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Abstract
Accurate prediction of lipophilicity—logP—based on molecular structures is a well-established field. Predictions of logP are 
often used to drive forward drug discovery projects. Driven by the SAMPL7 challenge, in this manuscript we describe the 
steps that were taken to construct a novel machine learning model that can predict and generalize well. This model is based 
on the recently described Directed-Message Passing Neural Networks (D-MPNNs). Further enhancements included: both 
the inclusion of additional datasets from ChEMBL (RMSE improvement of 0.03), and the addition of helper tasks (RMSE 
improvement of 0.04). To the best of our knowledge, the concept of adding predictions from other models (Simulations Plus 
logP and logD@pH7.4, respectively) as helper tasks is novel and could be applied in a broader context. The final model 
that we constructed and used to participate in the challenge ranked 2/17 ranked submissions with an RMSE of 0.66, and an 
MAE of 0.48 (submission: Chemprop). On other datasets the model also works well, especially retrospectively applied to 
the SAMPL6 challenge where it would have ranked number one out of all submissions (RMSE of 0.35). Despite the fact that 
our model works well, we conclude with suggestions that are expected to improve the model even further.
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Introduction

Lipophilicity plays a key role in drug discovery, from an 
indirect role in ADME (absorption, distribution, metabo-
lism, and excretion), to toxicity and potency [1, 2]. Typi-
cally, in drug discovery projects, lipophilicity predictions 
are used by the chemist to drive the chemistry forward, i.e. 
to balance lipophilicity and potency [2]. Often however, 
the predicted values of lipophilicity, or derivatives thereof 
(such as LLE) [3], are used as is, without considering the 
uncertainty or error in these predictions. Moreover, the per-
formance of machine learning-based methods reported in 
the literature is typically an overestimation of the true per-
formance of these models [4, 5], because historically they 
were based on a division into random training and test sets 
that were structurally not very different. Time- and scaffold-
based splits would provide more realistic assessments of the 
expected performance [6, 7].

Nevertheless, there are many well-performing programs/
models to estimate logP, and the reader is referred to Man-
nhold et  al. [8] for a more detailed overview. Machine 
learning (ML) approaches that predict logP come in two 
flavors: additive and property-based. Additive models such 
as XlogP3 [9] assume additivity of logP for different atom 
(types), while property-based models such as Simulations 
Plus (hereafter referred to as S+) logP [10] use statistical 
methods and molecular descriptors. A third flavor of meth-
ods, exemplified by COSMOtherm [11] is physics-based 
rather than the result of an ML approach. It is also widely 
used although the calculation speed is usually about an order 
of magnitude lower than for ML models.

The SAMPL blind prediction challenges have been a way 
to quantitively benchmark different methods. For example, 
the recent SAMPL6 challenge for logP assessed 91 different 
prediction methods [12]. Motivated by this opportunity to 
prospectively assess our approach to constructing multitask 
ML models, we decided to participate in the SAMPL7 chal-
lenge [13].

Recent work in ML has revealed the advantages of neural 
networks, especially when employing techniques such as: (1) 
learned representations, and (2) multitasking.
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1. Graph-based convolutional neural networks (GCNNs) 
have shown to hold promise (given sufficient data), 
ever since their application was first described [14]. For 
instance, weave, one type of GCNN, has been shown to 
prospectively outperform Random Forests (RFs) when 
applied to DNA-Encoded Library (DEL) screening 
data [15]. Recently, Directed-message passing neural 
networks (D-MPNNs) that are based on learned repre-
sentations rather than fixed molecular descriptors have 
been introduced [6]. These D-MPNNs have shown to 
perform well across the board without (much) hyper-
parameter optimization. D-MPNNs iteratively generate 
representations of molecules by transmitting information 
across bonds (directed), in the message passing phase. 
Subsequently, in the readout phase, these representa-
tions are used to predict the property of interest. For 
further information refer to Yang et al. and Wu et al. 
[6, 16]. D-MPNNs have shown to outperform RFs and 
other GCNNs across the board [6]. Moreover, in prac-
tice, D-MPNNs have been applied successfully to the 
discovery of novel antibiotics [17].

2. Another advantage of neural networks is their ability 
to learn multiple tasks simultaneously. The concept of 
developing one model for multiple tasks has been first 
utilized in the Kaggle bioactivity challenge hosted by 
Merck, where the winning team used a mix of singletask 
and multitask neural networks [18]. Subsequently, the 
added value has been demonstrated with several differ-
ent datasets [19], such as for modelling of ChEMBL 
bioactivity data [20], and for ADME modelling [21, 22]. 
Overall, multitask models are particularly beneficial if 
the tasks are related [18].

In this manuscript the steps that were undertaken that led 
to our final model are illustrated. Starting from a test set that 
is similar to the molecules of the SAMPL7 set, the following 
steps were performed, and their effects evaluated:

1. Using a default D-MPNN architecture, and adding rdkit 
descriptors

2. Adding extra datasets as separate tasks: ChEMBL/Astra-
Zeneca deposited dataset

3. Running a hyperparameter optimization
4. Adding logP/logD7.4 (= logD@pH7.4) predictions (cal-

culated with S+ ADMET Predictor V9.5 [10]), either as 
descriptors or as tasks.

Overall, those steps led to the final model that scored 
second (out of 17 ranked submissions) in the SAMPL7 LogP 
challenge.

Methods

Datasets and test set creation

Biovia’s Pipeline Pilot v17.2.0.1361 [23] was used for 
most of the data processing steps.

The first set of logP data was extracted from the Opera 
datasets [24], which contained 13,963 structure-logP 
datapoints.

Because we wanted to build a test set that mimicked the 
SAMPL7 challenge molecules, a tailored training/test set 
was created, as follows:

233 molecules were selected for the test set, based on 
their maximum similarity to the 22 SAMPL7 molecules 
[25] being greater than 0.25 (Tanimoto Coefficient (TC), 
ECFP_6 fingerprints [26], as implemented in Pipeline 
Pilot). To make the training/test split simultaneously more 
realistic and more challenging), the training set was con-
structed by taking the remainder of the molecules and fil-
tering out 756 molecules with a similarity > 0.4 compared 
to the test set (TC, ECFP_6 fingerprints) and one molecule 
with an incorrect smiles code, leading to a training set of 
12,973 molecules.

5539 additional datapoints were extracted from 
ChEMBL_25 [27], using logP as a query in the assay 
description. Calculated logP datapoints were discarded. 
For the logD7.4 data we used all data available in the 
AstraZeneca deposited set (DOC ID: CHEMBL3301361).

Finally for models 9, 10, and 12, S+ logP and logD7.4 
were calculated for all molecules using ADMET Predictor 
V9.5 [10]. For model 10 we added S+ logP and logD7.4 
as descriptors (in a separate input layer), while for model 
9 those calculated properties were used as (helper) tasks. 
The model learns S+ logP and logD7.4 as additional tasks 
in the loss function on the basis of the structures. The use 
of these calculated properties as additional helper tasks 
could help regularize the model.

D‑MPNN training

Directed message passing neural networks [6] were trained 
on a workstation containing a NVIDIA RTX6000. Rdkit 
[28] in python was used to convert the molecule files (sdf) 
into a format compatible for use in chemprop (with col-
umns for smiles, logP, logP_Chembl, logD7.4_AZ, etc.).

Because an external test set was used, the test set was 
omitted in the training loop of chemprop (–split_sizes 0.9 
0.1 0). A hyperparameter optimization run was performed 
using the hyperparameter_optimization.py script provided 
by chemprop, which uses hyperopt [29] to tune the hyper-
parameters of the neural network. The search grid was 
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not changed, and a scaffold split (–split_type scaffold_bal-
anced) was used for this evaluation. The settings that were 
used for the “optimized model” were: 5 message pass-
ing  steps (–depth 5), dropout of 0 percent (–dropout 0), 3 
feed forward layers (–ffn_num_layers 3), and 700 neurons 
in the hidden layers (–hidden_size 700).

Confidence intervals on the performance metrics were 
calculated using sklearn [30] and bootstrapping, using mlx-
tend [31].

After having developed the series of models from 1 
through 12 in order to optimize the settings, we built the 
best possible model (12_Full) by creating an emsemble 
of 10 individual models on the basis of all available data 
(Opera, ChEMBL and AZ), without using a separate test 
set. Predictions submitted to the challenge were done on the 
basis of this Model 12_Full, while the Standard Error in the 
Mean (SEM) of the prediction for each compound was esti-
mated on the basis of the 10 individual model predictions. 
For benchmarking purposes, a singletask ensemble model 
consisting of 10 individual models (11_Full) was developed 
using all Opera data.

Other software

The following additional tools were used throughout the 
work described in this manuscript: AlogP (through Biovia’s 
Pipeline Pilot) [32] and XlogP3 [9].

Results

Baseline performance

The starting point for the experiments was the tailored, 
SAMPL7-biased dataset (see methods). For lipophilic-
ity data we resorted primarily to the Opera dataset [24], 
which was used in one of the best performing models for 
the SAMPL6 challenge [12].

In our first set of experiments (Table 1: Models 1–3) we 
studied the impact of varying the settings and adding extra 
descriptors natively available in chemprop. “Out of the box” 
(default) the D-MPNN model already provided compara-
ble performance to commercial solutions (RMSE model 
1 = 0.45; RMSE S+ logP = 0.40). Having no knowledge of 
and no control over the training/test sets used to develop the 
commercial logP predictors, the comparison was primarily 
done to establish a baseline for further experiments.

Adding extra rdkit descriptors (calculated by descriptas-
torus, a library included in the chemprop package) as a sepa-
rate layer, (model 2) didn’t improve the performance on this 
test set, and came at an extra computational cost. To ana-
lyze the relative contributions of the learned representation 
and the molecular descriptors, respectively, we also trained 
a network only based on rdkit descriptors (model 3). As 
expected, this model performed substantially worse (RMSE 
model 3 = 0.60; RMSE model 1 = 0.45).

Table 1  Overview of the 
optimization done on the model, 
performance  (R2, RMSE, 
Spearman ρ) on the test set 
constructed for this challenge

The ordinal model numbers in the left-most column indicate the sequence in which the models were devel-
oped: for example model 6 (5 + AZ_logD7.4) means that the settings/data of model 5 were used and the 
AZ_logD7.4 data were added. The 95% confidence interval for the different performance metrics is shown 
between square brackets

Model Description R2 RMSE Spearman ρ

– AlogP 0.83 [0.71,0.90] 0.73 [0.55,0.93] 0.90 [0.85,0.94]
– XlogP3 0.85 [0.75,0.92] 0.67 [0.48,0.87] 0.91 [0.87,0.95]
– S+ logP 0.95 [0.91,0.97] 0.40 [0.32,0.48] 0.97 [0.94,0.98]
1 default 0.93 [0.89,0.96] 0.45 [0.36,0.57] 0.96 [0.94,0.97]
2 1 + rdkit 0.93 [0.89,0.96] 0.45 [0.37,0.55] 0.96 [0.94,0.98]
3 rdkit only 0.88 [0.82,0.92] 0.60 [0.50,0.70] 0.94 [0.91,0.96]
4 1 + ChEMBL merged 0.88 [0.81,0.92] 0.60 [0.51,0.71] 0.94 [0.92,0.96]
5 1 + ChEMBL separate 0.93 [0.88,0.95] 0.47 [0.38,0.58] 0.96 [0.94,0.98]
6 5 + AZ_logD7.4 0.94 [0.91,0.96] 0.42 [0.35,0.50] 0.97 [0.95,0.97]
7 5 + AZ_ADME 0.94 [0.90,0.96] 0.44 [0.36,0.51] 0.97 [0.95,0.98]
8 6 + hyperopt parameters 0.93 [0.88,0.95] 0.47 [0.39,0.58] 0.96 [0.94,0.97]
9 6 + S+ logP/logD7.4 as tasks 0.95 [0.93,0.97] 0.38 [0.32,0.44] 0.97 [0.96,0.98]
10 6 + S+ logP/logD7.4 as descriptors 0.95 [0.92,0.97] 0.39 [0.34,0.44] 0.97 [0.96,0.98]
11 1, ensemble of 10 0.94 [0.89,0.96] 0.44 [0.35,0.55] 0.96 [0.94,0.98]
12 9, ensemble of 10 0.95 [0.92,0.97] 0.39 [0.33,0.46] 0.97 [0.96,0.98]
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Adding datasets as separate endpoints

To further improve the model performance and general-
izability, two data sets were added to the Opera set (see 
methods):

1. Experimental logP data from ChEMBL,
2. DMPK/Physchem data, deposited by AstraZeneca.

Here we were interested in observing in which way addi-
tional data could help to improve the model. Separating the 
data for the two different endpoints (i.e. logP_Opera, logP_
ChEMBL) outperformed aggregating all public data in one 
endpoint (i.e. logP_Opera + ChEMBL), but there is no sub-
stantial difference between model 5 and the default model 
(RMSE model 5 = 0.47; RMSE model 1 = 0.45). Expecting 
that generalizability will improve with more, chemically dif-
ferent data sets, subsequent models were developed with all 
data used to develop model 5.

The next two models (6 and 7) were developed with 
ChEMBL data from AstraZeneca for endpoints that may 
be correlated with logP: plasma protein binding, kinetic 
solubility@pH7.4, logD7.4, and intrinsic (microsomal 
and hepatocyte) clearance across species. These endpoints 
were used as “helper tasks.” In model 6 we only added the 
logD7.4 data, while in model 7 we added all data for the 4 
endpoints. This was done to study the effect of including 
possibly less related tasks. Both models performed compara-
bly and clearly better than model 5, proving that adding tasks 
for related properties is beneficial. Model 6 is somewhat 
better than model 7 (RMSE model 7 = 0.44; RMSE model 
6 = 0.42), indicating that adding less related tasks does not 
provide any benefit. Subsequent models were developed 
with all data used to develop model 6. With model 8, we 
tried to improve on model 6 by tuning the hyperparameters 
(doing a run of hyperopt; refer to methods), and using the 
best settings. Tuning did not improve the model performance 
for this data set, however. Further work would be needed to 
assess whether other settings work better.

Using predictions from other models as molecular 
descriptors or as “helper tasks”

Because adding AstraZeneca logD7.4 data led to increased 
performance, we decided to study the effect of adding cal-
culated helper tasks. For this, predictions made by S+ logP 
and S+ logD7.4 were added. These models were chosen for 
several reasons:

First, because of S+’s excellent neural network-based  pKa 
models, which were developed with over 25,000 datapoints 
[33], and contribute to the accuracy of their logD7.4 model. 
Second, perhaps more importantly, because it could help 

regularize the model, when those properties are added as 
tasks (i.e. by learning the relationship between logP and 
logD). Based on this we hypothesized that adding both 
S+ logP and logD7.4 predictions could help improve 
performance.

Indeed, as shown in Table  1, adding S+ logP and 
S+ logD7.4 either as “helper tasks” (model 9) or as molecu-
lar descriptors (model 10) improves the performance of the 
model. One significant practical benefit of adding logP and 
logD7.4 as helper tasks rather than as descriptors, however, 
is that the helper tasks are only necessary to optimize the 
neural network (to make the model more robust and gener-
alizable), but are not used to make actual model predictions. 
For that reason, slow models used as helper tasks can be 
tolerated.

Finally, we compared the performance of multitask 
ensemble model 12 (model 9, but an ensemble of 10) with 
equivalent singletask ensemble model 11 (default model 1, 
but an ensemble of 10). The former model performed bet-
ter, illustrating that the helper tasks and additional data did 
have a positive impact on the test set performance. The final 
performance of the model on the test set is shown in Fig. 1.

Performance of the final full model on external sets

Our primary goal was to develop a model that would be both 
generally applicable and perform well in the SAMPL7 chal-
lenge. As indicated in Methods, we developed two models 
on the basis of all available data (without having separate 
training and test sets): multitask ensemble model 12_Full 
and—for comparison—singletask ensemble model 11_Full. 
The performance of model 12_Full on the SAMPL7 com-
pounds is shown in Fig. 2. Compared to other SAMPL7 
competitors, our final multitask model (12_Full) performs 
very well: it ranked 2nd out of 17 ranked submissions, and 
4th out of all 36 submissions. To assess the general applica-
bility of our method we further benchmarked model 12_Full 
by applying it to several external data sets. Results for the 
SAMPL6 [12], SAMPL7, and Martel et al. [4] data sets are 
shown in Table 2. To verify that our observations regard-
ing the benefits of adding extra data and using helper tasks 
were not limited to one data set, we also applied singletask 
model 11_Full to these external data sets. In addition, we 
established a baseline by applying the commercial models 
(AlogP, XlogP3 and S+ logP). 

On both the SAMPL6 challenge and SAMPL7 challenge 
data sets multitask model 12_Full performed better than all 
other models we compared it to (singletask model 11_Full, 
AlogP, XlogP3 and S+ logP). In fact, for the SAMPL6 com-
pound set, retrospectively analyzed, model 12_Full would 
have ranked number one, with an RMSE of 0.34, outper-
forming other methods like cosmotherm_FINE19 (RMSE: 
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0.38), and the global Xgboost-based QSPR model (RMSE: 
0.39) [12].

For the Martel data set model 12_Full ranked second, 
close in performance to XlogP3. This dataset has been 
described as a challenging dataset, and in terms of abso-
lute  R2 and RMSE values, none of the five models perform 
adequately. More work would be needed to understand the 
poor performance of all models on the Martel data set, but 
that is beyond the scope of this paper.

In all cases the multitask model (12_Full) outperformed 
the singletask model (11_Full), although even the latter 
would have ranked a respectable 11/36 in the SAMPL7 chal-
lenge (considering all submissions).

Analysis of predictions in terms of structures

To further investigate in which cases model 12_Full performs 
well, and in which cases it does less well, we analyzed the 
three best and three worst predictions, respectively, for the 
SAMPL7 challenge, and compared model 12_Full to two 
other high-ranking methods from the SAMPL7 challenge 
(Table 3). Both overpredicted compounds, SM42 and SM43, 

contain the same substructure, but the shift between the two 
was well-predicted (i.e. ΔlogP(phenyl → N-dimethyl is 0.91 
experimentally and 0.66 predicted by model 12_Full). This 
suggests that our model 12_Full overestimates the lipophilic-
ity of the phenyl-isoxazole-sulfonamide moiety. Both SM42 
and SM43 were well predicted by TFE MLR (ranked first in 
the SAMPL7 challenge), which is a multiple linear regression 
model trained on a set of 82 druglike molecules (60 molecules 
containing sulfonamides) [34], indicating that for this particu-
lar moiety a more general model like ours does not perform as 
well as a tailor-made model. COSMO-RS [11, 35] exhibited 
the same behavior as our model, overpredicting both SM42 
and SM43.

Perhaps more puzzling is that model 12_Full, COSMO-
RS, and TFE MLR overpredict SM36, while they all cor-
rectly predict SM37. This is a similar transformation as 
SM42 to SM43 (phenyl → N-dimethyl). In this case, how-
ever, the phenyl group has been experimentally deter-
mined to be less lipophilic than the N-dimethyl moiety 
(ΔlogP(phenyl → N-dimethyl) is -0.69 experimentally and 
0.69 predicted by model 12_Full). Generally, a phenyl group 
is more lipophilic than a N-dimethyl moiety, but this is not 

Fig. 1  Scatter plot of the 
performance of the final model 
(Experimental log P versus Pre-
dicted logP) on the test set. On 
the top a distribution histogram 
of the predictions is shown and 
on the right a distribution his-
togram of the experimental val-
ues. The shaded area (very close 
to the identity line) represents 
the 95% confidence interval for 
the regression estimate
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Fig. 2  Scatter plot of the 
performance of the final model 
(Experimental log P versus Pre-
dicted logP) on the SAMPL7 
molecules. The compounds dis-
cussed in the text and shown in 
Table 3 are labeled. On the top 
a distribution histogram of the 
predictions is shown and on the 
right a distribution histogram 
of the experimental values. 
The shaded area represents the 
95% confidence interval for the 
regression estimate

Table 2  Overview of the 
performance of the final 
multitask ensemble model (12_
Full), used for the challenge, the 
singletask ensemble model (11_
Full), and several commercial 
logP prediction tools on the 
SAMPL7, SAMPL6 and Martel 
et al. data sets [4]

The 95% confidence interval for the different performance metrics is shown between square brackets.

Method Dataset R2 RMSE Spearman ρ

AlogP SAMPL7 − 0.30 [− 1.78,0.34] 0.82 [0.59,1.01] 0.42 [− 0.09,0.73]
XlogP3 SAMPL7 0.01 [− 1.12,0.46] 0.72 [0.55,0.87] 0.52 [0.07,0.78]
S+ logP SAMPL7 0.06 [− 1.23,0.64] 0.70 [0.41,0.93] 0.62 [0.19,0.87]
Model 11_Full SAMPL7 − 0.17 [− 1.49,0.38] 0.78 [0.52,1.01] 0.60 [0.13,0.86]
Model 12_Full SAMPL7 0.17 [− 0.95,0.65] 0.66 [0.40,0.89] 0.63 [0.20,0.91]
AlogP SAMPL6 0.56 [− 0.73,0.84] 0.44 [0.25,0.62] 0.83 [0.32,0.97]
XlogP3 SAMPL6 0.54 [− 0.69,0.82] 0.45 [0.29,0.58] 0.71 [0.05,0.94]
S+ logP SAMPL6 0.42 [− 1.17,0.80] 0.51 [0.32,0.65] 0.71 [0.03,0.94]
Model 11_Full SAMPL6 0.71 [− 0.25,0.90] 0.36 [0.24,0.46] 0.85 [0.40,0.99]
Model 12_Full SAMPL6 0.75 [− 0.08,0.93] 0.34 [0.17,0.46] 0.82 [0.30,0.99]
AlogP Martel et al. − 0.15 [− 0.34,− 0.00] 1.27 [1.19,1.34] 0.73 [0.69,0.76]
XlogP3 Martel et al. 0.04 [− 0.11,0.16] 1.16 [1.10,1.21] 0.78 [0.75,0.81]
S+ logP Martel et al. − 0.26 [− 0.45,− 0.10] 1.33 [1.26,1.39] 0.71 [0.67,0.75]
Model 11_Full Martel et al. − 0.33 [− 0.51,− 0.18] 1.36 [1.31,1.41] 0.74 [0.70,0.77]
Model 12_Full Martel et al. − 0.00 [− 0.14,0.12] 1.18 [1.13,1.23] 0.76 [0.73,0.80]
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observed for the latter case. More work would be needed to 
understand this puzzling outlier.

Discussion and outlook

This manuscript serves as a walkthrough for the steps that 
were taken to develop an optimal model, with which to par-
ticipate in the SAMPL7 challenge. Overall, the model that 
we developed performs very well, although in most cases 
only incremental improvements between subsequent models 
were observed.

Additional combinations can be tested to improve the 
model performance even more: using additional data (i.e. 
Martel’s) and/or predictions by other models (e.g. XlogP3) 
may well impact the model performance favorably. Although 

such a comprehensive investigation is beyond the scope of 
this paper, it may well be the topic of future work of ours.

In and by itself, the concept of modelling multiple prop-
erties as separate tasks within a multitask approach is not 
novel. What is novel, however, is that here we also consider 
different datasets for the same property as different tasks 
(e.g. ChEMBL_logP and Opera_logP). For many other types 
of assays this kind of data separation should make sense, 
too: e.g. shake-flask versus chromatographic logD, ther-
modynamic versus kinetic solubility, and functional versus 
binding assays.

Training a logP model on the basis of multiple predicted 
values is not novel per se: this has e.g. been done by JPlogP 
[36]. However, to the best of our knowledge, the addition of 
calculated properties as helper tasks to a multitask model is 
novel, and we expect it to have a wider applicability. Since 

Table 3  The top three 
compounds in terms of largest 
error (SM43, SM42 and SM36) 
and lowest error (SM26, SM37 
and SM28) for model 12_Full

The SEMs for both the experimental data and the predictions by model 12_Full are given behind the ± sign. 
Results from two other methods (one statistical, one physical) that participated in the challenge, TFE MLR 
and COSMO-RS, are shown as a reference [34, 35]

Structure ID Experimental Model _Full TFE MLR COSMO-RS

  

SM43 0.85 ± 0.01 2.51 ± 0.10 0.38 2.59

  

SM42 1.76 ± 0.03 3.16 ± 0.05 1.57 3.48

  

SM36 0.76 ± 0.05 2.05 ± 0.10 2.63 2.29

  

SM37 1.45 ± 0.10 1.36 ± 0.11 1.44 1.72

  

SM26 1.04 ± 0.01 1.11 ± 0.06 1.18 1.22

  

SM28 1.18 ± 0.08 1.03 ± 0.06 1.87 0.65
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these tasks only need to be calculated once, comprehensive 
further studies can easily and should be done to investigate 
whether the models improve if a larger set of (diverse) pre-
dictors were added as helper tasks.

An additional area of improvement could be the inclusion 
of physics-based features/predictions. ML models based on 
QM-derived features, such as ANI [37], allow for rapid esti-
mation of QM-derived features. For ADME modelling QM-
derived features have indeed improved model performance. 
Rather than going the QM-ML route, however, one could 
use other physics-based predictions that provide accurate 
logP estimates as additional tasks [38] in the same vein as 
we describe in this paper.

Finally, one improvement that is absolutely essential 
(not only for our models) is the proper estimation of the 
uncertainty of the predictions. Recently bayesian-based 
approaches have been described [39], also e.g. comple-
mentary to D-MPNN [40]. If uncertainties of the predic-
tions could be accurately estimated this would impact in 
several ways: for instance to decide which compounds need 
to be made/tested in drug discovery projects, but also to 
decide which compounds need to be made/tested in order to 
improve the model.

Conclusions

In this manuscript we have discussed the steps that were 
taken to create an optimal D-MPNN based logP prediction 
model. This model was constructed for the SAMPL7 chal-
lenge, where it scored 2/17 in ranked submissions, and 4/36 
in all submissions. Three key improvements over the default 
D-MPNN model were the result of using: (1) additional data 
sets for the same and related properties as helper tasks, (2) 
predicted properties (S+ logP/logD7.4) as helper tasks, and 
(3) an ensemble of models. In a retrospective analysis the 
model also outperformed other methods when applied to 
the compounds from the previous SAMPL6 challenge. Per-
formance was second of the methods applied to the Mar-
tel data set, but not very good in absolute terms, indicating 
that further work is warranted. Based on our results, we are 
convinced that ensembles of multitask models, developed 
with helper tasks and employing predictions by other models 
for related properties have great potential application well 
beyond modelling logP.
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