4 quantum dots. When compared with bulk materials, 0D
Co3O4 QDs have attracted considerable attention due to their small size (<10 nm), providing a large
specific surface area with more active sites and shorter charges transport paths. Due to the decoration
of Co3O4 QDs, the bandgap of the obtained composite was also narrowed, and in application next to Pt
as co-catalyst, they obtained a rather high HER of 1735.1 µmol/h/g. In comparison, Zhang et al. [134],
with the use of bulk p-Co3O4/n-TiO2, achieved a smaller HER of 8.16 µmol/h/g.

Among the TMOs that appear as promising candidates for coupling with TiO2, CuO is one of such,
especially due to its narrow bandgap (1.4–1.6 eV) and the promotion of effective charge separation [5,135],
as already reported as promising water treatment photocatalyst. Hasan et al. [5] conducted solar H2

production using a TiO2/CuO nanofiber composite that was synthesized by electrospinning technique.
Fabricated nanofibers were annealed in different atmospheres to determine the crystalline phase and
photocatalytic performance. For the nanofibers that were crystallized in the anatase phase, EPR and XRD
analysis referred to the substitution of some Ti4+ ions by Cu2+ ions, leading to the formation of some
defects below the CB of TiO2, which led to a narrow band gap, yielding enhanced HER in the amount of
2715 µmol/h/g. For comparison, without annealing in a different atmosphere, Wang et al. [135] only
achieved 47 µmol/h/g of produced H2 while using the TiO2/CuO composite that was irradiated by solar
light. Other oxidation states of Cu inside the oxides are investigated for coupling with TiO2, such as
Cu2O [136]. With all of the benefits, such as environmental compatibility, high visible light activity and
earth abundance, wider applications of Cu2O in water splitting are still limiting, since the redox potential
of monovalent copper lies within its band gap, thus photogenerated charge carriers thermodynamically
prefer the transformation of Cu2O into CuO and Cu, rather than to be used in redox reactions with
water constituents forming H2 [136]. Wei et al. [136] stabilized the Cu2O by modulating the defects
in faceted Cu2O/TiO2 heterostructures to suppress this disproportionation process. Hence, Cu2O was
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arranged onto 101-faceted TiO2 and it was found that oxygen vacancies in {101}-faceted TiO2 can create
a unique channel for Z-scheme charge transfer in Cu2O/TiO2 heterostructures. Composite that was
obtained by such an approach showed the maximum HER of 32600 µmol/h/g, with a quantum efficiency
of 53.5% at an irradiation wavelength of 350 nm.

3.3. Transition Metal Chalcogenides-TiO2

As already mentioned, various techniques have been applied to modify the TiO2 photocatalysts
with a purpose of wider application in the field of solar-driven H2 production through water splitting.
Sensitization with narrow bandgap semiconductors was found to be an effective method for enhancing
all of the deficiencies that occur during the sole use of TiO2. Regarding an appropriate band gaps,
another group of semiconductors with great application potential in photocatalytic H2 generation are
transition metal chalcogenides. Recently, CdS is one of the most studied materials [54,55,137–140];
however, the toxic effects due to potential leaching of Cd2+ have to be strongly considered, followed
by others (MoS2, ZnS, ZnSe, CdSe) indicated in Figure 12, as mentioned in part related to water
treatment [127].

3.3.1. TiO2/CdS

CdS is the most important chalcogenides semiconductor as a hydrogen production catalyst due to its
narrow bandgap (2.4 eV), which enables its visible light response [56]. Its drawbacks described above in
Section 2.2. can be alleviated; susceptibility to photocorrosion can be suppressed by the use of sacrificial
agents (sodium sulfite/sulfide) that effectively consume photogenerated h+, while the limited separation
efficiency of photogenerated charge carriers can be solved either by using CdS in the form of QDs due to
a shorter transportation path or by incorporating CdS onto support materials, such as TiO2 [55,56].

Rao et al. [137] synthesized CdS/TiO2 core/shell nanorods with tunable shell thickness to minimize
charge carriers recombination and limit photocorrosion. The investigation of photocatalytic activity
performed under UV-vis light irradiation confirmed that optimized concentration of sacrificial agents
(0.3 M Na2S and Na2SO4 aqueous solution), shell thickness of 6.3 nm, and solution pH of 8.0 enhance the
H2 production rate of 5791 mL/h/g. Du et al. [138], who fabricated pyramid-like CdS nanoparticles that
were grown on porous TiO2, obtained the same type of composite, but with the different morphology.
Under UV-vis irradiation and without noble-metal co-catalysts, 5 mol% CdS-TiO2 achieved an H2

production rate of 1048.7 µmol/h/g, which is almost six times and 1.5 times higher than that of pure
TiO2 and CdS, respectively. Table 10 provides further examples of TiO2/CdS-based composites with
their respective photocatalytic activities for H2 production.

Table 10. The photocatalytic performance of H2 generation in some related TiO2/CdS-based nanocomposites.

Photocatalyst Light Source HER Reference

CdS/Pt/TiO2 film 300 W Xe lamp 3.074 µmol/h/g [54]
CdS/Pt/TiO2 nanosheets 350 W Xe arc lamp 265 µmol/h [141]
CdS/Pt/TiO2 nanotubes 300 W Xe lamp 402 µmol/h [142]

CdS/TiO2 nanotubes 350 W Xe lamp 2585 µL/h/g [143]
CdS-Ti-MCM-48-21-25 300 W Xe lamp 2726 µmol/h [139]

3.3.2. TiO2/CuS

CuS has emerged as an alternative co-catalyst for H2 production, which is abundant, cheap,
and nonhazardous. With its VB and CB at positions of −1.56 eV vs. NHE, and −0.09 eV, CuS shows
low reflectance in the visible and relatively high reflectance in the near-infrared region, which makes it
a good candidate for solar energy absorption [144]. Chandra et al. [144] investigated the photocatalytic
activity for H2 generation of synthesized CuS/TiO2 (CT) heterostructured nanocomposite under UV-vis
and only visible light. Under irradiation, the highest HER of 12362 µmol/h/g was achieved while
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using 0.4 mol.% CuS/TiO2, while only 155 µmol/h/g of H2 was produced under visible light and
comparable conditions.

In comparison, Dang et al. [145] produced a series of CuxS (x = 1 or 2) co-modified TiO2

nanocomposites while using a one-step precipitation approach. The EDS, XPS, and XRF results
confirmed the existence of three different phases: CuS, Cu2S, and TiO2. The results have shown
that CuS and Cu2S dual co-catalysts under simulated solar light exhibited high H2 production of
5620 µmol/h/g, which is about 58 times higher than that of the unloaded TiO2. The enhancement in
H2 production can be contributed to the co-deposition of CuS and Cu2S onto the TiO2 nanoparticle
surface that efficiently extended visible light absorption and facilitated the separation of charge carriers.
The CuxS/TiO2 composite showed high stability; after three consecutive cycles the photocatalytic
efficiency for H2 production decreased for only 11.7%.

3.3.3. TiO2/MoS2

MoS2 represents two-dimensional transition metal dichalcogenide (TMD) that can be prepared into
ultrathin-layered structures and, thus, participates in the H2 evolution reaction as an effective non-noble
metal alternative [117,146]. Without the use of any sacrificial agent and co-catalyst, Huang et al. [146]
observed photocatalytic H2 generation while using MoS2 quantum dots@TiO2 nanotube arrays
nanocomposite in pure water under visible light. The photocatalytic activity was influenced by
the amount of MoS2 QDs coated on TiO2 NTAs. Hence, the maximum of 53.9 µmol/cm2/h of H2 was
produced, which was ascribed to the decreased bandgap and the surface plasmonic properties of the
obtained composite promoting charge carrier separation and the absorption capacity to visible light.
Du et al. [63] grew in situ two transition metal chalcogenides—MoS2 and CdS—on porous TiO2 by using
the sol-gel method, followed by the calcination and hydrothermal method. Under visible light irradiation
and without the use of noble metals as the co-catalyst, 3% MoS2-CdS-TiO2 produced 4146 µmol/h/g of
H2. In this ternary composite (Figure 15), the porous structure of TiO2 accepts generated e− from CdS
and provides surface area for H2 production, while MoS2, as a conductive medium, enabled the transfer
of e− between CB of CdS and TiO2, simultaneously inhibiting the photocorrosion of CdS as h+ collector.Materials 2020, 13, x FOR PEER REVIEW 28 of 39 
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3.4. Multiple TiO2-Based Composites

This section is dedicated to multiple ternary and quaternary TiO2-based composites.
Recently, significant emphasis was laid on the formation of Z-scheme structured photocatalysts. In such
materials, redox reactions occur in each semiconductor, allowing for the combination of a semiconductor
with strong reduction power with another semiconductor with strong oxidation power [93].

All of the solid Z-scheme heterojunctions are usually composed of two photocatalysts and an
electron mediator, which enable efficient H2 production through the synergistic action between
two isolated photosystems and electron mediator cleverly arranged in a nano-platform [147].
Reversible redox couples (e.g., IO3

−/I−, Fe3+/Fe2+) are usually applied as electron mediators in
the Z-scheme system. Solid electron mediators are more suitable for the application. Noble metals
(Au, Ag) and carbon-based materials (MWCNT, rGO, CQDs) are commonly used as solid electron
mediators for photocatalytic H2 generation [148].

Ng et al. [147], who synthesized Zn0.5Cd0.5S-MWCNT-TiO2 ternary nanocomposite, where MWCNT
acted as an electron mediator, fabricated a solid Z-scheme system. The obtained material efficiently
suppressed charge recombination and promoted water reduction, achieving HER of 21.9 µmol/h.
Furthermore, Liu et al. [149] have used carbon quantum dots (QDs) as an electron mediator between
TiO2 and Zn0.5Cd0.5S film and achieved 38740 µmol/h/m2 of produced H2 under solar light. Lv et al.
investigated the use of rGO as an electron mediator [120], synthesizing sandwich-like TiO2/rGO/LaFeO3

ternary heterostructure, which, under solar light, obtained HER of 893 µmol/h/g, which is almost 3.2,
14.4, and 11.4 times superior to the direct Z-scheme components TiO2/LaFeO3 composite, pure TiO2,
and LaFeO3, respectively. The photocatalytic mechanism of H2 production is the same for all three
above mentioned solid electron mediators: MWCNT, rGO, and CQDs (Figure 16). Upon excitation
by light, e−/h+ are formed in Z-scheme semiconducting components, depending on the ability of each
component to absorb emitted light. Hence, photogenerated e− from semiconductor I can be easily
recombined with h+ from semiconductor II through the electron mediator, leaving more oxidative holes
and reductive electrons to participate in the redox reactions in the corresponding active sites [148].

In Z-type heterojunction, noble metals can also perform the role of electron mediators. Zou et al.
performed the construction of g-C3N4/Au/C-TiO2 hollow spheres with Au nanoparticles (NPs) as the
electron mediator [150]. The as-prepared composite showed high HER of 129 µmol/h/g under visible
light, which can be attributed to the efficient charge separation in the constructed Z-scheme system,
the broadened visible-light response range, owing to the surface plasmon resonance (SPR) effects on
Au nanoparticles, and the hollow structure of C-TiO2 that gives photocatalyst unique properties of low
density and high light-harvesting efficiency. In another work presented by Yang et al. [151], Au NPs
were applied as a solid electron mediator in the ternary urchin-like ZnIn2S4-Au-TiO2 nanocomposite,
which, at an optimal ratio of 24 wt.% Au NPs and 60 wt.% ZnIn2S4, achieved HER of 186.3 µmol/h/g
under solar light irradiation.

Table 11 lists other multiple composites, except ones with the Z-scheme heterojunction that are
already mentioned, as well as reaction conditions in the photocatalytic system and the obtained
hydrogen evolution rates.
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Table 11. Multiple TiO2-based composites for the use in photocatalytic hydrogen generation.

Photocatalyst Reaction Conditions HER Reference

CdSQDs/WC/TiO2
Photocatalyst dispersed in 20 vol.% lactic acid as an electron donor under visible

light. 624.9 µmol/h/ [55]

ZnO/ZnCr2O4@TiO2-NTA Photocatalyst dispersed in aqueous methanol solution under simulated solar light. 1680 µmol/cm2 [152]

F-TiO2/CdSe-DETA Photocatalyst was dispersed in a mixed solution of Na2S and Na2SO3 as a
sacrificial agents under visible light with the use of Pt as a cocatalyst. 12381 µmol/h/g [153]

g-C3N4/TiO2/RGO 5 mg of the g-C3N4-TiO2/RGO nano-composite was dispersed in 50 mL
glycerol-water solution under UV-vis light. 19610 µmol/h/g [13]

CDS/CNF/Pt-TiO2
Photocatalyst was dispersed in a mixed solution of Na2S and Na2SO3 as a

sacrificial agents under visible light. 16.34 µmol for 3 h [154]

F-TiO2/CdS-DETA, Pt as a
cocatalyst

50 mg of the photocatalyst was dispersed in 100 mL of
mixed aqueous solution containing 0.35 mg/L Na2S and 0.25 mg/L Na2SO3 with

the use of Pt as a cocatalyst.
5342.86 µmol/h/g [155]

CdS@TiO2@Au
20 mg of the

photocatalyst was dispersed in 40 ml of aqueous solution containing 0.1 M Na2S
and 0.1 M Na2SO3 as the sacrificial agents under visible light.

1720 µmol/h/g [156]

TiO2-Au-CdS 0.1 g of the sample was immersed in an aqueous solution containing 0.1 M Na2S
and 0.1 M Na2SO3 as the sacrificial agents under visible light. 1810 µmol/h/g [157]

N-TiO2/g-C3N4@NixP 50 mg photocatalyst was suspended in a 100 mL solution containing 10 vol.%
triethanolamine (TEOA) under 300 W Xe lamp irradiation. 5438 µmol/h/g [158]

TiO2/CdS/CNT
0.1 g of photocatalyst was dispersed in solution containing 70 mL of distilled

water or seawater and 30 mL of sacrificial agent. The photocatalyst were
irradiated using three visible-light sunlamps of each 100 W and UV lamp of 8 W.

3502 µmol/h from pure water
and 1373 µmol/h from seawater [159]

WS2/ C-TiO2/ g-C3N4
50 mg of photocatalyst was added in to 80 mL TEOA aqueous solution with the

use of Pt as a cocatalyst.
17726 for DI water and 29978

µmol/g for seawater [148]

TiO2/La2O2CO3/rGO 0.05 g of powder catalyst was dispersed in 80 Ml ethylene-glycol water (5/95, v/v)
solution under UV-vis light. 583 µmol/h [160]

TiO2-Cu@C Photocatalyst was dispersed in methanol aqueous solution under UV-vis light. 3911 µmol/g/h [161]
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4. Conclusions

TiO2-based photocatalytic technology represents a promising up-coming technology for both
renewable energy generation and water purification applications. It is necessary to work on
developing TiO2-based semiconductor materials, which are active under broader spectrum of solar light,
overcoming the indicated disadvantages of the solely TiO2 utilization, since TiO2 as a photocatalytic
material cannot be used alone due to its limitations such as activity only in UV light region and rapid
recombination of photogenerated charge carriers.

TiO2-semiconductor coupling offers promising results in water purification, particularly
for the degradation and mineralization of CECs. However, it is necessary to evaluate the
toxicities of degradation intermediates of CEC to check the real efficiency of such composites.
Furthermore, the immobilization of TiO2–Semiconductor composites to photocatalytic reaction
membranes must be envisaged for further upscale opportunities.

Great progress has also been recorded in the development of TiO2-based heterojunction for the
application in solar-driven photocatalytic hydrogen generation. By morphological control of the
obtained composites, higher H2 generation, as well as better light harvesting can be achieved. It is
noticed that still a great deal of research is being conducted by the use of different noble-metal co-catalysts
and sacrificial agents, which, although increasing the efficiency of the process, reduces its environmental
friendliness and increases the performance cost. Accordingly, to allow for the practical deployment
of such units, as well as commercialization, it is necessary to produce cost-effective systems that will
consider economic impact assessment, including operation cost and energy consumption, and that will
not require the use of costly co-catalysts and other substances that promote system performance.
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