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ABSTRACT

Comparing histone modification profiles between
cancer and normal states, or across different tumor
samples, can provide insights into understanding
cancer initiation, progression and response to ther-
apy. ChIP-seq histone modification data of cancer
samples are distorted by copy number variation in-
nate to any cancer cell. We present HMCan-diff, the
first method designed to analyze ChIP-seq data to de-
tect changes in histone modifications between two
cancer samples of different genetic backgrounds,
or between a cancer sample and a normal control.
HMCan-diff explicitly corrects for copy number bias,
and for other biases in the ChIP-seq data, which sig-
nificantly improves prediction accuracy compared
to methods that do not consider such corrections.
On in silico simulated ChIP-seq data generated us-
ing genomes with differences in copy number pro-
files, HMCan-diff shows a much better performance
compared to other methods that have no correc-
tion for copy number bias. Additionally, we bench-
marked HMCan-diff on four experimental datasets,
characterizing two histone marks in two different
scenarios. We correlated changes in histone mod-
ifications between a cancer and a normal control
sample with changes in gene expression. On all ex-
perimental datasets, HMCan-diff demonstrated bet-
ter performance compared to the other methods.

INTRODUCTION

The development of ChIP-seq technology (1) has enabled
the construction of genome-wide maps of protein–DNA in-
teractions. Such maps provide information about transcrip-
tional regulation at the epigenetic level (histone modifica-
tions and histone variants) and at the level of transcription
factor activity. Recently, thousands of ChIP-seq datasets
have been produced by different consortia including EN-
CODE (2) and the NIH Roadmap Epigenomics Mapping
Consortium (3). The data produced contain histone modifi-
cation libraries for both normal and cancer cell karyotypes.

In cancer, genetic and epigenetic abnormalities cooper-
ate in the process of regulating activities of oncogenes and
onco-suppressors (4). For example, lower levels of trimethy-
lation of lysine 36 of histone H3 (H3K36me3) and trimethy-
lation of lysine 20 of histone H4 (H4K20me3) in proximity
of the gene NSD1, contribute to the development of ner-
vous system tumors (5). Also, higher levels of trimethyla-
tion of lysine 27 of histone H3 (H3K27me3), in proximity
to the HOX cluster of genes, plays a role in prostate cancer
(6). Given the role of histone modifications and other epi-
genetic modifications in cancer, several epigenetic therapy
methods have been proposed (7,8).

To better characterize changes in histone modifications
and understand epigenetic mechanisms driving cancer ini-
tiation, progression and response to therapy, methods to
detect changes in histone modifications between pairs of
conditions are needed. The demand to design methods to
handle ChIP-seq data from cancer samples has been high-
lighted in several studies (9–12). This demand rises from the
fact that cancer genomes are characterized by copy number
aberrations. These can introduce statistical biases in down-
stream analyses that affect results by introducing false pos-
itive and false negative predictions.
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Many methods have been developed to detect regions
that exhibit changes in a ChIP-seq signal between two con-
ditions (differential peaks). Some of these methods have
been specifically designed to predict differential peaks from
narrow marks, such as DiffBind (13), ChIPComp (14) and
DBChIP (15), while other methods, such as ChIPDiff (16),
ChIPnorm (17) and RSEG (18), have been designed to de-
tect differential peaks from broad marks. Moreover, some
methods for differential peak calling require providing sets
of peaks in order to identify differential regions. Exam-
ples of these methods include MAnorm (19), DiffBind (13)
and DBChIP (15). Other methods, such as ODIN (20),
MEDIPS (21) and PePr (22), do not require peak regions
as an input and are expected to perform equally well for
narrow and broad histone marks. Moreover, some meth-
ods can account for experiments with either biological or
technical replicates (PePr (22), DiffBind (13) and csaw (23)),
while other methods cannot (ODIN (20), ChIPDiff (16) and
MACS2).

In this study, we introduce HMCan-diff, a method for
identifying changes in histone modifications from ChIP-seq
cancer data. Our method corrects for copy number aberra-
tions, GC-content bias, sequencing depth, mappability, and
noise level, thus accounting for different technical artifacts
of ChIP-seq data, and utilizes information from replicates
to reduce technical variation effects.

We compared HMCan-diff with several recent and
most commonly-used methods, namely ChIPDiff (16),
MAnorm (19), MEDIPS (21), ODIN (20), MACS2 (https:
//github.com/taoliu/MACS/tree/master/MACS2), DiffBind
(13), RSEG (18) and csaw (23). We conducted experiments
on both simulated and experimental data. On simulated
data containing copy number bias, HMCan-diff showed
significant performance improvement compared to other
tools. HMCan also showed comparable performance on
simulated data without copy number bias. On experimen-
tal data, HMCan-diff predicted differential histone modi-
fication regions that correlate better with changes in gene
expression compared to the predictions obtained by other
methods, suggesting it has higher accuracy.

MATERIALS AND METHODS

Description of HMCan-diff

The HMCan-diff workflow consists of several steps (Fig-
ure 1): (i) construction of normalized ChIP-seq density,
(ii) inter-conditional normalization, (iii) initialization of
the hidden Markov model (HMM) and (iv) learning of
HMM parameters and identification of differential peaks.
HMCan-diff implements a 3-state multivariate HMM to
identify changes in histone modifications; the states are: ‘en-
riched in condition 1′ (C1), ‘enriched in condition 2′ (C2),
and a ‘no difference’ state. HMCan-diff is implemented
in C++ and is available at http://www.cbrc.kaust.edu.sa/
hmcan/.

Construction of normalized density profiles

HMCan-diff uses density construction and normalization
methods implemented in the HMCan algorithm (10). The
normalization steps include normalization for copy number

Figure 1. A workflow illustrating HMCan-diff steps. Initially, HMCan-diff
constructs a fragment density profile for each provided ChIP-seq or in-
put dataset. Then, it normalizes density profiles of each replicate in each
condition for several types of bias, specifically for copy number variation,
library size, GC-content bias and noise level. After that, HMCan-diff con-
ducts additional normalization to eliminate further technical variation be-
tween conditions. It initializes HMM parameters based on the data. In
particular, HMCan-diff defines the HMM emission probability distribu-
tion as the joint empirical distribution of normalized density values. Then,
HMCan-diff improves these parameters using the Baum-Welch algorithm,
and finishes by dividing genomic regions into three states: C1 (enriched in
condition 1), C2 (enriched in condition 2), and the ‘no difference’ state.

variation, library size, mappability, GC-content bias, and
noise level.

Density profile construction. HMCan-diff transforms
reads of ChIP and control samples into fragment density
profiles. To do so, HMCan-diff extends reads to the length
of initial DNA fragments using the triangular distribution
first proposed in the FindPeaks peak calling method (24).
In this way, HMCan-diff accounts for variable fragment
lengths present in a ChIP-seq experiment. Minimum,
median and maximum fragment lengths used to define the
triangular distribution can be obtained from the sequenc-
ing platform. After raw density construction, HMCan-diff
reports density values every N bp, where N is a step fixed
by the user. If they like, users can choose the step size
as minL/2, where minL is the minimum fragment length.
Smaller step sizes will not increase the performance but will

https://github.com/taoliu/MACS/tree/master/MACS2
http://www.cbrc.kaust.edu.sa/hmcan/
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provide a better profile resolution for further downstream
analysis. In this study we set N to be 50 bp.

HMCan-diff also proposes to mask densities from ge-
nomic regions known to contain false signals. HMCan-
diff provides blacklisted regions recommended by the EN-
CODE consortium (2) as its default set of regions.

Correction for copy number alterations. HMCan-diff uti-
lizes the Control-FREEC algorithm (25,26) to learn the
copy number profile from input DNA data (control sam-
ple). Control-FREEC partitions chromosomes into large
genomic windows (in this study we used 100 kb), then fits a
polynomial function to model the relationship between the
read count per window and GC-content values. Control-
FREEC uses this function to normalize the read count for
GC-content bias and produce a smooth profile of corrected
read counts. Then, it uses a LASSO-based approach to seg-
ment the normalized copy number profile. For each seg-
ment, Control-FREEC provides the median value of the
normalized read count (medNRC). Copy neutral regions
will correspond to medNRC values close to 1; a region
deleted in one copy out of 2 will have a medNRC value of
around 0.5; a region duplicated in a diploid genome will
have a medNRC value of ∼1.5, and so on. After the ChIP-
seq density profile is constructed, HMCan-diff divides den-
sity values by medNRCs of corresponding segments. In this
way, HMCan-diff normalizes both ChIP and input densi-
ties for copy number alterations.

Library size normalization. HMCan adjusts the ChIP den-
sity values for the library size. Given that the ChIP sample
has N1 reads and the control sample N2, HMCan-diff scales
ChIP density by a factor of (N2/N1).

Identifying enriched density regions. Identifying enriched
density regions is important for GC-content bias correc-
tion and HMM initialization steps. HMCan-diff provides
two options to decide whether a given density value corre-
sponds to an enriched region or background region. The
first option is to conduct a one-sided Poisson exact test us-
ing a local Poisson distribution, where the mean parame-
ter for the Poisson distribution corresponds to the control
density value of that position. The second option is to per-
form the test using the negative binomial (NB) distribution
to identify enriched regions. HMCan-diff learns parameters
of the NB distribution in a similar way to the method pro-
posed in (27). HMCan-diff sets the first option as its default
for identifying enriched density regions.

GC-content normalization. It has been reported that GC-
content affects the sequencing depth of Illumina reads (28).
Therefore, HMCan-diff implements a correction of ChIP-
seq density data for GC-content bias.

First, HMCan-diff associates each density value with a
GC-content value. For each density value, HMCan-diff cal-
culates the GC-content for a window of length equal to
twice the median fragment length centered on that value,
and assigns it to this density value. Then, HMCan-diff
groups GC-values into different strata (groups). For exam-
ple, the first group will have GC content values from the in-
terval [0, 0.20), the second will have values from the interval

[0.20, 0.22), the third from the interval [0.22, 0.23), etc. For
each value gc in the strata, Dgc defines the total sum of den-
sity values associated with a given GC-content gc, and Ngc
the total number of windows that have GC-content gc. The
expected density for a specific gc value (λgc) is calculated as:

λgc = Dgc

Ngc
(1)

The average expected density over the genome, λ, is cal-
culated as:

λ =
∑

gc Dgc∑
gc Ngc

(2)

HMCan-diff corrects a density value d coming from a re-
gion with GC-content gc as:

dcorrected = d · λ

λgc
(3)

HMCan-diff corrects ChIP-seq data and input control
samples independently. Correcting both samples indepen-
dently is more accurate than using information from the in-
put control sample only.

For the calculation of λgc and λ for the input data, we use
all density values. For ChIP-seq data, we need to limit the
calculation of λgc and λ to background regions only, since
a high ChIP-seq signal may correspond to GC-rich regions
and thus may be considered a GC-bias. Therefore, for the
ChIP-seq signal, we first identify enriched signal regions in
order to exclude enriched density loci from the calculations.
Then, HMCan-diff calculates λgc and λ from bins corre-
sponding to background regions.

Background subtraction. Since ChIP-seq density values
are a mixture of real signal and noise, while input control
density values correspond only to noise, we need to rescale
the control density to match noise levels in both samples. To
do so, HMCan-diff calculates the noise level (λnoise) as:

λnoise = λChI P /λcontrol (4)

Lastly, HMCan-diff calculates the final corrected density
profile as:

d f inal = dChI P Corrected − dControl corrected · λnoise (5)

HMCan-diff applies the above-described normalization
steps to each ChIP-seq sample for each condition, indepen-
dently.

These steps result in the creation of a normalized density
profile dmij for each position m (every N bp) of sample Sij,
where i is the condition and j the replicate.

Inter-sample normalization

The basic idea behind inter-sample normalization in
HMCan-diff is to adjust the total normalized density in all
samples to similar levels. In order to achieve this, HMCan-
diff calculates the total genome-wide density in each repli-
cate per condition, Xij:

Xi j =
∑

m
dmi j (6)
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We define the reference sample, ref, as the sample with
the minimum noise level among all samples to be analyzed.
Then, we define normalizing coefficients β ij such that:

β i j = Xre f /Xi j (7)

Last, we derive the normalized density d’ as:

d
′
mi j = β i j · dmi j (8)

Inter-sample normalization turns out to be very impor-
tant as it adjusts for different antibody efficiency between
ChIP-seq samples. Moreover, inter-sample normalization
does not take into account copy number status, as our
method has already corrected for that in the previous step.

HMM definition and initialization

A multivariate HMM H is defined by a set H = {S, O, T,
E}, where:

• S is the set of possible states, S = {C1, C2, ‘no difference’}
• is the set of observations; we define O in HMCan-diff as

the vector of normalized densities d’mij for each genomic
position, from all replicates and conditions

• T is the set of transition probabilities
• E is the set of emission probabilities derived from the em-

pirical joint distribution of the data.

Initially, to simplify our model and avoid bias towards
the ‘no difference’ state, we discard all non-enriched regions
from subsequent calculations (see ‘Identifying enriched re-
gions’ section). We discard loci that the test indicates as
non-enriched in all replicates, from both conditions. For the
remaining loci, we use the fold change to initialize HMM
emission and transition probabilities, where for each posi-
tion m, we define the fold change fcm as:

f cm = median

{
d ′

m1i+1

d ′
m2 j+1

; i ∈ 1 : k; j ∈ 1 : l

}
, (9)

where k and l are the number of replicates in conditions 1
and 2. Next, we initialize the HMM density value state as
follows:

• If (fcm > T) → C1 state;
• If (fcm < 1/T) → C2 state;
• Otherwise → ‘no difference’ state.

Here, T is a threshold for median fold change, set by the
user (default value is 2).

Learning HMM parameters and identifying differential re-
gions

We use the Baum-Welch algorithm (29) to learn emission
and transition probabilities. Thereafter, we use threshold-
based posterior decoding to decode the final sequence of
states. After mapping each density value into its corre-
sponding state, neighboring bins possessing the same dif-
ferential state (either C1 or C2) are merged to compose dif-
ferential peaks.

For each differential peak we calculate peak score (PS)
using the log likelihood ratio:

PS = log
P (di f f erential state|region)

P (¬di f f erential state|region)
, (10)

where a differential state could be a C1 or C2 one. Higher
values of peak scores correspond to higher confidence re-
gions in HMCan-diff predictions.

Two post-processing steps follow calling the differential
peaks: differential peaks with a length of less than the me-
dian fragment length are ignored, and differential peaks
showing the same state (C1 or C2) within a distance below
a user-defined value are merged into a single region (default
distance 1 kb).

HMCan-diff provides outputs for differential peaks in
the standard BED format. It creates two files: one for nar-
row peaks and another for broad peaks (regions). It also
provides normalized density WIG files, which can be helpful
for the visual inspection of data as well as for downstream
analyses.

Simulated data

We conducted two simulation experiments. In both, we sim-
ulated a hypothetical histone mark across conditions 1 and
2, and along human chromosome 1 only (from the hg19
assembly). We set the fragment length to 150 bp and read
length to 76 bp. We simulated the ChIP-seq histone mod-
ification region’s length randomly from 1 to 20 kb. The
simulated signal covered 10% of chromosome 1 in each
condition, and differential regions represented 25% of the
simulated signal. For each condition, we simulated three
replicates. We simulated the technical variation between the
replicates by controlling the noise level and GC-content bias
in each replicate. For the noise level, we simulated its values
by picking a random value from a normal distribution N
∼ (μ, σ ), (μ denoting the mean, σ the standard deviation),
where we set μ1 = 0.75 for condition 1 and μ2 = 0.5 for
condition 2, with σ = 0.1 for both. We use a ‘noise level’
parameter to control fold change between signal and back-
ground; a higher noise level corresponds to lower antibody
efficiency. In all our simulations, we set minimal fold change
between signal and background equal to 2. To simulate GC-
content bias, we used six different GC-content bias profiles
from different ENCODE datasets (see Supplementary Ta-
bles S1 and S2 for more details on the parameters for simu-
lated data).

In the first simulation (simulation 1), all regions had a
normal copy number, while in the second (simulation 2) we
simulated differences in copy number between conditions.
Reads were simulated using a ChIP-seq data simulation tool
that accompanied the HMCan method (10). To simulate
differential regions in simulation 1, we controlled the ratio
of ChIP-seq read counts across regions to reflect the state of
the simulated regions (C1, C2 or ‘no difference’); we consid-
ered a region to be in a differential state when its read ratio
was higher than 2. For simulation 2, first we divided chr1
into 12 segments of equal length. We assigned each segment
a different copy number status for each condition (Supple-
mentary Table S3). In the case of signal loci, we assigned
a different allele count for signal regions in each segment.
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We defined differential regions using the proportion of the
signal present in DNA alleles to the actual copy number at
that region (i.e., total number of alleles). More precisely, we
denoted the number of alleles where the signal is present by
A, and the copy number of the region by CN, and defined
differential regions as those where |A1/CN1 – A2/CN2| > =
t, where we set t = 0.5. We used Bowtie (30) with the de-
fault parameters to align simulated reads to the reference
genomic sequence. The simulated data can be downloaded
from http://www.cbrc.kaust.edu.sa/hmcan/Download.php.

Experimental data

We used H3K27me3 and H3K27ac ChIP-seq data, and
RNA-seq data, to evaluate the performance of HMCan-
diff in two experiments: (i) lung adenocarcinoma (A549 cell
line) compared to normal lung tissue; (ii) human breast ade-
nocarcinoma (MCF7 cell line) compared to primary human
mammary epithelial cells (HMEC cell line). The A549 data
were generated using the Diagenode polyclonal antibody
specific to H3K27me3 (C15410069) and the Abcam anti-
body specific to H3K27ac (ab4729). Data is deposited in
GEO with accession number GSE75903. Chromatin prepa-
ration and ChIP were performed with the Ideal ChIP-seq
kit for histones according to the supplier’s protocol (Di-
agenode). Data for the lung tissue were obtained from the
epigenomic roadmap database, and data for the MCF7 and
HMEC cell lines were obtained from ENCODE.

RESULTS

Evaluation on simulated data

First, we compared HMCan-diff with other relevant tools:
ChIPDiff (16), DiffBind (13), MACS2, MAnorm (19),
MEDIPS (21), ODIN (20) and RSEG (18), on simulated
data. ChIPDiff uses an HMM with a beta-binomial fixed
emission distribution, and learns transition probabilities us-
ing the Baum-Welch algorithm (29). DiffBind initially pre-
processes ChIP-seq reads that fall into peak regions by sub-
tracting the input read count; it then uses the edgeR pack-
age (31) to detect differential regions. MACS2 first calls
peaks and constructs read pileup files for both conditions,
then determines differential regions by assessing the fold
change between conditions. MAnorm constructs an MA-
plot from reads falling in the common peak regions between
the two conditions, then uses this plot to normalize data be-
tween conditions; after normalization it identifies differen-
tial peaks. MEDIPS uses statistical methods developed in
the edgeR package (31) to identify differential regions from
various assays including ChIP-seq. MEDIPS also provides
a threshold-based procedure to account for copy number
variation in the analyzed data. ODIN uses HMMs to iden-
tify differential peaks; it models the emission distribution
using a mixture of Poisson distributions. RSEG also uses
HMMs; it models emission probabilities as the difference of
two independent variables following the NB distribution.

We evaluated the accuracy of each method by construct-
ing precision–recall (PR) curves (32) based on the predic-
tions of each tool. To construct PR curves, we sorted pre-
dictions of each algorithm based on their scores or p-values,
then for each method we applied different thresholds to get

Figure 2. Precision-recall curves for HMCan-diff and other methods on
simulated data. (A) Precision-recall curves on data simulated without copy
number bias: HMCan-diff is slightly better than the majority of tools.
(B) Precision-recall curves on the simulated data with copy number bias:
HMCan-diff shows significantly better performance than the other meth-
ods.

different predictions sets. For each threshold value, we con-
sidered predictions with score above the threshold as differ-
ential. A bin in a region predicted to be differential was con-
sidered a true positive (TP) if it overlapped with a simulated
differential region; it was considered a false positive (FP) if
it overlapped with a non-differential region. Bins from dif-
ferential regions that were not predicted as such were con-
sidered false negatives (FN). Then,

Recall = T P/ (T P + F N) , (11)

Precision = T P/ (T P + F P) , (12)

where recall quantifies the sensitivity of the method, and
precision quantifies the specificity of positive predictions.
We reported recall values in regions corresponding to preci-
sion values 0.9 and 0.95) and reported precision and recall
values at the best cutoff value (Table 1). We defined the best
cutoff as that of corresponding to the closest point to the
ideal predictor (recall = 1, precision = 1) (33).

We investigated different parameter sets for methods in
both simulations (Supplementary Figure S1 and Supple-
mentary Figure S2). Then, we selected parameters that
yielded the best performance (Supplementary Table S5).
When we compared calculated PR-curves based on data
simulated without copy number bias (Figure 2A), we found
comparable accuracy of most methods, with a slightly lower
value for HMCan-diff compared to DiffBind (F-measure
HMCan = 0.95 and DiffBind = 0.96). The poor perfor-
mance of RSEG in simulation 1 was likely due to not ac-
counting for different antibody efficiencies simulated in our
in silico experiment.

When we compared PR-curves calculated on a dataset
where copy number bias was present (Figure 2B, simulation
2), we noticed a significantly lower performance of tools
that did not directly account for copy number bias, unlike
HMCan-diff, which maintained good prediction accuracy
(Table 1). Additionally, we evaluated the performance of
HMCan-diff and other methods on regions having different
amplitudes of changes in copy number status between the
conditions (Supplementary Figure S3). To do so, we divided
regions from simulation 2 into two categories: (i) regions

http://www.cbrc.kaust.edu.sa/hmcan/Download.php
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Table 1. Recall and precision for all methods tested. HMCan-diff shows marginally better performance in simulation 1 (no copy number changes between
the two conditions) and significantly better performance in simulation 2 (includes copy number changes between the conditions)

Method Simulation 1 Simulation 2

Precision = 0.95 Precision = 0.90 Best cutoff Precision = 0.95 Precision = 0.90 Best cutoff

Recall Recall Recall Precision Recall Recall Recall Precision

HMCan-diff 0.94 0.94 0.93 0.98 0.65 0.75 0.784 0.875
ChIPDiff No predictions No predictions 0.97 0.72 No predictions No predictions 0.36 0.507
csaw 0.92 0.92 0.91 0.41 No predictions No predictions 0.64 0.27
DiffBind 0.96 0.96 0.96 0.97 0.38 0.39 0.381 0.96
MACS2 0.82 0.91 0.91 0.9 0.001 0.0001 0.635 0.231
MAnorm 0.93 0.94 0.93 0.95 No predictions No predictions 0.662 0.317
MEDIPS 0.91 0.93 0.92 0.95 No predictions No predictions 0.702 0.034
ODIN No predictions No predictions 0.97 0.5 No predictions No predictions 0.684 0.26
RSEG No predictions No predictions 0.93 0.26 0.16 0.16 0.15 0.99

Figure 3. Effects of the use of replicates on HMCan-diff predictions. (A)
When using replicate information, HMCan-diff produces better predic-
tions than when using pooled data. (B) Genome browser view showing
that combining data from different replicates may lead to losing the correct
differential signal, while the use of information from replicates improves
HMCan-diff prediction accuracy.

with a low copy number discrepancy, where the absolute dif-
ference in copy number between the two conditions is less
than two; and (ii) regions with a high copy number discrep-
ancy, where the copy number difference is greater than or
equal to two. In both scenarios, HMCan-diff performed sig-
nificantly better than other tools. The performance gain in
the case of high copy number discrepancy for HMCan-diff
was higher than in regions of low copy number discrepancy.

We investigated the effect of applying different combina-
tions of normalizations implemented by HMCan-diff (Sup-
plementary Figure S4). We showed that there is a significant
drop in HMCan-diff prediction accuracy when both GC-
content and copy number bias normalizations are skipped.
When both normalization steps were applied, the recall
value of HMCan-diff at a precision of 0.95 was 0.65, com-
pared to the recall value of 0.22 achieved without normal-
ization for the GC-content bias and copy number. Simply
removing normalization for GC-content bias had less of an
effect on the total performance; yet adding it had a consid-
erable improvement on prediction accuracy.

We also investigated the effect of using replicates with
HMCan-diff on the quality of predictions. We combined
all replicates from the second simulation and ran HMCan-
diff on the combined data. HMCan-diff efficiently used in-
formation from replicates to produce more accurate predic-
tions when compared with combined data predictions (Fig-
ure 3A). We speculate that this difference is due to the fact
that the variable noise level in different replicates may inter-

fere with the real ChIP-seq signal: it may weaken the ChIP-
seq signal in the combined replicates data (Figure 3B).

In theory, to detect differential regions from ChIP-seq
data, one could apply a naive two-step approach: first, call
peaks for each condition, then, by comparing the presence
of peaks at each bin in each condition, define differential re-
gions as regions that have peaks only in one condition. We
applied this strategy on the data from simulation 2. We used
HMCan (copy number-aware peak caller), and found that
HMCan-diff could identify regions with changing density
even when HMCan assigned a ‘peak’ state in both condi-
tions with similar confidence levels (Supplementary Figure
S5). Such observations emphasize the importance of the de-
velopment of a copy number-aware differential peak detec-
tor rather than using a copy number-aware peak finder only.

Evaluation on experimental data

With the absence of a gold standard to benchmark regions
differentially marked by a histone modification, we decided
to carry out an indirect validation. This validation is based
on previously observed correlations between the presence of
certain histone modifications and transcript levels (3). We
selected two different histone marks varying in shape and
correlating positively or negatively with gene expression: (i)
the H3K27me3 mark linked to Polycomb-based gene silenc-
ing and (ii) the H3K27ac mark related to gene activation.
Differential gene expression was assessed using the gener-
alized fold change (GFC) (for the cancer sample compared
to the normal sample) from the RNA-seq data using the
GFold method (34). We checked for correlation between the
GFC value and the copy number status, and did not observe
any significant correlation that may affect subsequent anal-
yses (Supplementary Figure S6).

First, we examined whether HMCan-diff provides a bet-
ter read density normalization compared to other methods.
We compared the correlation between normalized ChIP-seq
read counts (or density values) and GFC for HMCan-diff,
csaw, DiffBind, MAnorm, and MEDIPS (Supplementary
Figure S7). Methods such as ChIPDiff, MACS2, ODIN
and RSEG were excluded from this analysis because they do
not provide information regarding normalized read counts
in their output. HMCan-diff achieved higher correlation
values compared to the other tools on both H3K27me3
and H3K27ac marks. This suggests that HMCan-diff uses
a good as or better normalization strategy than the other
methods.
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Furthermore, we assessed the relationship between the
presence of differential histone marks called by each
method, and changes in gene expression of correspond-
ing genes. We correlated the predicted differential regions
with GFC of gene expression between the cancer samples
and their matching healthy samples. We achieved this by
running all methods using parameters described in Supple-
mentary Table S6. Then, we associated differential peaks to
genes by looking at the overlap of the peaks with 1 kb re-
gions around gene transcription start sites. We used RefSeq
(release 68) gene annotation (35). We defined a score S as
characterizing the changes in gene expression between the
two conditions for a given gene set of size M:

S =
∑M

i = 1
γi log2(G FCi )/M (13)

Here, γ reflects the sign of the correlation between the
histone mark and GFC. In the case of H3K27me3, which
correlates negatively with gene expression, we set γ = − 1
for differential regions found in the normal lung tissue and
control HMEC cell line, and we set γ = 1 for differential
regions found in the cancer A549 and MCF7 cell lines. In
the case of H3K27ac, it positively correlates with gene ex-
pression, thus we invert the sign of γ . The S score is similar
to the DAGE score (20) and is used to correlate differen-
tial regions with gene expression. The higher the value of
S, the better the gene expression changes reproduce (pre-
dicted) changes in histone modification.

We investigated changes in gene expression correspond-
ing to the top predicted differential peaks for all meth-
ods in several scenarios: A549 vs. normal lung tissue and
MCF7 vs. HMEC for histone marks H3K27me3 (Figure
4A and B) and H3K27ac (Supplementary Figure S8A and
B). In both comparisons for both marks, HMCan-diff pre-
dictions had higher S values (and thus a higher expression
fold change) for genes intersecting with differential regions
for H3K27me3 (Figure 4A and B) and H3K27ac (Supple-
mentary Figure S8A and Supplementary Figure S8B), com-
pared to other methods.

Moreover, we compared the values of S for the top dif-
ferential peaks in regions that corresponded to different
copy number states: gain, loss and neutral. We obtained
those regions by applying Control-FREEC on input sam-
ples for the A549 and MCF7 cell lines. In the case of A549
vs. lung tissue, HMCan-diff provided noticeably better S
values than the other methods in the neutral and gained re-
gions for H3K27me3 (Figure 4C) and in regions of gain and
loss for H3K27ac (Supplementary Figure S8C). HMCan-
diff also obtained slightly better values in regions of loss
for H3K27me3 (Figure 4C) and comparable values in neu-
tral regions for H3K27ac (Supplementary Figure S8C). In
the case of MCF7 versus HMEC, HMCan-diff had better
S values across all different copy number regions for the
H3K27me3 mark (Figure 4D). For H3K27ac (Supplemen-
tary Figure S8C), HMCan-diff achieved a noticeably better
performance in regions of loss and neutral copy number,
and slightly better performance in regions of gain.

Overall, we saw a better performance of HMCan-diff for
all copy number regions in all experiments compared to the
other methods tested.
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Figure 4. Regardless of copy number status, gene expression changes cor-
relate better with HMCan-diff predictions than with predictions generated
by the other methods using the H3K27me3 histone mark. Cumulative val-
ues of S corresponding to the top differential peaks when comparing A549
vs. normal lung tissue (A), and MCF7 vs. HMEC (B). Cumulative values
of S grouped by copy number state (neutral, gain and loss): A549 versus
normal lung tissue (C), and MCF7 vs. HMEC (D).

DISCUSSION

We have developed HMCan-diff, a robust method for iden-
tifying differences in chromatin modification from cancer
ChIP-seq data. HMCan-diff takes into account many co-
variates that may affect the process of identifying epigenetic
changes. The core of what differentiates it from other tools
is that in addition to corrections for sequencing depth, it
accounts for copy number variation, GC-content bias and
variable noise levels. HMCan also utilizes information from
replicates if available. Through the combination of these,
HMCan-diff identifies differential regions with higher ac-
curacy.

We compared HMCan-diff with eight other tools
(ChIPDiff, csaw, DiffBind, MACS2, MEDIPS, MAnorm,
ODIN and RSEG). The major conceptual advance for
HMCan-diff over these is its method for explicitly correct-
ing for copy number variation. Even though MEDIPS and
DiffBind may account for possible copy number alterations
(i.e., DiffBind subtracts input to reduce the copy number
effect while MEDIPS includes copy number at the final fil-
tering step), our comparison on both simulated and experi-
mental datasets showed that HMCan-diff gave in most cases
a dramatically superior performance. The remaining meth-
ods do not include any component to handle variable copy
number, and are not able to accurately detect differential re-
gions when copy number variation is present.

We noticed some decrease in performance of HMCan-
diff in simulation 2 compared to simulation 1 (correspond-
ing, respectively, to the presence and absence of genomic
rearrangements between the two conditions). This decrease
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was due to a series of normalizations applied by HMCan-
diff. It applied some density values in regions with relatively
weak simulated ChIP-seq signals close to or below the dif-
ferential threshold.

HMCan-diff accounts for dispersion present in ChIP-seq
data by initializing HMMs based on local Poisson distri-
butions or negative binomial distributions, and defining the
emission probability for HMMs as the joint empirical distri-
bution over density values. Also, HMCan-diff assumes that
each condition has a single copy number profile, so when
using HMCan-diff with replicates, only one copy number
profile is estimated per condition.

Similar to other differential peak detection methods,
HMCan-diff is designed to work with homogenous samples
only. In future, we plan to extend HMCan-diff functional-
ity to handle a mixture of cancer and normal cells. This will
enable us to extend the analysis from cancer cell lines to pri-
mary tumors.

Although here we provide results of HMCan-diff on his-
tone modification data only, the method is generic and can
be applied to other chromatin assays such as DNase-seq
(36) and ATAC-seq (37). Conceptually, the use of HMCan-
diff is not limited to cancer or even mammalian data. Our
method can be applied to compare histone marks between
any closely related species. In this case, reads from the two
libraries should be mapped to the same reference genome.
After analysis, translation of the coordinates of differential
regions can be performed using the UCSC liftOver tool.

CONCLUSIONS

We have presented HMCan-diff, a novel computational
method that aims to detect differences in histone mark pro-
files between samples with significant genomic discrepan-
cies. As the principal application of HMCan-diff, we tar-
get the comparison of epigenetic profiles between cancer
and normal tissue, or between two cancer samples. Associ-
ations between genetic events, e.g., mutations in chromatin
remodeling genes, and changes in histone modification pro-
files in cancer, can now be addressed using our method.
The method is implemented in C++ and is available at
http://www.cbrc.kaust.edu.sa/hmcan.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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