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ALF‑Score++, a novel approach 
to transfer knowledge and predict 
network‑based walkability scores 
across cities
Ali M. S. Alfosool1, Yuanzhu Chen2* & Daniel Fuller3

Walkability is an important measure with strong ties to our health. However, there are existing gaps 
in the literature. Our previous work proposed new approaches to address existing limitations. This 
paper explores new ways of applying transferability using transfer-learning. Road networks, POIs, and 
road-related characteristics grow/change over time. Moreover, calculating walkability for all locations 
in all cities is very time-consuming. Transferability enables reuse of already-learned knowledge 
for continued learning, reduce training time, resource consumption, training labels and improve 
prediction accuracy. We propose ALF-Score++, that reuses trained models to generate transferable 
models capable of predicting walkability score for cities not seen in the process. We trained transfer-
learned models for St. John’s NL and Montréal QC and used them to predict walkability scores for 
Kingston ON and Vancouver BC. MAE error of 13.87 units (ranging 0–100) was achieved for transfer-
learning using MLP and 4.56 units for direct-training (random forest) on personalized clusters.

Walkability is a concept that many researchers have used to operationalize characteristics of the environment 
that support walking. Although there are multiple conceptual definitions of walkability in the literature1–7 there 
is no single agreed-upon operational definition of walkability. There are a number of existing walkability meas-
ures that provide walkability scores for Canada each with different strengths and limitations. While a number 
of city-specific walkability measures have been developed, there are two prominent, national-level walkability 
measures available in Canada: Walk Score and the Canadian Active Living Environments measure (Can-ALE). 
These measures each has different strengths and limitations. Both Walk Score and Can-ALE are heavily used/
cited8–11. But there are some noticeable drawbacks and opportunities to improve these measures. These limita-
tions are important and are the result of limited interdisciplinary work between the fields of computer science, 
public health, and urban planning. The important limitations of previous works12–16 include: incomplete use of 
road structures, lack of predictive models, low spatial resolution, lack of user opinion, lack of personalization, 
and limited transferability to new cities. For the purpose of comparison in this paper, we choose Can-ALE17 as 
it is commonly used by researchers and end-users alike.

In our previous paper, we created the Active Living Feature Score, ALF-Score18, a completely new approach to 
measure walkability. This predictive approach allows us to use various important features currently not utilized 
by most existing walkability measures, such as road network structure as nodes, road embedding, complex net-
works centrality measures, and user opinion along with a new approach of using machine learning to estimate 
walkability scores. By using a predictive approach ALF-Score is able to generate walkability scores with high 
spatial resolution allowing us to predict walkability scores for any point along a road network. To briefly explain 
these features, road embedding generally refers to a way to represent road networks as vectors and can also help 
reduce dimensions of the network while capturing the topology of the network. Centrality measures on the other 
hand aim to find important nodes/edges in networks under various criteria, assumptions and using different 
methods and techniques.

Moreover, in our paper ALF-Score+19 which followed after ALF-Score, we showed an extension of ALF-Score 
which utilizes user and system defined user-demographics to create individual sociodemographic profiles to 
develop profile clusters. User labels and profile clusters are then used by ALF-Score’s pipeline to generate machine 
learning predictive models capable of estimating personalized walkability scores specific to each profile cluster. 
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Examples of cluster profiles include for example groups of volunteer participants with similar or varying demo-
graphics who may have a similar view of walkability. For example, female professionals in their 20’s and 30’s who 
do not live alone and have no children who perceive walkable distances as being greater than 1500 meters, may 
perceive walkability similarly and can form a profile cluster.

In this paper, we introduce ALF-Score++ which is another extension of ALF-Score. ALF-Score++ focuses on 
transferability. The overall goal of ALF-Score++ is to ensure the pipeline is capable of generating reproducible 
predictive walkability models that are transferable and able to generate walkability scores for new cities without 
the need for any new user data (zero-user-input approach, further explained in methods section) or training.

Our main objective is to ensure our pipeline can generate transferable models. Transfer learning is yet another 
missing technique from many of the existing walkability measures. Being able to generate reproducible and 
transferable predictive walkability models is an important component of which ALF-Score++ takes advantage 
of in two ways: (1) by gaining the ability to utilize previously learned knowledge when directly generating walk-
ability scores for new cities (zero-user-input), (2) by using this previously learned knowledge as a base to train 
new models which can lead to reduced training time, improved accuracy, reduced resource consumption, and 
reduction in the labels required for supervised learning tasks. A well generalized model will have the capability of 
transferring its knowledge to various cities never seen during its training to generate accurate walkability scores 
in a fraction of the time without the need for any new user input within the target city.

In this paper we will highlight application of ALF-Score++ to three new cities of Kingston Ontario (ON), 
Vancouver British Columbia (BC), and Montréal Quebec (QC).

Background
Ensuring ALF-Score’s pipeline (Fig. 1) does not engage in repeated wasteful activities is one of the sub-objectives 
of this research. This is particularly important since road networks can vary in size with some cities being very 
small (e.g. with a population of a few hundred) while some other cities could be very large and dense (eg. Tokyo, 
Japan with a population of over 37 million people in just one city). Table 1 shows a list of various cities alongside 

Figure 1.   ALF-Score++ utilizes features similar to that of ALF-Score and ALF-Score+ such as road network 
structure, POI, centrality measures and road embedding. GLEPO’s linear extension of user opinions18 that 
produces a global view of relative user opinions, is then aligned with the features as an input to the machine 
learning processes. Models trained by ALF-Score++ are applicable to cities previously seen and unseen by the 
algorithms during the training processes. Walkability estimates that are produced through trained models will 
have a high spatial resolution, be representative of user opinion and provide a better insight of different regions 
and neighbourhoods. (Figure drawn by the authors).
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their road network size, number of points of interests (POIs), population and total land area size. Processing 
data from St. John’s, NL as opposed to data from Toronto, ON will have significantly different resource require-
ment and time consumption due to the change in the size of the city leading to an extended set of complexities 
introduced into the network. If the algorithms are not optimized, this difference in requirements may lead to 
infeasibility of the research. In this research we have experimented with all cities mentioned in Table 1; however, 
we will only highlight the results for Kingston ON, Vancouver BC, and Montréal QC.

Transfer learning is the process of re-utilizing the knowledge learned from a task in other tasks. In many 
machine learning approaches, solving a single task at hand has been the main focus, but now development of 
approaches that help with transfer learning has become a very popular focus in the recent years20. As with most 
real-world problems, specifically in machine learning, collecting labelled data is a time consuming, expensive21 
and difficult task. Transfer learning uses the knowledge learned from previous problems to solve new but related 
problems22. As a result of its approach, transfer learning can help reduce training time, resources and the required 
labeled data23 as well as improve overall accuracy. Weiss et al.24 provide a much more formal definition of transfer 
learning as the following: “given a source domain DS with a corresponding source task TS and a target domain 
DT with a corresponding task TT , transfer learning is the process of improving the target predictive function 
fT (·) by using the related information from DS and TS , where DS  =DT or TS  =TT”.

The general idea behind transfer learning is to apply a model that was previously trained on labelled data (in 
case of supervised learning) to another similar task with little data available and instead of starting from scratch, 
start with some existing knowledge and captured patterns. Transfer learning is typically used in computer vision. 
For example, the weights of a model that was trained to detect apples could be transferred to another task of 
detecting fruits. In this case, instead of training the new model to detect apples from scratch, the knowledge 
about detecting apples are transferred and the algorithm now looks to learn how to detect other fruits. Transfer 
learning is a technique that not only requires significantly less data for training, but it will also speed up the 
training process25.

Transfer learning falls under representation learning with the goal of using the same representation in various 
tasks. According to Ian Goodfellow26 transfer learning can be viewed as a particular form of multi-task learning 
where it normally revolves around supervised learning. Although, transfer learning can also be used to solve 
unsupervised learning tasks. The goal of transfer learning is to take advantage of previously trained models and to 
extract knowledge that would be useful in the new task. However, transfer learning is also very useful to directly 
generate predictions in another environment and for other tasks without any more learning26. There are a few 
approaches to transfer learning including feature extraction, training generalized models, and use of existing 
pre-train models. When it comes to feature extraction, determining the best representation for the problem at 
hand is a key task which if done properly, can often lead to much better and more accurate results. Carefully 
selected features can often lead to a powerful and well-generalized model that can be applied to various related 
problems. Furthermore, using already available pre-trained models is yet another, very popular option. In fact 
there are numerous pre-trained models available online that provide ready weights for many popular tasks such 
as classifying certain types of images, object detection and object tracking. It is important to highlight that this 
approach only requires access to a previously trained model, and not the entire dataset. Additionally, another 
approach to solve a task using transfer learning where there is not enough data available and no pre-trained mod-
els can be found, is to take the previous approach a step further and train models that are designed for another 
but similar task and that have an abundance of data. These models can then act as a starting point to address the 
original task. To highlight the difference with the previous approach, in this technique to solve task A, we will be 
doing our own training on a similar task B. Once we are satisfied with the model, we can now transfer and reuse 
this knowledge. Goodfellow in his book26 further discussed two extreme forms of transfer learning, namely: (1) 
one-shot learning — which only one labeled example of the transfer task is given while, (2) zero-shot learning, 
has no labeled example given.

Methods
ALF-Score++ is the second extension of ALF-Score pipeline with a focus on transferability. ALF-Score++ pipeline 
(Fig. 1) utilizes a map database that contains road network data as well as POIs extracted from Statistics Canada27 
and OpenStreetMap (OSM)28 respectively. The map database feeds into two separate processes: (1) GIS feature 

Table 1.   List of road networks for various cities with their network and POI sizes that have been experimented 
with in this research. For brevity, in this paper we mostly focus on 3 cities of Kingston, Vancouver and 
Montréal. Nodes and edges are extracted from road networks. Population density and the total land area 
information are excerpted from Wikipedia.

City # of nodes # of edges # of POIs Population density
Total land 
area (km2)

Victoria, BC 6770 8593 3318 85,792 19.47 

Kingston Metro, ON 3427 4769 813 161,175 1906.82 

St. John’s Metro, NL 5364 6851 592 205,955 804.63 

Vancouver Metro, BC 45,125 60,299 13,321 2,463,431 2878.52 

Montréal Metro, QC 76,663 114,414 10,045 4,247,000 4604.26 

Toronto Metro, ON 479,520 Over a million 23,930 6,417,516 5905.71 
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extraction, (2) user data extraction through a web-tool interface. The GIS feature extraction process extracts 
and generates the required features such as node lists, edge lists, various centrality measures, road embedding, 
and various POI features. The output of this process is fed into the machine learning component as one of its 
three main input feature sets. User data extraction process involves a web-tool interface that utilizes road data 
to feature various points on an interactive map where users provide their opinion and data. User data is broken 
into two separate processes, each of which will result in a separate input to the machine learning component. 
The first process is the collection of user opinions through the web-tool where users provide relative ranks for 
various points on the map. This process passes the user opinion to our Generalized Linear Extension of Partial 
Orders or GLEPO18 algorithm to convert users’ relative ranks to a globalized rank among all submissions. The 
output of GLEPO is fed to the machine learning component as it’s second feature set. This input serves as the 
y label vector during the training and testing processes. The second process of user data revolves around their 
demographics. This process uses various clustering techniques and unsupervised learning methods to generate  
profile clusters. These profile clusters represent users deemed by the algorithm as similar. These profile clusters 
are then fed into the machine learning component as its third feature set. The machine learning component 
utilizes these three feature sets in conjunction with its internal transfer learning process and the general flow is 
as follows. GIS features form a feature set and are then associated with specific locations that have their rank-
ings available through the GLEPO algorithm. This feature set is in the form of {features, label}: {x, y}, where x 
represent  an entry of features  and y represent the label. The expectation from the trained models is that they 
will produce a prediction given an unlabelled set such as {features, ?}: {x, ?} where ? would be replaced with y′ 
prediction. These models will be trained on the data from only one specific city. The first round of models trained 
through a deep neural network technique will then be used to transfer their knowledge to the second round of 
training where transfer learning utilizes appropriate layers while replacing the output layer. The new data used 
in the transfer learning process will then include features and user opinion from a second city. The output will be 
a more generalized model capable of transferring its knowledge to cities never seen during its training process. 
The personalization process utilizes this transfer learning approach to do the same task but on each separate 
profile cluster, resulting in multiple models capable of predicting personalized walkability scores for cities seen 
or never seen by the algorithm.

Data preparation.  As an overview to the data used in this research, the general structure of our road net-
work and feature set remains the same to one described in our paper ALF-Score18. We collected a small set of 
user opinion data containing 1050 user entries covering 895 unique locations for the city of St. John’s, NL. This 
includes n = 40 users with n = 20 (50 %) women with an average age of 48.6 (standard deviation = 17.1). The 
most commonly reported walkable distance was 800–1000 meters while ten participants (25%) reported living 
alone whereas 14 participants (35%) reported living with children with the average number of children being 2.6 
(standard deviation = 1.2). The most commonly reported professions were Retired n = 8 (20%), Professor n = 4 
(10%), and Nurse n = 4 (10%). In addition, more user opinions have been collected which are specific to the 
city of Montréal, QC containing 785 user entries covering 775 unique locations. Similarly, this includes n = 21 
users with n = 13 (62%) men with an average age of 40.95 (standard deviation = 17.29). The most commonly 
reported walkable distance was 1200–1400 meters while five participants (24%) reported living alone whereas 
8 participants (38%) reported living with children. The most commonly reported professions were Professional 
n = 4 (19%), Professor n = 3 (14%), and Retired n = 3 (14%).

Participation in the crowd-sourced data collection is completely voluntarily. All participants provide their 
informed consent online through our online crowd-sourcing web-tool. The consent form is the first thing par-
ticipants see on the web-tool. Participants are informed that their participation is voluntarily. A popup appears 
when accessing the web-tool informing volunteer participants that by submitting the form on our online crowd-
sourcing web-tool, they confirm they have fully read and understood our consent form and privacy notes and 
have consented to participate in this study and have their data collected and used in the research. Relevant 
information such as the informed consent form as well as our privacy notes are visibly and clearly available via 
the popup window and throughout the web-tool. Participants are notified online through the popup and footer 
content that user submission will automatically be considered as their consent to participate. The proposal for 
this research has been reviewed by the Interdisciplinary Committee on Ethics in Human Research (ICEHR) and 
found to be in compliance (ICEHR Approval Number: 20220406-SC) with Memorial University’s ethics policy 
and in accordance with the Tri-Council Policy Statement on Ethical Conduct for Research Involving Humans 
(TCPS2), the project has been granted full ethics clearance. This study did not include any minors.

To prepare the map database, the first step is to gather the feature set that includes various information such as 
POI, road embedding and road network data. The POI data is available freely through OpenStreetMap (OSM)28. 
We utilized Overpass-Turbo29, with the help of a customized extraction code, to extract OSM POIs from 53 
unique amenity categories. Once complete, we devised a new algorithm that creates POI-based features for all 
nodes within the network. Below is an example of a single POI contained within a GeoJSON file extracted from 
OSM through Overpass-Turbo. Each POI point is divided into 2 parts: (1) description, (2) geometry. Description 
contains the type and properties of the point while the geometry contains location’s type as well as its coordinates:

•	 “type”: “Feature”, “properties”: “id”: “node/1401297904”,
	   “amenity”: “fire_station”, “name”: “Caserne 29 Rosemont”
	   “geometry”: “type”: “Point”, “coordinates”: [ -73.5762681, 45.5453509 ]

As each POI is represented by a node on the road, we assign a value to 10 separate distance ranges which rep-
resent the number of POIs of a specific category within a specific distance range to a specific node. Based on 53 
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amenity categories, we can produce a POI feature list containing 530 feature columns and n rows for the number 
of unique nodes in the road network. Below is an example of one possible POI feature header structure followed 
by an example of a single entry for a unique node:

•	 node_id lon lat bar_200 bar_400 bar_600 ... bbq_200 bbq_400 bbq_600 ...
	   317 -73.57113438 45.51020696 0 6 12 ... 14 11 12 ...

While road network data is available freely from both OSM as well as Statistics Canada27, we chose to extract them 
from Statistics Canada in the form of ArcGIS Shapefile30. The Shapefile for the entire Canada was extracted for the 
year 2016 which is the most recent Census year available at the time of this research. Furthermore, QGIS31 which 
is “a free and open-source cross-platform desktop geographic information system application that supports view-
ing, editing, and analysis of geospatial data”, was used to extract road networks specific to four different cities of 
St. John’s NL, Montréal QC, Vancouver BC and Kingston ON from the single large Shapefile containing the road 
network for the entire Canada. All of the individual city sub-networks were further processed to build specific 
node lists and edge lists which are used in various locations within the pipeline. We utilize “shp2graph” package32 
through R33 to generate node lists and edge lists for our road networks which have been stored in the form of 
graphs. It is important to mention that depending on the data source and the format, the geographical coordinate 
systems may differ . For instance, some formats may present coordinates in  UTM34 or WGS35 while others may 
present them in different coordinate systems. Appropriate conversions, where applicable, may be required. As 
is the case with many researches, it is absolutely crucial to maintain a unified unit of measurement throughout 
the research to avoid any unwanted disasters36. Individual city sub-networks are also processed to generate 
various complex networks features such as different centralities as well as road embedding features for all road 
networks. Furthermore, when working with large networks, graph reduction and reconstruction techniques37 
may be applicable. Additionally, the edge list for each city is processed through Cytoscape38 which is “an open 
source bioinformatics software platform for visualizing molecular interaction networks and integrating with 
gene expression profiles and other state data”, to generate a list of network features. To generate road embedding 
features, edge lists are processed through Node2vec39 which is “an algorithm to generate vector representations of 
nodes on a graph”. All features that are not numerical go through an encoding processed called one-hot encoding 
to prepare the features for our machine learning processes.

The next step needed to take to prepare the pipeline is the application of Generalized Linear Extension of 
Partial Orders or GLEPO18. GLEPO requires a few data sets such as user opinion, node list and a distance matrix 
connecting all the nodes within the network. The overall GLEPO pipeline involves multiple algorithms such as 
seperateBySub which is used to prepare user opinions into subsets that are suitable for processing. Various other 
algorithms such as calculateDistance, FindDistance, addToSorted, FindVLink, RandomizeInsertion, normalize 
and GLEPO are also used to further process user opinion and to convert their relative rankings into generalized 
scores which are globalized among all opinions. The output of the GLEPO pipeline is a generalized list of user 
opinion which can be fed into the next pipeline. This globalized list is crucial to the entire structure of ALF-Score 
as it plays the important role of ground truth used in the machine learning component.

Experiments.  There are three main experimentation scenarios used to guide this research forward, and they 
are: (1) matching approach, (2) combined approach, (3) zero-user-input approach.

Matching approach is a scenario where users’ opinions from a specific city are used to train and test models 
for the matching city. This approach is an important base to our machine learning pipeline and focuses on testing 
the feasibility and accuracy of the pipeline derived from users’ opinions and feature set belonging to the same 
city. For instance, using users’ opinions and feature set collected for the city of St. John’s, NL to train and test 
models on St. John’s. Furthermore, this approach is used for testing the scalability of the model to ensure process 
stability when it comes to very large road features and user opinion data.

Combined approach is an approach that focuses on transferability of ALF-Score++’s pipeline. This approach 
uses data from multiple cities to train and test models. These models can then be applied to cities either seen 
by the pipeline during the training process or cities never seen by the algorithms before. This approach aims 
to test and verify that transfer learning can improve the overall generalization of the models while broadening 
models’ applicability. There are multiple variations in this scenario, specifically how the training and the testing 
sets are selected. Two of our commonly used variations are random and semi-random selections. In the random 
selection, a typical 80–20% train-test distribution is used that includes data from two cities. In the semi-random 
approach, 50% of the data for only one city is randomly selected for testing purposes whereas the remaining 50% 
is combined with the entire data from the second city to form the training set. The model is tested on both cities.

Zero-user-input approach aims to use models that are previously trained on specific city/cities to predict 
walkability scores of other cities. This approach takes advantage of predefined features and pre-trained models 
to generate walkability scores for points in cities never seen by the algorithms. This approach is very important 
to help us identify how applicable and transferable are the pre-trained models to data from unseen cities and 
whether the patterns observed and learned in different cities are similar and transferable to one another. Mod-
els in this scenario could have been trained on either a single city or be multi-city models. The models in this 
scenario can be applied to data form either cities never used in the training process or previously trained cities, 
making them very versatile.

Transfer learning.  ALF-Score18 pipeline has tested for various supervised and semi-supervised approaches 
and methods. However, the most promising shallow models are random forest, support-vector machine (SVM) 
and decision tree whereas the most promising deep model was multi-layer perceptron neural network (MLP). 
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All of these methods generated reasonable accuracy results while random forest performing the best among all. 
We set up random forest with 100 estimators (the number of trees in the forest) while its maximum depth of the 
tree was not limited. Most other parameters such as the number of jobs to run in parallel, the number of features 
to consider when looking for the best split and bootstrap sampling were set to scikit-learn40 default parameters. 
Random forest is an ensemble approach. Ensemble learners aim to use multiple weak learners to build a strong 
learner that perform very well taking a divide and conquer approach. Random forest uses standard decision tree 
which could be considered as its weak learner. Multiple of these trees will then form a forest which can perform 
better as a group. Random forest performs significantly better. There are two specific functions in scikit-learn’s 
random forest that although not specifically labeled as transfer learning approaches, are geared toward trans-
ferring previously learned knowledge. These functions are warm_start and partial_fit. Warm start aims to fit 
an estimator repeatedly over the same data set but with varying parameters. Using this approach one can look 
at various parameters to improve performance while reusing the model learned from previous parameters to 
save computing resources and time. Warm start is typically used for fine tuning the model parameters. Partial 
fit on the other hand aims to provide an online machine learning approach while maintaining a fixed model 
parameters between calls, by allowing for new data in every call. This data is called mini-batch. Online machine 
learning is a method used to update the predictor in a sequential order as new data becomes available. This is the 
opposite approach taken in batch learning where the training data set never changes.

Furthermore, MLP was used as a way to utilize deep learning specifically as a doorway to transfer learning. 
In this paper, we work with transfer learning under the assumption that previously trained models of similar 
task are available (through ALF-Score). The first step to initiate the transfer learning process is to import three 
sets of data: (1) previously trained MLP models, (2) GIS features such as POI, centrality and embedding features 
associated with the new city, (3) user data such as user opinion and demographics associated with the new city. 
After a successful import of the data, the usual data processing and preparation steps will need to be taken, such 
as dealing with incomplete entries and processing features through one-hot encoding, where applicable. In this 
research we use TensorFlow41 to facilitate MLP training and transfer learning processes. TensorFlow is “a free 
and open-source software library for machine learning and artificial intelligence” that enables us to apply various 
techniques with very efficient implementations. To set up TensorFlow for transfer learning, the first step is to 
create a Sequential model. Next we can add multiple Dense layers as our hidden layers. Each dense layer takes 
in a unit value and an activation function. The unit value which is a positive integer defines the dimensionality 
of the output space. The activation function42 acts as a trigger based on the input values and fires only if input 
exceeds a set threshold. In this setup, we use ReLU activation function43. If the input is negative, ReLU returns 
0, otherwise it will return the actual input. For the last layer that acts as our output layer, the unit is set to 1. It is 
common to see Softmax activation function being used in classification tasks for the last dense layer, however, 
since our task is a regression problem we use linear activation function. At this point, the model needs to be 
compiled with the loss function, optimizer and metrics set. We set the loss function to mean_absolute_error, the 
optimizer to adam and the metrics to mean_squared_error. The last step is to fit the model by passing the feature 
set followed by the labels and setting the number of epochs and the size of the validation split. Depending on 
the batch size, number of epochs and the size of data, the process may take a while. This process will result in a 
model trained on the {features, label}: {x, y} set. In our approach, we only import the models previously trained 
through this approach.

ALF-Score uses various combinations of dense layers and number of neurons. Table 2 shows a brief set of 
example settings we have experimented with. To transfer the model generated/imported as above, the first step 
is to create a new Sequential model and copy the hidden layers desired from the original model over to the 
new model. In the process we will exclude the output layer. We also need to ensure all transferred layers are 
frozen by setting them as non-trainable so the algorithm will not modify them. Next, we add a dense output 
layer to the new model with unit set to 1 and activation function set to linear. Finally we set the loss function to 
mean_absolute_error, the optimizer to adam and the metrics to mean_squared_error and compile and fit the new 
model. After a few iterations/epochs, we can try to unfreeze the reused hidden layers to allow back propagation 
to modify and fine-tune them and re-evaluated the performance. It is also suggested26 to reduce the learning 
rate to avoid changes in weights that are fine-tuned when these layers are unfrozen. A good rule of thumb is to 
train the model for the new task for a few epochs while the reused layers are frozen. Then unfreeze the reused 
layers and continue to train, with reduced learning rate, for further fine-tuning these layers. When talking about 
transfer learning, learning rate is always an important variable to consider. If the learning rate is set too high, 
training may diverge and if the learning rate is set too low, the processing speed will be very slow to reach a 
convergence. Experimenting with various parameters may be a good approach to find the best setting that may 
be most appropriate in a particular task.

Table 2.   Various deep neural network settings under which MLP and transfer learning were experimented 
with.

# of dense layers Output shape range Total parameters Optimizer # of epochs

2 8–16 10,945 Adam 200

5 50–300 418,301 Adam 300

11 50–1000 2,673,301 AdaMax 400

12 50–800 2,303,001 AdaMax 600
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In this research, three methods are used to measure performance, specifically, mean absolute error (MAE), 
root mean squared error (RMSE) and coefficient of determination ( R2 ). Mean absolute error (MAE) is defined 
as MAE =

∑n
i=1 |yi−xi |

n  where xi is the actual value, yi is the prediction, and n is the total number of data points. 
Root mean squared error (RMSE), on the other hand, is defined as RMSE =

√

∑n
i=1(xi−yi)2

n  . Furthermore, R2 is 

defined as R2 = 1−
∑

(yi−xi)
2

∑

(yi−ŷ)2
 where ŷ is the mean value of y and R2 can range in (−∞, 1] with values close to 1 

showing better performance.
It is important to note that if the input data of the new task does not have the same shape structure as the 

data used in the original task, they will need to be processed to match the original size. However, this is not the 
case with ALF-Score++ since the structure of feature sets used for training various models remain the same. 
Additionally, according to Géron25 “...transfer learning will work best when the inputs have similar low-level 
features”. To further expand on this, high-level features are typically more useful in a new task and are generally 
found in the upper hidden layers. They may be useful to their original task but likely there may not be much 
relevancy between upper layers from the original task with the new task. So it is a good idea to replace these 
layers for the new task as they will likely be very different to that of the original task. This however, is not always 
the case and varies from task to task. For example, a voice recognition task will still need to produce the correct 
and valid words associated to its output layer. However, top layers may need to recognize words spoken by dif-
ferent people. In this case, reusing the top layers may be more useful26. Furthermore, typically the output layer 
of the original model will be replaced since it is no longer useful as we seek to update the output using the new 
input. It should be noted here that it is suggested that the more similar the tasks are, the more hidden layers may 
be reused. For instance, in case of ALF-Score++ since the original task is very similar to the new one, we can try 
by keeping all hidden layers and only replace the output layer.

Results
In this research, we were able to successfully achieve transferability for ALF-Score++. First, using the newly 
collected user opinion data for the city of Montréal QC, we were able to achieve a consistency of 99.6% dur-
ing the GLEPO processing stage. While various feature combinations and machine learning techniques were 
experimented with, we were able to achieve our lowest prediction MAE error (Matching approach) using ran-
dom forest shallow model at 11.87 units (Fig. 2 top left) while MLP was the best performing deep model with 
an MAE error of 13.87 units.

Figure 2.   Walkability results produced by 3 separate variations of ALF-Score and ALF-Score++ for the city of 
Montréal, QC and their correlation. Top left: predictions based on a model only trained for Montréal’s user data. 
Top right: predictions based on a transferred model only trained for a single city’s user data (St. John’s). Bottom 
left: predictions based on a model trained for Montréal’s user data while having the previously trained weights 
for St. John’s user data transferred in its transfer learned training process. Bottom right: correlation between the 
three variations. The road network for Montréal maintains over 76 thousand nodes. ALF-Score’s walkability 
scores range between 0 and 100 units. This range can be adjusted if needed. (Maps generated through RStudio44 
Version 1.2 using mapview package from rstudio.com. Correlation figure generated through RStudio44 Version 
1.2 using PerformanceAnalytics package from rstudio.com).
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Figure 3 and Table 3 highlight some of the techniques and feature combinations used to generate ALF-Score 
for the city of Montréal using the user opinion data collected from the same city. Random forest, using all features 
produces the best results with the least MAE.

As we explored in the background section, the goal of transfer learning is to take advantage of previously 
trained models, for instance  models trained on the city of St. John’s NL in our previous works, to essentially 
extract knowledge that could be useful when applied to training new models (Combined approach) for new cities. 
However, transfer learning is also very useful to directly generate predictions for new cities without any more 
learning (Zero-user-input approach). Zero-user-input was our first transfer learning approach. Tables 4 and 5 and 
Fig. 4 highlight various experimentation performed on these 3 approaches over different feature combinations 

Figure 3.   Experimentation results of four machine learning techniques over five feature combinations for the 
city of Montréal, QC with a data split of 80–20. The bars represent MAE error over a range of 0–100 units. RF: 
random forest, MLP: multi Layer perceptrons, SVM: support vector machine, DC: decision tree. RF provides the 
best performance overall. (Bar plot generated through matplotlib45 Version 3.4.3 from matplotlib.org).

Table 3.   Exploration of various machine learning techniques and feature combinations over an 80–20 data 
split (matching approach) for the city of Montréal, QC reflecting their top performing accuracy. Results 
represent MAE and RMSE errors over a range of 0–100 units, as well as R2. Significant values are in [bold].

Technique POI

POI + POI + Network +

AllNetwork Embedding Embedding

Mean absolute error (MAE)

Random forest 19.65 18.20 17.13 15.47 11.87

MLP 26.65 24.08 23.44 23.56 21.91

SVM 29.03 31.04 29.78 23.63 21.74

Decision tree 21.65 31.87 34.23 24.45 21.49

Root mean squared error (RMSE)

Random forest 24.75 22.19 22.61 20.28 14.74

MLP 29.99 28.09 26.81 25.18 22.69

SVM 34.91 35.66 35.88 27.17 25.09

Decision tree 36.73 34.57 36.67 27.02 25.53

Coefficient of determination (R2)

Random forest 0.7291 0.7590 0.7516 0.7784 0.8314

MLP 0.6386 0.6892 0.7076 0.7203 0.7520

SVM 0.6388 0.6258 0.6257 0.7051 0.7172

Decision tree 0.6014 0.6210 0.6079 0.7020 0.7249
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which show the Combined Approach with an 80–20 random split perform with the lowest MAE. We used our 
best model trained on data for the city of St. John’s using random forest to predict ALF-Score walkability for the 
city of Montréal (Fig. 2 top right). This resulted in a correlation of 0.4 compared to the predictions generated 
by a model that was trained purely on Montréal’s user data (Fig. 2 top left). Furthermore, our second approach 
of using previously trained models (MLP) towards training new MLP models (Fig. 2 bottom left) led a much 
higher correlation of 0.79 compared to the model only using the data from one city. We believe this promising 
model well utilizes  the transferred knowledge in conjunction with the new learning gained by training over 

Table 4.   Exploration of the three experimentation approaches (1) matching, (2) combined and (3) zero-user-
input over 5 different feature combinations and 2 different data split approaches based on data from the cities 
of St. John’s NL and Montréal QC reflecting MAE error range of 0–100 units. Significant values are in [bold].

MLP POI

POI + POI + Network +

AllNetwork Embedding Embedding

St. John’s (STJ on STJ (100%))(1) 27.55 26.22 22.23 21.91 17.88

Montréal (MTL on MTL (100%)(1) 26.65 24.08 23.44 23.56 21.91

STJ on MTL (100%)(3) n/a n/a n/a n/a 32.44

STJ on STJ (50%) + MTL (100%)(2) 26.87 25.10 23.55 19.31 15.77

STJ on STJ + MTL(2) (rand 80-20) 25.87 23.74 21.45 20.23 14.12

MTL on STJ (100%)(3) n/a n/a n/a n/a 33.89

MTL on STJ + MTL(2) (rand 80-20) 25.11 22.23 21.67 20.11 16.23

MTL on STJ (100%) + MTL (50%)(2) 27.67 24.86 14.43 21.51 16.73

MTL on STJ (100%) + MTL (80%)(2) 24.84 20.17 19.92 18.36 13.87

MTL on STJ (100%) + MTL (20%)(2) 29.66 25.34 25.73 22.89 18.34

Table 5.   Exploration of the three experimentation approaches (1) matching, (2) combined and (3) zero-user-
input over 5 different feature combinations and 2 different data split approaches based on data from the cities 
of St. John’s NL and Montréal QC. Reflecting RMSE error range of 0–100 units and R2. Significant values are in 
[bold].

MLP POI

POI + POI + Network +

AllNetwork Embedding Embedding

Root mean squared error (RMSE)

St. John’s (STJ on STJ (100%))(1) 30.14 29.06 26.82 25.37 20.13

Montréal (MTL on MTL (100%)(1) 29.99 28.09 26.81 25.18 22.69

STJ on MTL (100%)(3) n/a n/a n/a n/a 38.79

STJ on STJ (50%) + MTL (100%)(2) 30 28.64 25.05 23.13 18.67

STJ on STJ + MTL(2) (rand 80-20) 28.21 26.92 25.63 24.22 17.91

MTL on STJ (100%)(3) n/a n/a n/a n/a 40.33

MTL on STJ + MTL(2) (rand 80-20) 28.84 25.84 25.36 23.87 19.17

MTL on STJ (100%) + MTL (50%)(2) 31.02 27.9 27.11 24.69 19.71

MTL on STJ (100%) + MTL (80%)(2) 27.31 24.77 24.82 22.23 17.98

MTL on STJ (100%) + MTL (20%)(2) 34.17 30.06 29.75 26.28 22.93

Coefficient of determination (R2)

St. John’s (STJ on STJ (100%))(1) 0.6674 0.6773 0.7039 0.7219 0.7676

Montréal (MTL on MTL (100%)(1) 0.6779 0.6993 0.7080 0.7180 0.7475

STJ on MTL (100%)(3) n/a n/a n/a n/a 0.5840

STJ on STJ (50%) + MTL (100%)(2) 0.6771 0.6959 0.7174 0.7455 0.7755

STJ on STJ + MTL(2) (rand 80-20) 0.6846 0.7185 0.7150 0.7344 0.7958

MTL on STJ (100%)(3) n/a n/a n/a n/a 0.5756

MTL on STJ + MTL(2) (rand 80-20) 0.6795 0.7118 0.7099 0.7274 0.7712

MTL on STJ (100%) + MTL (50%)(2) 0.6610 0.7031 0.7128 0.7283 0.7706

MTL on STJ (100%) + MTL (80%)(2) 0.7015 0.7136 0.7227 0.7459 0.7977

MTL on STJ (100%) + MTL (20%)(2) 0.6357 0.6718 0.6658 0.7144 0.7342
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new data to identify additional patterns that may have not been fully captured by a model trained on a small set 
of user data from a single city.

In Fig. 5, we can observe that among the top 150 features (out of 668 features) 128 of them belong to the road 
embedding feature list (light blue) and account for all road embedding features. This is highlighting the impor-
tance of road embedding with regards to predicting walkability score based on user submitted ground-truth. 
Additionally, among top 150 features, only 14 belong to POIs (violet) which contribute to 530 features. Further-
more, among the top 150 features, 6 belong  to centrality features (dark blue) out of the total 10 centrality features.

The road embedding features account for 0.778486799 importance over 128 features while representing only 
19% of the overall features. Figure 6 shows a general overview of feature importance distribution overall (left) and 
normalized for the number of features (right). We can observe the majority of the contribution to importance 
is by the road network features. The centrality features (Table 6) account for 0.039919843 importance over 10 
features, and the POI features (Table 7) account for 0.169245465 importance over 530 features while represent-
ing over 79% of the features.

Eccentricity accounts for the highest centrality importance among the 10 features; however, it is contributing 
almost 33% to the overall centrality importance which is rather an important amount when considering there are 
9 other centrality features as well. The highest ranked POI is ’restaurants’ within 600 meters which contributes 
to almost 9% of all POI importance among 529 other POI features. Furthermore, it is very interesting to see 8 
out of the top 10 POIs are either restaurants or cafes, while bars within 1800 meters  and benches within 1800 
meters amount to the remaining top 2 POIs. This points to the possibility of many people seeking to find places 
to socialize, with light entertainment and possibility to gather with friends and family. Especially, since the user 

Figure 4.   Exploration of 3 approaches (1) matching, (2) combined, (3) zero-user-input. Combined approach 
is extensively tested with various conditions. One such condition is the different ways of data split to better 
understand how the data affects the transfer of knowledge in transfer learning while being able to provide solid 
training and testing sets. Best performance was observed to be generated through a complete random selection 
into an 80–20 split. MTL on STJ reflects on the prediction of scores for Montréal based only on a model trained 
on St. John’s. MTL on STJ+MTL on the other hand reflects on the prediction of scores for Montréal based on a 
transfer-learned model on both St. John’s and Montréal. (Bar plot generated through matplotlib45 Version 3.4.3 
from matplotlib.org).
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data in this research was collected post COVID-19 pandemic, this may show an underlying effect of the pan-
demic’s isolation as to changing people’s priority and perception on places and the important value of socializing.

The next step is to utilize the zero-user-input approach of the transfer learned model trained on the user data 
collected from the two cities of St. John’s NL and Montréal QC which have different structures, and applying this 
model directly to a third and a fourth cities of Kingston ON and Vancouver BC, which the model has never seen 
before, and generate ALF-Score walkability. In Fig. 7, we can see the ALF-Score walkability (right) compared 

Figure 5.   Top 150 features. While a noticeable difference is observed among the top 13 features, we can observe 
a steady trend among most embedding features. Embedding feature importance account for most of the feature 
importance. We can also observe that despite having the highest number of features (530) only a small number 
of POI features appear in the top 150 features. (Bar plot generated through matplotlib45 Version 3.4.3 from 
matplotlib.org).

Figure 6.   Total contribution to feature importance among 668 features is divided into three categories: (1) 
centrality, (2) POI, (3) road embedding. Left: road embedding, while contributing to only 19% of the total 
features, accounts for 78.7% of the total feature importance, while centrality features contribute to 4.1% and POI 
features to 17.1% of the total feature importance. Right: when normalized to individual feature importance, we 
can observe, the highest contribution is by embedding features where each feature contributes to 58.2% of the 
total embedding contribution of 78.7% where each centrality feature contributes to 38.8% of the total centrality 
feature importance of 4.1 while each POI feature contributes to only 3.1% of the total contributing feature 
importance of 17.1%. (Pie chart generated through matplotlib45 Version 3.4.3 from matplotlib.org).



12

Vol:.(1234567890)

Scientific Reports |        (2022) 12:14013  | https://doi.org/10.1038/s41598-022-17713-y

www.nature.com/scientificreports/

to Can-ALE scores (left) for the city of Kingston, ON. At the first glance we can easily observe the variation in 
spatial resolution between these two methods with ALF-Score capturing the walkability of the region in a much 
greater depth. While Can-ALE shows some variation among different dissemination areas (DA), only the city 
center is highlighted with visible green and marked as walkable. Although ALF-Score++ agrees with Can-ALE 
with assigning higher walkability scores to the city center, the first major differentiator among the two is that 
in  Can-ALE, higher walkability is given to the central and highly populated areas of the city center whereas 
in ALF-Score++, while central region is ranked with higher walkability, ALF-Score++ recognizes the core as 
slightly less walkable compared to locations surrounding the core of the city center. Specifically, ALF-Score++ 
favours waterfront walkways and paths as more walkable as opposed to Can-ALE. For instance, the area near 
to Leon’s Centre on Ontario Street is known to be a walkable area and is ranked with high walkability by ALF-
Score’s zero-user-input approach, whereas it is ranked with a significantly lower walkability score by Can-ALE.

Table 6.   Feature importance for all centrality features (10 features in total) which contribute to 4.1% of the 
total feature importance.

Feature Importance

Eccentricity 0.01316184

Stress 0.004649347

Betweenness centrality 0.004590322

Average shortest path length 0.0043923

Topological coefficient 0.003773664

Neighborhood connectivity 0.003381009

Radiality 0.002233024

Closeness centrality 0.001581954

Clustering coefficient 0.001386535

Degree 0.000191574

Table 7.   Feature importance for top 10 (from 530) POI features. The entire 530 features contribute  to 17.1%   
of the total feature importance.

Feature Importance

restaurant_600 0.014984423

bar_1800 0.010154083

cafe_1400 0.007755144

cafe_1600 0.007659399

cafe_2000 0.007125045

cafe_1800 0.005620239

restaurant_1000 0.005089702

restaurant_1400 0.004664054

restaurant_1400 0.004664054

bench_1800 0.003845234

Figure 7.   Left: Can-ALE for the city of Kingston, ON. Right: walkability results produced by ALF-Score++ 
for the city of Kingston, ON using the zero-user-input approach of a model trained through transfer learning 
based on user data from two cities of St. John’s and Montréal. The road network for Kingston maintains over 
3400 nodes. ALF-Score’s walkability scores range between 0 and 100 units. This range can be adjusted if needed. 
(Maps generated through RStudio44 Version 1.2 using mapview package from rstudio.com).
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Additionally, ALF-Score captured a cluster of greener/more walkable spots close to student’s  housing and 
living quarters near Queen’s University. While this area is popular among many students, faculty and other 
members of the public, Can-ALE was unable to capture it due to its area-based structure and lower spatial 
resolution. Moreover, we observed various other areas that ALF-Score++ ranked as walkable whereas Can-ALE 
failed to capture their actual walkability due to it’s lower resolution and granularity. For instance, the Division 
St.—Dalton Ave.—Benson St. region (which falls under multiple DAs) is ranked with low walkability scores by 
Can-ALE whereas ALF-Score captured and distributed much more refined and relatable walkability scores to 
varying spots where there are many restaurants, stores and other popular places. Furthermore, the walkability 
of Point Frederick Peninsula (across the LaSalle Causeway bridge) is in the red zone of Can-ALE’s scores while 
ALF-Score suggests the opposite for the region. This region houses multiple military campuses with varying 
facilities and is deemed walkable.

Figure 8 shows the ALF-Score++ walkability (right) compared to Can-ALE scores (left) for the city of Van-
couver, BC. The ALF-Score++ for this region is generated based on a zero-user-input approach and similar to 
ALF-Score++ for Kingston, we can observe high spatial resolution as opposed to Can-ALE’s low spatial resolution 
for the same area. To look further into this region, we can start by observing the University of British Columbia 
campus where Can-ALE highlights the inner campus area (left side) with light orange while the outer campus 
area (right side) remains darker orange. ALF-Score++ picks up on the fact that the right area should be more 
walkable due to bus stops and various facilities commonly used by students and staff. Additionally, North Van-
couver’s walkability appears not to have been captured by Can-ALE where its walkability for the region is ranging 
between dark orange and red. In contrast, ALF-Score better captures various popular areas in North Vancouver 
that are walkable. Furthermore, the walkability for the Richmond area is barely captured by Can-ALE with mostly 
dark orange and red walkability. ALF-Score++ on the other hand is able to capture various walkable areas in 
that region. An interesting observation here is the similarity with zero-user-input walkability data generated 
for the city of Kingston. Can-ALE typically marks areas close to water as less walkable whereas ALF-Score++ 
tends to object. ALF-Score++’s results are positively associated to our collective knowledge of Vancouver and 
Kingston. We can observe that ALF-Score++ is utilizing its transferability capabilities to better understand the 
city structures and find patterns in various associated data to generate zero-user-input walkability scores for 
virtually any location on the road.

As observed earlier, the combination of user data from just two cities of St. John’s and Montréal allowed us 
to generate accurate walkability scores for cities never seen by our algorithms. It is our observation that transfer 
learning works well in this application even with a small set of user data. Additionally, we believe as we accu-
mulate more user data, our algorithms will be able to better capture various patterns in the data leading to an 
improved accuracy.

In this research, we were also able to show ALF-Score++’s pipeline is scalable as data size increases. The pipe-
line was optimized to perform well while processing, training and predicting walkability scores for small and 
large cities alike. One of the major enhancements to the pipeline was improving the GLEPO algorithm such that 
the processing time is reduced. This reduction process went through multiple stages. In our initial trials every 
iteration of GLEPO took approximately 17 min on a personal MacBook configured with a 2.2 GHz dual-core 
Intel Core i7 (Turbo Boost up to 3.2 GHz) with 4 MB shared L3 cache and 8 GB of 1600 MHz LPDDR3 on-board 
memory. Over a typical run of the algorithm, we went through approximately 50 iterations totaling to over 14 h 
of operation. We found this to be unreasonable. In the final stage of this improvement we were able to process 
the same data over the same computer through the newly updated ALF-Score++ pipeline in just under 3 min 
per iteration, a reduction of almost 6 fold. A GLEPO run of 50 iterations will now only take 2.5 h. Additionally, 
after rigorous experimentations and tests, we determined the optimal number of iterations desired for GLEPO 
algorithm is 50 iterations while the minimum required number of iterations to achieve convergence is 30 itera-
tions leading to a successful completion of the process within 1.5 h.

Figure 8.   Left: Can-ALE for the city of Vancouver, BC. Right: walkability results produced by ALF-Score++ 
for the city of Vancouver, BC using the zero-user-input approach of a model trained through transfer learning 
based on user data from two cities of St. John’s and Montréal. The road network for Vancouver maintains over 45 
thousand nodes. (Maps generated through RStudio44 Version 1.2 using mapview package from rstudio.com).
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Discussion
The goal of the overall research is aimed to explore how machine learning can be applied to the spatial domain 
with application in public health through generating relevant and meaningful walkability scores with high spatial 
resolution based on a very small set of users’ opinions. In this paper, we showed that ALF-Score++’s pipeline is 
fully capable of scaling up and down to match the data based on the size of the city and user opinion data and 
still perform in a reasonably timely manner. Additionally, since the computational complexity of the pipeline is 
O(n2) , we expect processing larger cities will perform reasonably and within the expected parameters. We were 
able to show that ALF-Score++ can process and generate models for the city of Montréal QC which is almost 
16 times larger than St. John’s NL within a timely fashion without requiring any extended resources while these 
models are capable of producing walkability scores with high spatial resolution compared to that of Can-ALE. 
Figure 9 shows a comparison between ALF-Score++ walkability scores and Can-ALE walkability scores for four 
different cities in Canada.

Moreover, we saw the power of transferability giving us the upper hand to transfer the knowledge learned 
from small cities to predict accurate walkability scores for much larger cities. This leads to many advantages such 
as reduced resource requirement and reduced processing time while increasing the flexibility and applicability of 
our trained models. Furthermore, its application of zero-user-input transfer learning proved to be a huge success 
in predicting walkability scores for cities never seen by the algorithm before and without any prior knowledge 
about them while utilizing previously learned information and patterns. Of note, the transfer learning was able 
to capture both the relative and absolute differences between cities in terms of walkability. For example, the 
range of walkability scores assigned to Kingston based on the transfer learning was 30–70, whereas Vancouver 
scores based on transfer learning ranged from 30 to 80, when St. John’s and Montréal were used as training cities. 
Developing measures that capture both relative and absolute differences in cities has been an on going challenge, 
that transfer learning may be able to solve.

We also observed how adding a small set of user opinion from a different region can lead to a much higher 
pattern recognition by the models while allowing a better generalization of these models. This generalization 
can therefore help capture various common patterns found in different cities without any actual prior knowledge 
about them.

Figure 9.   Correlation between ALF-Score++ and Can-ALE for four different cities. Top left: Montréal QC, 
Top right: Kingston ON, Bottom left: Vancouver BC, Bottom right: St. John’s NL. (Correlation figures generated 
through RStudio44 Version 1.2 using PerformanceAnalytics package from rstudio.com).
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Similar to many machine learning tasks, we believe ALF-Score++’s pipeline can benefit from and train more 
accurate models with more data. For instance, collecting small user data samples across various cities and towns 
could cover a much more diverse set of user demographics, users’ opinions, patterns, city and road structures, 
leading to a well-generalized model applicable to virtually any loca tion   on the map . Given enough user infor-
mation from a few select key cities in Canada (cities with varying structure and sizes), the models generated 
through transfer learning of this data will be able to provide accurate scores anywhere in Canada without the 
need to train models on data for every individual city leading to a global model. To generate new models to add 
new data, one does not need to rerun the entire process on the entire data sets. All that is required is to transfer 
the knowledge from previously trained models (which can be transfer learned models themselves) and only run a 
smaller transfer learning task on the newly collected data. We also believe ALF-Score++ pipeline can be adjusted 
to be fully capable of continuous learning. This could be particularly important as changes to road networks are 
detected. Our network-based approach combined with continuous transfer learning can help our models detect 
patterns associated with various regions, types of road and user demographics and provide accurate predictions 
for new roads and structures never seen by the model.

As we went through the predictive process, a variation was observed between the performance of shallow and 
deep models. Throughout ALF-Score, random forest (a shallow model) was the preferred technique since (1) it 
performed best across all other techniques (shallow and deep) achieving an MAE error as low as 4.56 units, (2) 
its simplicity and powerful approach, (3) faster processing and predictions compared to MLP. Although,  MLP 
(a deep model) is the main technique used in ALF-Score++ since deep models are preferred when it comes to 
transfer learning due to their layered structure. The lowest  error was achieved using MLP at 13.87 units.

A side-effect of transfer learning is its generalization. Each city will have its own range of walkability. Small 
cities may have a smaller range of walkability whereas larger cities may have a wider range of walkability. When 
models trained on small and large cities are combined through transfer learning, the newly trained model will be 
more generalized. Although this generalization is very important to be able to take a zero-user-input approach 
to generate walkability scores for cities never seen by the algorithms, one must keep in mind that a balance of 
data must be maintained. As observed earlier (in Montréal’s results), applying a model trained only on a small 
city might not capture the varying patterns of a larger city and vise versa. It is important to ensure the transfer 
learning process maintains a good balance of user data for training, such as using user data for a small and a large 
city to build the base model with transferability capabilities. These small samples can prove to be invaluable in 
improving the overall quality and accuracy of pattern detection and prediction. Moreover, to further address the 
generalization phenomenon happening during the transfer learning phase, we can utilize ALF-Score’s person-
alization extension (ALF-Score+) to create personalized and transferable models that are generalized to various 
city structure patterns, yet personalized to specific individual profile clusters. As demonstrated in our previous 
work, ALF-Score+19, concentrating on specific profile clusters which contain users with similar opinion  towards 
walkability ranking, will significantly improve the overall accuracy of each personalized model.

For a more direct comparison, ALF-Score++ is able to provide a comprehensive and well-distributed range 
of walkability scores to each node on the road across cities as opposed to area-based walkability measures such 
as Can-ALE17 that provide low spatial resolution scores associated with large DA areas. Moreover, the inclusion 
of predictability and crowd-sourced user opinion significantly changes the way walkability scores are measured 
by incorporating users’ perspectives as ground truth to more accurately reflect individuals’ points of view and 
build a significantly stronger model over time. Since ALF-Score is the first known predictive walkability measure 
and since walkability is subjective, it is difficult to directly compare its scores with that of others. But in a broader 
spectrum, ALF-Score and its extensions, ALF-Score+ and ALF-Score++, have introduced some new approaches 
such as predictability, personalization and transferability of walkability that no other walkability measure, as of 
the time of this research, offer.

We believe ALF-Score and its various extensions such as ALF-Score+ and ALF-Score++ can be very benefi-
cial and act as very powerful tools for many people from various backgrounds working on different domains. 
Although ALF-Score can produce results specific to various parameters, such as demographics to provide person-
alized walkability scores, ALF-Score’s pipeline takes a generalized approach instead to allow for various issues that 
may not be related to walking or walkability be addressed using this method. For instance, bikeability46, school 
friendliness, transit friendliness47, or even POI specialties based on different demographics and perceptions. 
Moreover, the pipeline is capable of handling wide variety of features as well as other types of networks instead of 
road network. For example, subway networks. At its core, ALF-Score requires a vector of user-based ground truth 
labels alongside a list of features and uses a dedicated web-tool to crowd-source this user-based data. However, 
ALF-Score’s pipeline follows a black box system and works with any compatible input data regardless of how they 
were collected, prepared or processed. The ground truth data can be processed according to individual research-
ers’ needs and this step can be bypassed in the pipeline. Although walkability scores generated by ALF-Score 
and its extensions rely on user labels and road network data, the generalization offered by ALF-Score’s pipeline 
can be further distilled to beyond road networks. Road network data is treated as any other features and can be 
replaced with an appropriate feature based on the issue at hand and the research requirements. We genuinely 
believe that ALF-Score opens the door to many possibilities well beyond the scope covered in this research.

Data availability
The datasets generated during and/or analysed during this study are available through the Harvard Dataverse 
repository located at https://​doi.​org/​10.​7910/​DVN/​WBQXXZ.
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