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A B S T R A C T   

Problem: The lately emerged SARS-CoV-2 infection, which has put the whole world in an aberrant demanding 
situation, has generated an urgent need for developing effective responses through artificial intelligence (AI). 
Aim: This paper aims to overview the recent applications of machine learning techniques contributing to pre-
vention, diagnosis, monitoring, and treatment of coronavirus disease (SARS-CoV-2). 
Methods: A progressive investigation of the recent publications up to November 2020, related to AI approaches 
towards managing the challenges of COVID-19 infection was made. 
Results: For patient diagnosis and screening, Convolutional Neural Network (CNN) and Support Vector Machine 
(SVM) are broadly applied for classification purposes. Moreover, Deep Neural Network (DNN) and homology 
modeling are the most used SARS-CoV-2 drug repurposing models. 
Conclusion: While the fields of diagnosis of the SARS-CoV-2 infection by medical image processing and its 
dissemination pattern through machine learning have been sufficiently studied, some areas such as treatment 
outcome in patients and drug development need to be further investigated using AI approaches.   

1. Introduction to machine learning 

Nowadays, the science of Artificial Intelligence (AI) and Machine 
Learning (ML) is used in most industrial activities and businesses to plan, 
make correct decisions, and increase the efficiency of the processes. 

The most widely used branch of AI, ML, defines and explores the 
methods and algorithms to make computers and systems capable of 
learning. ML methods’ ultimate aim is to gradually enhance the effi-
ciency of the computational tasks in terms of correctness, automation, 
and predictions. ML has revolutionized industries such as medicine, 
healthcare, manufacturing, banking, and several others. Thus, it has 
become an essential part of modern industry. 

Deep learning (DL) methods use neural network concepts for 
learning complex models from a massive amount of data. It is a subset of 
machine learning and therefore comprises supervised, unsupervised, 
and reinforcement methods. 

Apart from clinical procedures, non-clinical techniques such as ML, 
data mining, deep learning, and other AI techniques afford numerous 
support in diagnosis, prognosis, and therapeutic motoring for several 

infections with the aid of collected data. ML can be used to identify novel 
viruses and guess the nature of the virus through the world. Prediction 
for death of patients diagnosed with viruses, modeling the spread of 
viruses’ infection, and determining their promising future impact are 
other ML algorithms’ uses. ML techniques could be the key to finding 
high-quality predictive models. Compared to traditional prediction 
models, ML techniques have the gain of generalization. 

ML techniques can be categorized into multivariate and univariate 
models. Multivariate models denote statistical models with more than 
one dependent or outcome variables. Each multivariate model can be 
reformulated as a univariate model by vectorizing the model. Amongst 
numerous ML techniques, deep learning is receiving additional attention 
due to the applicability to different datasets such as numerical and 
character. Deep learning models like Deep Feed Forward, Deep Con-
volutional Network, Recurrent Neural Network, Attention mechanism 
(Attention), and Long Short-Term Memory Networks (LSTM) can be 
employed for multivariate estimation. 

The limitations of the current study are elaborated as follows: First, 
only the publications’ scientific applications have been overviewed in 
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this article. As a result, unreported models have not been discussed. 
Second, the details of the applied models have not been reviewed due to 
the paper’s length limitation or details not being reported in the original 
publications. Finally, according to the fact that big data analysis has not 
yet been enough evolved, inferred analysis and performed learnings may 
not be quite accurate. 

In the presented paper, we aimed to review the significant related 
works to investigate all aspects of ML models’ contribution in response 
to SARS-CoV-2 infection. Our practical way of classifying various topics 
and subjects in this article is advantageous in contrast to other compa-
rable review papers. Moreover, a summary of each application and 
model is provided, and the content is authored in a way to be more 
coherent and comprehensible for biologists. 

ML algorithms are often categorized as supervised, unsupervised, 
and reinforcement [1], summarized in the following sections. 

1.1. Supervised learning 

Supervised ML algorithms can learn from the previous cases gathered 
in the past to predict future events. Starting the process from analyzing a 
known data set, the learning algorithm generates an abstract model to 
yield a prediction. The system can meet the goals of each new entry after 
adequate training. In the course of training, a learning algorithm can 
compare the model’s predictions with the intended correct output 
(known from the previous cases) and find the model’s errors to improve 
its performance. The problems that can be addressed by this method are 
divided into categories of Regression and Classification. In Regression 
problems, the output variable receives continuous values, and most of 
these problems are related to estimating or forecasting the response. Yet, 
the output variable in Classification problems is a class of labels that 
further identifies the groups or classes to which the data belongs [1]. 

1.2. Unsupervised learning 

Unsupervised ML algorithms aim to model and use the information 
that is not classified and tagged. In unsupervised learning, the machine 
learns a function to express the hidden patterns of data. The unsuper-
vised algorithms detect and learn patterns within the unlabeled data set. 
This approach places the data into different categories based on the 
density. Using this approach, high-dimensional data can be visualized. 
An example of this type of ML algorithm is Principal Component Anal-
ysis (PCA). K-means clustering is another sort of unsupervised training 
in which data is categorized into groups of the same type without la-
beling [1]. 

1.3. Reinforcement learning 

Reinforcement learning algorithms are learning methods that 
communicate with their environment by generating actions and real-
izing penalties and rewards. These methods allow machines/agents to 
spontaneously determine the desired behavior in a particular field to 
boost their efficiency. Reward feedback is allocated for the machine/ 
agent to determine what performs optimally. 

Reinforcement learning is an emerging and popular ML algorithm 
used in various autonomous systems such as automobiles and industrial 
robotics. This algorithm tries to reach a result in a dynamic environment 
[2]. 

2. Current applications of ML in prevention of the SARS-CoV-2 

2.1. Prevention of viral spread 

Viral diseases spread rapidly and cannot be controlled by manual 
contact-tracing. An AI-based contact-tracing application for smart-
phones that keeps a memory of close contacts and instantly alerts them 
of any positive cases, if used adequately by individuals, can aid in the 

management of the epidemic [3]. A similar application, running on 
Alipay and WeChat platforms, has been deployed in China with the same 
purpose. The database for the app which obtains the user information 
such as their medical records, exposure history, lifestyle choices, and the 
location of the person for tracking purposes is analyzed by an AI algo-
rithm that gives each person a color code (green, yellow, or red) that 
demonstrates their health status [4]. 

2.2. Care management 

Using AI tools to have a better quality of life during this challenging 
epidemic, and therefore notably controlling the spread of the infection, 
by designing smartphone applications or providing platforms for related 
data storage, is beneficial. 

A team used AI to develop an app, which has the ability to recognize 
SARS-CoV-2 coughs from other kinds of coughs. This application 
(AI4COVID-19) has achieved promising accuracy of 95.6% and can 
reduce the load of common cold cases visiting clinical units [5]. 

In the paper [6], an AI and blockchain-based tracking system for 
SARS-CoV-2 infection is introduced as an app that requires the upload of 
test results. It can also inform authorities of the number of positive test 
results, and the GIS in the phones would facilitate tracking the infections 
patients. 

Internet of things (IoT) has provided a platform that enables national 
public health agencies to approach data such as the number of daily 
active cases of the SARS-CoV-2 across districts and countries, intending 
to monitor the SARS-CoV-2 pandemic. Furthermore, some social media 
apps such as Twitter and Facebook are working with agencies to present 
real-time updates for the public [7]. 

2.3. Identifying epitopes for targeting vaccines 

To develop the most effective immunogenic vaccine for the SARS- 
CoV-2, ML has been used by analyzing and predicting the suitable epi-
topes for vaccine development. The S protein of the SARS-CoV-2 has 
been extensively investigated in order to develop a stable multi-epitope 
vaccine. Researchers used molecular docking with TLR4, TLR2, and 
MHC receptors and in-silico cloning, codon optimization, and immune 
simulation to analyze the steady interactions between the predicted 
vaccine and MHC Toll-like receptors (TLRs) [8]. 

Another study analyzed the S protein to identify suitable recogniz-
able epitopes by immune-informatics analysis and molecular docking, 
using the Immune Epitope Database (IEDB), SPARKS-X server, and 
PatchDock. They found 34, 29, and 8, linear B cell, MHC-type I, and 
MHC-type II epitopes, respectively [9]. 

Another research work [10] used a supervised ML-based inverse 
vaccinology application named Vaxign-ML to forecast SARS-CoV-2 
vaccine candidates. Their research depicted six viral proteins as adhe-
sive ones. They investigated the nsp3, despite spike protein, which has 
been frequently studied. The nsp3 was calculated to encompass 28 and 
42, MHC-type I, and MHC-type II (T cell) epitopes, respectively, and 
have linear B cell epitopes on the protein’s surface. Table 1 presents an 
overview of applied AI models intending to prevent SARS-CoV-2 
infection. 

3. Current applications of ML in diagnosis of the SARS-CoV-2 

3.1. Diagnosis and patient screenings 

In regions affected by the epidemic, a positive medical imaging 
measure and negative RT-PCR can be notable signs of COVID-19 [11]. AI 
can be utilized to detect the SARS-CoV-2 infection rapidly. If infection 
detection is accelerated, it will give healthcare professionals a better 
chance of controlling the pandemic. 

The area under the Receiver Operating Characteristic (ROC) curve 
(AUC) is a test of how well a framework can classify two demonstrative 
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groups. The sensitivity of a test shows the effectiveness of the test in 
accurately recognizing the patients. Its specificity also indicates the 
point of the test inaccurately recognizing those without the disease [12]. 

An ML-based model using an Artificial Neural Network (ANN), 
Random Forest (RF), and shallow learning was advanced to recognize 
SARS-CoV-2 patients merely based on full blood counts at the early 
stages of the infection. The team used a dataset of standard full blood 
counts of SARS-CoV-2 patients at two Brazilian hospitals. Their devel-
oped independent models achieved an AUC of up to 0.86 in prediction 
[13]. 

There are a significant number of articles in the field of AI-based 
imaging processing of the SARS-CoV-2 infection. In this paper, merely 
some significant models with high detection accuracy are surveyed. 

3.1.1. CT-based screening of the SARS-CoV-2 patients 
According to the scarcity of time for individual radiologists to 

analyze medical images like CT, various AI models and algorithms such 
as CNN and SVM have been suggested to rapidly screen the patients’ CT 
images and detect the SARS-CoV-2 infection with high accuracy. 

An AI-based model applying CNN and conventional ML methods 
such as SVM, RF, and MultiLayer Perceptron (MLP) were developed to 
swiftly diagnose SARS-CoV-2 patients through chest CT images analysis 
and integrated with clinical characteristics, laboratory examination, and 
exposure history. CNN and ML methods were employed for diagnosis, 
and classification purposes, respectively. The AUC of the model in the 
testing set consisted of 279 patients was 0.92. The model achieved the 
same sensitivity as a senior radiologist [14]. 

CNN is a DL-based model, which is frequently used in investigating 
visual imagery. A CNN model, trained with a large dataset, was 
advanced to identify the SARS-CoV-2 patients by analyzing CT images 
rapidly. The sensitivity, specificity, and AUC, of the developed model 
were 90%, 96%, and 0.977 [15]. 

A DL-based system called COVID-19 Detection Neural Network 
(COVNet) was advanced to visually analyze chest CT images to detect 
the infection in a multi-center study. The sensitivity and specificity of 
the model at recognizing the infection in the test-set was 90% (114 out 
of 127) and 96% (294 out of 307), respectively, with an AUC of 0.96 
[16]. 

A combination of DL algorithms and classification methods such as a 
hybrid method executing 3D classification on several crops at estab-
lished resolution in an image, with a training set of 1280 international 
patients, was used to classify the SARS-CoV-2 patients by CT images 
through identifying parietal lung parenchyma. This model achieved 

accuracy, sensitivity, and specificity of 90.8%, 84%, and 93% [17]. 
Another team of researchers advanced a DL-based method using "VB. 

Net" Neural Network (NN) to segment and quantify the SARS-CoV-2 
infectious areas in the lung by CT images. The training set included 
data files of 249 patients, and the model achieved Dice similarity co-
efficients of 0.916 on the validation set [18]. 

3.1.2. X-ray based screening of SARS-CoV-2 patients 
According to its availability and low cost, a chest X-ray (CXR) can be 

useful in detecting SARS-CoV-2 infection. A study developed an ACGAN- 
based model called CovidGAN as a method to produce synthetic CXR 
images to boost CNN performance in the detection of the infection. 
Applying this model, the accuracy of classification using CNN increased 
from 85% to 95% [19]. 

A DL-based model using a type of CNN (VGG16) was developed to 
detect SARS-CoV-2 infection by CXR images. The model was trained 
with 1000 CXR images of patients. They obtained 128 X-ray images from 
the Kaggle database and generated a larger dataset applying augmen-
tation. The F-measure of the mentioned model was 95–99% [20]. 

Mohammed et al. created a Decision Matrix (DM) based on the 
MCDM method that combines twelve distinct machine learning SARS- 
CoV-2 diagnostic models and ten evaluation criteria in order to rank 
the models according to evaluation criteria with the amalgamation of 
TOPSIS (Technique for Order of Preference by Similarity to Ideal Solu-
tion) and Entropy methods. This article’s evaluation criteria were pre-
cision, accuracy, recall, AUC point, time consumption, and four binary 
classification errors (TF, TN, FP, and FN). The analysis used 50 X-ray 
images. According to the several equations described and used in the 
mentioned study, three symbols has been calculated for each method, 
including Si− , Si*, and Ci*, which represent the proximity of the model to 
the worst efficiency, the proximity of the model to the best efficiency, 
and the closeness coefficient, respectively. As a result, the SVM (linear) 
classifier demonstrated the best performance with the Ci* value of 
0.9899, followed by Naive Bayes (NB) with the Ci* value of 0.9840, and 
Radial Basis Function network (RBF) the Ci* value of 0.9838 [21]. 

3.2. Predicting the probability of infection 

By employing ML and AI, the probability of getting the SARS-CoV-2 
infection and its transmission rate in each person can be predicted. The 
number of positive cases and recoveries across the world can also be 
forecasted using AI models. 

LSTM is a regular RNN method with feedback connections, which is a 
useful technique to categorize, analyze, and forecast. Natural Language 
Processing (NLP) can also help predictions by gathering information 
related to the prevention and dissemination of the virus in the districts’ 
news. An enhanced susceptible–infected (ISI) method, combined with 
LSTM and NLP, was developed to predict the infection rate of the SARS- 
CoV-2 accurately. They used text data and the number of daily-infected 
cases from the CDC (centers for disease control). Further, this hybrid-AI 
model depicted that the virus has a greater transmission rate in the 
period of 3–8 days after the beginning of infection in the body [22]. 

Support Vector Regression (SVR) in an algorithm, applied for cate-
gorization and regression challenges. A novel SVR method was intro-
duced to analyze the SARS-CoV-2 pandemic. The accuracy of the 
technique in forecasting the number of positive cases, active cases, re-
coveries, and freshly found cases in the United States were 99.47%, 
99.46%, 98.54%, and 92.1%, respectively. Based on Pearson’s correla-
tion, they noticed that the number of infected cases rises as the humidity 
declines in the city of Milan [23]. 

A team of researchers predicted the dissemination and scale of the 
SARS-CoV-2 pandemic using ML-based models (RS-SVM, and Bayesian 
Ridge) using the real-time patient dataset of Johns Hopkins Center. The 
data contained the symptoms and number of cases in each region. The 
accretion in the number of positive cases was forecasted, with 85% 

Table 1 
An overview of applied novel AI models to prevent SARS-CoV-2 infection.  

Method Type Purpose of 
analysis 

Performance Reference 

CNN DL Identifying 
SARS-CoV-2 
coughs from 
other kinds of 
coughs 

96% sensitivity 
and 95% 
specificity 

[5] 

Cloning, Codon 
optimization, 
and Immune 
simulation 

In-silico Developing a 
stable multi- 
epitope 
vaccine 

World 
population 
coverage of 
95.78% for 
selected 
epitopes 

[8] 

Molecular 
docking 

Immune- 
informatics 
analysis 

Identifying 
suitable 
recognizable 
epitopes 

Model “Z” 
score of − 3.82 
using ProSA 
server 

[9] 

Vaxign-ML ML Predicting 
SARS-CoV-2 
vaccine 
candidates 

Five supervised 
ML 
classification 
algorithms 
were employed 

[10]  
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accuracy. They also used Recurrent Neural Network (RNN), which saves 
the already computed data to calculate the recovery and mortality rate 
for each country with an overall accuracy of about 89% [24]. 

Three ML-based forecasting models have been built to estimate the 
number of new positive cases, deaths, and recoveries over the next ten 
days. This study accessed GitHub repository datasets, which were pro-
vided by Johns Hopkins University. The dataset shows the number of 
active and recovered cases in districts. The results demonstrate that the 
Exponential Smoothing (ES) model has higher performance at predic-
tion than Linear Regression (LR) and LASSO. ES is a family of methods 
used for prediction through earlier courses of data. LR can identify the 
relationship between variables and be used in predicting. LASSO is an 
analysis technique for regression [25]. Another study predicted the same 
numbers but in the seven days ahead, using LSTM, the prophet algo-
rithm (PA), and the ARIMA model. PA, as a prediction procedure used in 
R and Python, outperformed the other methods. The accuracy of their 
model in prediction was about 95% and 88% in Australia and Jordan, 
respectively [20]. 

A predictive model has been proposed using the ML-based FogBus 
structure extended on a cloud-computing platform to forecast the 
number of SARS-CoV-2 cases in the near future and the time it will end 
in various countries. They used the dataset of Our World in Data, which 
is daily updated from the World Health Organization (WHO). This team 
detected that Inverse Weibull (GIW) method fits the infection data files 
better than Gaussian or Beta model. A cloud platform would help us 
create an environment in which the institutions send their data, such as 
the number of daily SARS-CoV-2 infected patients [26]. 

A model employing data mining was advanced to forecast the re-
covery of patients infected by SARS-CoV-2 using a dataset of South 
Korean SARS-CoV-2 patients from KCDC. The dataset included data 
details such as age, gender, and the number of days between infection 
confirmation and their release from hospital or death. SVM, NB, the 
decision tree (DT), RF, and LR methods using python programming 
language were applied. DT method demonstrated the best accuracy, 
which was 99.85%. The model forecasted that the recovery process of 
SARS-CoV-2 patients takes 5–35 days. It also depicted that patients with 
the age of 65–85 are at high risk of not recovering from the infection, 
while patients with the age of 1–24, are recovered more quickly. 
Random forests (RF), as an ML method, proceeds by forming a large 
group of decision trees to handle classification or regression tasks [27]. 
Novel employed AI models in the field of diagnosis of SARS-CoV-2 are 
summarized in Table 2. 

4. Current applications of ML in monitoring the SARS-CoV-2 

4.1. Dissemination pattern 

By utilizing AI in predictive modeling, researchers can forecast the 
dissemination pattern of the SARS-CoV-2 virus and its transmission 
across districts, states, and countries. 

A team advanced an agent-based (ABM) computational imitation 
model (AceMod) to investigate the SARS-CoV-2 pandemic properties in 
Australia. The model was validated against real-time epidemic curves. 
They considered the factor of age and applied various strategies such as 
restrictions of international travels, patient isolation, and quarantine for 
intervening in the infection. They found out that the closure of schools 
merely generates a delay in the peak of the epidemic. Also, 90% 
compliance levels (cl) of social distancing (SD) would control the 
epidemic of the virus in Australia in 13 weeks, while less than 70% cl of 
SD fails in controlling the epidemic [28]. 

Hosseini et al. proposed a new SARS-CoV-2 Optimizer Algorithm 
(CVA) that imitates the spread of SARS-CoV-2 infection across several 
countries. In this model, transmission processes are different for any 
country according to its society’s behavior and activities. In the infection 
distribution process for the simulation, there are active cases and closed 
cases that cannot transmit the virus [29]. Broad simulations utilizing 

Table 2 
An overview of applied novel AI models in the field of diagnosis of the SARS- 
CoV-2 infection.  

Method Type Purpose of 
analysis 

Performance Reference 

ANN, RF, and 
Shallow 
learning 

ML and DL Identifying 
SARS-CoV-2 
patients merely 
based on full 
blood counts 

AUC of 86% [13] 

CNN, SVM, 
RF, and 
MLP 

ML and DL Identifying 
SARS-CoV-2 
patients 
through chest 
CT images 
analysis 

AUC of 92%, 
and sensitivity 
same as a senior 
radiologist 

[14] 

CNN DL Identifying 
SARS-CoV-2 
patients 
through chest 
CT images 
analysis 

AUC of 97.7%, 
sensitivity of 
90%, and 
specificity of 
96% 

[15] 

COVNet DL Detecting SARS- 
CoV-2 infection 
using CT images 

AUC of 96%, 
sensitivity of 
90%, and 
specificity of 
96% 

[16] 

Combination 
of DL 
algorithms 

DL Classifying the 
SARS-CoV-2 
patients by CT 
images 

Accuracy of 
90.8%, 
sensitivity of 
84%, and 
specificity of 
93% 

[17] 

"VB.Net" 
Neural 
Network 

DL Segmenting and 
quantifying the 
SARS-CoV-2 
infected lung 
areas by CT 
images 

Dice similarity 
coefficients of 
0.916 

[18] 

CovidGAN DL Producing 
synthetic CXR 
images to boost 
CNN 
performance in 
the detection of 
the infection 

CNN 
classification 
accuracy 
increased to 
95% 

[19] 

VGG16 DL Identifying 
SARS-CoV-2 
patients by CXR 
images 

F-measure of 
95–99% 

[20] 

ISI, LSTM, 
and NLP 

DL Predicting the 
infection rate of 
the SARS-CoV-2 
virus 

ISI + NLP +
LSTM achieved 
a more precise 
prediction than 
any other 
models 

[22] 

SVR ML Predicting the 
number of 
positive cases, 
active cases, 
recoveries, and 
freshly found 
cases in US 

More than 92% 
overall 

[23] 

RS-SVM, 
Bayesian 
Ridge, and 

ML Forecasting the 
number of 
positive cases 

Accuracy of 
85% 

[24] 

RNN DL Predicting the 
recovery and 
mortality rate 
for each country 

Accuracy of 
89% 

[24] 

ES, LR, and 
LASSO 

Regression 
analysis 

Estimating the 
number of 
freshly positive 
cases, deaths, 
and recoveries 
over the next 
ten days 

ES model 
achieved higher 
performance 

[25] 

(continued on next page) 
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optimization issues depicted that this CVA model outperforms the Vol-
cano Eruption Algorithm (VEA) [30] and Gray Wolf Optimizer (GWO) 
[31]. 

By applying RF method as a regressor to forecast Standardized 
Mortality Ratio (SMR) and Age-Standardized Positivity Ratio (SPR), and 
Canonical Correlation Analysis (CCA), on the epidemiological collected 
data from the Italian Civil Protection’s data repository, it was revealed 
that among various factors, air pollution and fine-particulate (PM2.5) 
pollutant level correlates with the SARS-CoV-2 infectivity and mortality 
in Italy. According to Ref. [32], a rise of 5–10% in air pollution would 
result in 21–32% new cases and eventually leading to 4–14% more 
deaths. 

4.2. Predicting the progress and severity of the disease 

ML algorithms can analyze the progress and severity of the SARS- 
CoV-2 infection. If a patient in a critical health state is immediately 
recognized at the hospital admission, she/he can receive the proper 
treatment without any delay. 

An individual SARS-CoV-2 patient’s mortality probability could be 
estimated more than ten days ahead using an ML model based on three 
biomarkers, including LDH, lymphocytes, and hs-CRP. This prediction 
method can aid in the detection of high-risk cases and early interference. 
This model, named XGBoost, using a dataset of 485 patients, showed an 
accuracy of more than 90% [33]. 

According to the clinical symptoms of an individual patient at hos-
pital admission, a DL-based Survival Cox model, which can efficiently 
recognize SARS-CoV-2 patients at risk of developing critical illnesses, 
has been developed. Ten hazardous characteristics, such as medical 
image abnormalities, comorbidities quantity, and age, were determined 
using the LASSO algorithm. This online calculation tool would assure 
that patients at major risk receive proper care as soon as possible. The 
concordance index (C-index) and AUC of this model on the internal 
validation set involving 1590 Chinese patients’ information deriving 
from 575 medical centers were 0.894 and 0.911, respectively [34]. 

An ML-based model applying predictive analytics, SVM, and Deci-
sion tree algorithm has been developed in order to recognize SARS-CoV- 
2 patients with the potential to develop more critical illnesses such as 
acute respiratory distress syndrome (ARDS), based on clinical features 
such as a moderately increased alanine aminotransferase (ALT) level, 
the existence of myalgias (muscle aches), and an increased hemoglobin 
level at hospital admission. They used the medical record of 53 Chinese 
SARS-CoV-2 patients at two hospitals. This method’s accuracy was 
about 70–80%, and it can be improved using a higher number of data to 
train [35]. 

A deep network, originating from Spatial Transformer Networks 
(STN) and by applying several AI methods, was developed to predict the 
severity of the SARS-CoV-2 infection by assigning a frame-based and 
video-based score for each person and recognizing areas encompassing 
pathological artifacts by automatically evaluating Lung Ultrasound 
(LUS) images. They developed this model using STN on 277 LUS videos 

from the SARS-CoV-2 Lung Ultrasound DataBase from Italy (ICLUS-DB) 
to find the artifacts in the images [36]. 

According to the Viterbi algorithm and Hidden Markov model, an 
automatic program was introduced to examine and localize the pleural 
line in images and then evaluate the pathological severity of the infec-
tion setting score values for each image using SVM. They employed 58 
videos from ICLUS-DB as the testing set. The accuracy in pleura detec-
tion for linear and convex probes was 94% and 84%, respectively. In 
addition, the SVM model’s accuracy in classification for linear and 
convex probes was 94% and 88%, respectively [37]. 

Bai and his coworkers have discovered that the health status of many 
mild SARS-CoV-2 patients suddenly get worse in a brief time, and their 
condition deteriorates into more severe cases. They developed a DL- 
based model using MLP and LSTM to forecast malignant progression 
in infectious patients using analysis of their CT images. They acquired 
the best prediction AUC of 0.954 [38]. Table 3 summarizes the new AI 
models employed in the field of monitoring the SARS-CoV-2. 

5. Current applications of ML in treatment of the SARS-CoV-2 

5.1. Repurposing the existing drugs 

Considering the 4–6 years needed from discovery to phase three 
clinical trial, repurposing the existing drugs is the fastest response for 
the treatment of the newly emerged viral or bacterial infections. There is 
an urgency to use AI-based models to rapidly recognize potential useful 
drugs in treating the infected patients by SARS-CoV-2. 

Project IDentif. AI is a NN based model that is developed to quickly 
find effective medicine combinations according to correlations among 
mechanism of actions of drugs, their efficient doses for optimal drug 
synergy in the body, and safety, which does not need large data to train 
[39]. 

A research team that utilized AI-based BenevolentAI, incorporated 
bio-medical data deriving out of unstructured and structured authorities 
to examine certified medicines for SARS-CoV-2 and suggested "Bar-
icitinib" as an inhibitor of AAK1 protein [40]. In Ref. [41], the AI-based 
knowledge graph of BenevolentAI was used to explore in approved drugs 
in order to recognize ones with both antiviral and anti-inflammatory 
characteristics and those that could prohibit viruses from entering the 
cells. 

A combination of virtual drug screening, ML algorithms, and mo-
lecular docking, with the help of MOGON II supercomputer, was used to 
search for FDA-approved drug candidates and natural substances that 
might inhibit the SARS-CoV-2. Three proteins were selected as targets, 
including S protein, N protein, and 2′-o-ribose methyl transferase [42]. 

Another paper developed a DL-based medicine-target communica-
tion model, named MT-DTI, to distinguish accessible drugs that can 
interact with proteins of the SARS-CoV-2 virus, such as 3C-like protease 
and helicase, based on the scores of their binding affinity [43]. 

An AI-based model was developed using a Deep Neural Network to 
recognize available drugs, which can be used to treat SARS-CoV-2 by 
inhibiting the main protease of the virus. The results of feline corona-
virus (FCoV) in-vitro assay were applied to the AI system again to 
enhance the model [44]. 

Zhang et al. designed a 3D model of 3C-like protease of the SARS- 
CoV-2 by analyzing RNA strings. Further, they developed a DL-based 
model named Dense Fully Convolutional Neural Network (DFCNN) 
based on neural networks for virtual drug screening and additionally 
used homology modeling to find suitable drugs and compounds inter-
acting with this protease [45]. 

In another study, researchers gathered analytical data considering 65 
human proteins, which are noted to interact with viral proteins of SARS- 
CoV-2. They used combined SVM models, applying Mean Absolute Error 
(MAE) and R, to predict FDA-approved drugs with suppressing activity 
on the proteins. Vapor pressure and toxicity of the forecasted drugs were 
also evaluated. They created a network of predicted drugs with their 

Table 2 (continued ) 

Method Type Purpose of 
analysis 

Performance Reference 

PA Forecasting 
analysis 

Estimating the 
number of new 
positive cases, 
deaths, and 
recoveries over 
the next seven 
days 

Accuracy of 
95% and 88% in 
Australia and 
Jordan, 
respectively 

[20] 

SVM, NB, DT, 
RF, and LR 

ML Forecasting the 
recovery chance 
of infected 
patients 

DT achieved an 
accuracy of 
99.85% 

[27]  
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associated human proteins [46]. 
A summary of the drugs whose efficiency in inhibiting the SARS- 

CoV-2 infection are predicted by artificial intelligence is provided in 
Table 4. As can be perceived from this table, several suitable drug 
repurposing candidates have been proposed by AI to combat the SARS- 
CoV-2 infection. In this regard, various ML and DL models such as RBF, 
SVM, NB, and DNN, as well as homology modeling, molecular dynamic 
simulations, and in-vitro antiviral assays were employed. Accordingly, 
these predictions might be advantageous for researchers and biotech-
nology companies, abating their research costs. 

5.2. Viral protein conformation prediction 

A number of 3D structures of viral proteins of the SARS-CoV-2 have 

been predicted using ML techniques and molecular simulation to aid in 
the perception of the virus pathogenesis and its drug design. 

In a study led by Heo et al., 3D structures of ten proteins derived from 
the SARS-CoV-2 genome were simulated. They utilized an ML method 
named trRosetta by applying inter-residue connection anticipations and 
Molecular Dynamics (MD) imitation-based processing through 
enhancing the protocol employed in CASP13 [49]. MD is a computer 
simulation method for the evaluation of the physical activity of atoms 
and molecules. They analyzed this model against other at-hand ones and 
state that their model presents more thorough coverage of sequences 
than the AlphaFold [50] one [51]. 

The critical protease of SARS-CoV-2 is called Mpro. Researchers took 
advantage of recent studies regarding the structure of this protein. They 
applied their AI-based model, integrating DL, and ML-based methods, to 
publish ten ideal 3D designs of Mpro in PDB format and also developed 
unique promising substances interacting with this protease. They used 
two concepts of pocket-based and ligand-based to develop new molec-
ular conformations. They also applied 28 different ML models for 
structure prediction, and the structures were further optimized accord-
ing to the reward function in reinforcement learning to obtain the best 
scores [52]. 

A DL-based (CNN) model has been introduced to estimate the 
localization of sub-cellular viral proteins of SARS-CoV-2. This model’s 
regional accuracy is above 98%, which can effectively discover various- 
target drugs for viral infections [53]. 

5.3. Drug development 

In the development of drugs to treat the newly emerged SARS-CoV-2 
virus, time is a critical factor. Machine learning and AI can be beneficial 
for us by accelerating the pace of the process of drug development and 
clinical trials. 

Researchers used a DL-based model evaluated by R2, Root Mean 
Square Error (RMSE), and MAE-Mean Square Error (MSE) metrics, for 
virtual evaluation and MD simulations to identify natural substances 
inhibiting the viral Mpro, which led to proposing the Sauchinone and 
Palmatine as the potential effective compounds among 1611 substances. 
These compounds further showed promising results based on the 
MMPBSA approach, which predicts the complex’s stability [54]. 

Ton et al. built a new DL-based model called Deep Docking, which 
facilitated a structure-based virtual evaluation of 1.3 billion substances 
from the ZINC15 library to recognize suitable ones interacting with 
Mpro of the virus. They identified 1000 substances with the best score 
from Glide SP. Molecular structures of the recognized substances are 
made openly accessible [55]. 

Another paper developed a program to identify substances for the 
treatment of SARS-CoV-2, by applying virtual evaluation, structure- 
based design of drugs, high-throughput evaluation, and antiviral cell- 
based analysis against the Mpro of the SARS-CoV-2. Out of 10,000 
pharmacological substances, six compounds demostrated the ability to 
inhibit Mpro, and one (Ebselen) indicated outstanding results in FRET 
assays [56]. 

Fig. 1 illustrates the repurposed drugs and compounds that their 
inhibitory effect on SARS-CoV-2 was predicted in AI modeling and 
proved experimentally due to the in-silico prediction using ML ap-
proaches. As this figure demonstrates, each of these AI-predicted com-
pounds has shown suppressive effects on the SARS-CoV-2 in in-vitro 
assays. Therefore, it can be considered to assess the candidate drugs for 
the infection. The sharing and availability of data in this era are critical 
in order to accelerate the identification of the best treatments for dis-
eases [57]. 

A review of the compounds whose efficiency in inhibiting the SARS- 
CoV-2 infection are predicted by artificial intelligence in recent related 
publications is presented in Table 5. As can be seen from this table, 
various ML and DL models such as NB, DFCNN, and homology modeling, 
molecular docking, and in-silico screening are applied to predict proper 

Table 3 
An overview of the employed novel AI models in the field of monitoring the 
SARS-CoV-2. Not specified.  

Method Type Purpose of 
analysis 

Performance Reference 

AceMod Agent- 
based 
model 
(ABM) 

Investigate the 
SARS-CoV-2 
pandemic 
properties in 
Australia 

NS [28] 

CVA Optimizer 
algorithm 

Imitating the 
spread of SARS- 
CoV-2 infection 
across several 
countries 

Showed more 
efficiency than 
VEA, GWO, and 
PSO in several 
optimization 
problems 

[29] 

RF, and CCA ML Investigating the 
air pollution 
factor in SARS- 
CoV-2 infectivity 

High accuracy of 
SMR (R^2 = 0.95 
and RMSE =
28.9) and SPR 
(R^2 = 0.93 and 
RMSE = 20.3) 
values 

10 New 

XGBoost ML Investigating the 
probability of 
mortality of an 
individual SARS- 
CoV-2 patient 

More than 90% 
Accuracy 

[33] 

Survival Cox DL Identifying 
SARS-CoV-2 
patients at risk of 
developing 
critical illnesses 

AUC of 91.1%, 
and C-index of 
89.4% 

[34] 

SVM, and DT ML Recognizing 
SARS-CoV-2 
patients with the 
potential to 
develop more 
critical illnesses 

Accuracy of 
70–80% 

[35] 

STN DL Predicting the 
severity of the 
SARS-CoV-2 
infection by LUS 
images 

F1-score of 65.1 
for full model, 
and a pixel-wise 
accuracy of 96% 
for the 
segmentation 
model 

[36] 

Viterbi 
algorithm, 
Hidden 
Markov 
method, 
and SVM 

ML Evaluating the 
pathological 
severity of the 
infection by LUS 
images 

Accuracy in 
pleura detection 
for linear and 
convex probes 
was 94% and 
84%, 
respectively 

[37] 

MLP, and 
LSTM 

ML Employing CT 
images data to 
forecast 
malignant 
progression in 
infectious 
patients 

AUC of 95.4% [38]  
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drug candidates to control the SARS-CoV-2 pandemic. Although each of 
the publications has employed distinct parameters and data to predict, 
these predictions might come in handy in treating the infection if they 
show acceptable pharmacodynamics and pharmacokinetic properties in 
clinical trials. 

5.4. Predicting the outcome of treatment 

The disease’s progress in the SARS-CoV-2 infection following the 
drug administration can be predicted using the ML approach. 

An AI-based model (AIMDP) was developed to predict the response 
of SARS-CoV-2 patients to treatment. This model has two functions, 
including diagnosis (DM) using chest CT images and prediction (PM). 
The PM function utilizes CNN for the purpose of segmentation by 
applying the Whale Optimization Algorithm. PM function provides a 
probability of a patient’s capability to respond to SARS-CoV-2 treat-
ments according to the different input factors, including age, infection 

level, treatment procedures, respiratory failure, and multi-organ failure 
[58]. AIMDP model trained by a dataset of 617 CT images to detect the 
infection, demonstrated higher accuracy and sensitivity than other 
similar methods such as COVNet [16]. 

In a study, 315 SARS-CoV-2 patients were investigated for two weeks 
using an AI-based radiomics method applying data mining algorithms. 
To anticipate the patient end-result concerning ICU acceptance, AUC for 
radiomics analysis and radiologists analysis were 0.75 and 0.68, 
respectively [59]. 

A technique that combines 3D analysis and 2D slice-level AI methods 
was developed to assess the progress of the infection in each patient over 
time, bringing about a score. They used a testing set of 157 patients. 
AUC, sensitivity, and specificity of this classification model was 0.99, 
98.2%, and 92.2%, respectively [60].Table 6. 

The drug administration’s efficacy can be evaluated from the anal-
ysis of the lung’s opacification from CT scans using a measurable 
parameter of the image (QCT-PLO) applying a deep learning software. 

Table 4 
Repurposed drugs which their efficiency in inhibition of SARS-CoV-2 infection is predicted by artificial intelligence.  

Name Target Prediction method In vitro 
approved effect 

Original clinical uses References 

Atazanavir 3C-like protease DL (MT-DTI), ML (NLP, and NB), and AutoDock Vina - HIV [43,47] 
Astemizole VCP, RHOA, TK2 ML (SVM, and RBF) - Antihistamine [40,41,46] 
Baricitinib AAK1 protein Janus kinase 

(JAK) 
BenevolentAI - Rheumatoid arthritis [40,41,44] 

Bazedoxifene VCP, RHOA, ABCC1 ML (SVM, and RBF) - Postmenopausal 
osteoporosis 

[44,46] 

Bedaquiline 3C-like protease DL (DNN), in-vitro antiviral assays + Tuberculosis [44] 
Brequinar 3C-like protease DL (DNN), in-vitro antiviral assays + Immunosuppressant [42,44] 
Celecoxib 3C-like protease DL (DNN), in-vitro antiviral assays + Anti-inflammatory [43,44] 
Clofazimine Antiviral activities DL (DNN), in-vitro antiviral assays + Leprosy [41,44] 
Conivaptan Nucleocapsid protein, 3C-like 

protease 
Homology modeling, molecular docking, supervised ML 
(NN, and NB), DL (DNN), and in-vitro antiviral assays 

+ Hyponatremia [42,44,45] 

Dabrafenib BRD4, PSEN2, IDE ML (SVM, and RBF) - Anti-Cancer [44,46] 
Darolutamide TK2, TBK1, VCP ML (SVM, and RBF) - Prostate cancer [42,46] 
Efavirenz 3C-like protease DL (MT-DTI), ML (NLP), and AutoDock Vina - HIV [43] 
Entrectinib IDE, MARK2, VCP ML (SVM, and RBF) - Anti-Cancer [42,46] 
Etoricoxib BRD4, PRKACA, DCTPP1 ML (SVM, and RBF) - Rheumatoid arthritis [43,46] 
Fedratinib Janus kinase (JAK) BenevolentAI - Myeloproliferative 

diseases 
[41,43] 

Ganciclovir 3C-like protease, RNA- 
dependent RNA polymerase 

Homology modeling, DL (DFCNN, and MT-DTI), and 
AutoDock Vina 

- Cytomegalovirus (CMV) 
infections 

[41,43,45] 

Gemcitabine Antiviral activities DL (DNN), in-vitro antiviral assays + Anti-cancer [42,44] 
Grazoprevir Spike protein Homology modeling, AutoDock VINA, molecular 

docking, and supervised ML (NN, and NB) 
- Hepatitis C [42,44] 

Ibrutinib BRD4, IDE, TK2 ML (SVM, and RBF) - B cell cancer [42,46] 
Lapatinib PSEN2, IDE, BRD4 ML (SVM, and RBF) - Breast cancer [45,46] 
Lasofoxifene VCP, RHOA, ABHD12 ML (SVM, and RBF) - Osteoporosis [44,46] 
Lestaurtinib BRD2, TBK1, MARK2 ML (SVM, and RBF) - Anti-Cancer [42,46] 
Lifitegrast ITGB1, BRD4, PTGES2 ML (SVM, and RBF) - Dry eye [44,46] 
Lopinavir/ 

Ritonavir 
RNA Helicase IDentif.AI, DL (MT-DTI), ML (NLP, and NB), and 

AutoDock Vina 
- HIV [43,45,47, 

48] 
Lumacaftor IMPDH2, EIF4H, BRD2 ML (SVM, and RBF) - Cystic fibrosis [45,46] 
Midostaurin TBK1, BRD2, MARK3 ML (SVM, and RBF) - Acute myeloid leukemia 

(AML) 
[45,46] 

Paritaprevir Spike protein, 2′-o-ribose 
methyltransferase 

Homology modeling, AutoDock VINA, molecular 
docking, and supervised ML (NN, and NB) 

- Hepatitis C [42,45,47] 

Remdesivir 3C-like protease IDentif.AI, DL (MT-DTI), ML (NLP), and AutoDock Vina - Antiviral [42,43,48] 
Ribociclib PRKACA, ABCC1, HDAC2 ML (SVM, and RBF) - Breast cancer [45,46] 
Ritonavir 3C-like protease IDentif.AI, DL (MT-DTI), ML (NLP, and NB), and 

AutoDock Vina 
- HIV [43,45,47, 

48] 
Ruxolitinib Janus kinase (JAK) BenevolentAI - Myelofibrosis [41,42] 
Simeprevir Spike protein Homology modeling, AutoDock VINA, molecular 

docking, and supervised ML (NN, and NB) 
- Hepatitis C [42] 

Talazoparib CSNK2A2, BRD4, BRD2 ML (SVM, and RBF) - Breast cancer [46] 
Telmisartan NSD2, PRKACA, PTGES2 ML (SVM, and RBF) - Hypertension [46] 
Tolcapone 3C-like protease DL (DNN), in-vitro antiviral assays + Parkinson’s disease [44] 
Triazolam CSNK2b, RIPK1, DCTPP1 ML (SVM, and RBF) - Insomnia [46] 
Velpatasvir Spike protein Homology modeling, AutoDock VINA, molecular 

docking, and supervised ML (NN, and NB) 
- Hepatitis C [42] 

Vidarabine 3C-like protease Homology modeling and DL (DFCNN) - Antiviral [45] 
Vismodegib 3C-like protease DL (DNN), in-vitro antiviral assays + Basal-cell carcinoma 

(BCC) 
[44]  
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Follow-up CT images of 126 SARS-CoV-2 patients were analyzed. The 
outcome of this study indicates that pulmonary engagement in patients 
dramatically increases after the onset of symptoms, and it reaches its 
peak on the 13th day [61]. 

6. Future suggested applications of ML for management of SARS- 
CoV-2 

The computational algorithms used by ML methods can extract the 
interpretations and solutions in a variety of ways, which are not possible 
by the conventional computational tools. The rate of dissemination and 
evolution of the SARS-CoV-2 demands rapid reactions and ML ap-
proaches attempt to limit its infection and different consequences 
relating to it. 

ML adds another dimension to how information is concluded by both 
continuous generations of data on SARS-CoV-2 and the improvement in 
computing power. For instance, the environmental stability of SARS- 

CoV-2 on biotic and inanimate surfaces needs to be modeled by the 
ML approaches based on the variations in the nature of the surfaces and 
the surrounding physicochemical conditions. 

Besides, ML approaches are able to analyze the pattern discovery of 
human fluids components such as a serum, mucosal liquid, urine, etc., 
following the infection by SARS-CoV-2. Furthermore, the empirical 
machine learning approach itself might be improved, which would lead 
to predictions with higher accuracy. Screening of the natural or syn-
thetic compound libraries needs to be conducted in a more similar 
condition to the human body in order to rely on the observed interaction 
between the target protein and the drug candidate. The ML approaches 
could facilitate this simulation without the need to mimic the physio-
logical condition. 

Through proper documentation of the enormous data deriving from 
infected individuals in this coronavirus pandemic, patterns can be 
calculated by ML approaches to get us closer to personalized medicine in 
antiviral therapy. Complex prediction of the treatment-result in case of 

Fig. 1. AI-predicted FDA-approved drugs that have exhibited effectiveness in anti-SARS-CoV-2 assays.  

Table 5 
AI-predicted compounds with potential in the treatment of the SARS-CoV-2 infection. Not Available.  

Name Target Prediction method In vitro 
approved effect 

Original 
clinical uses 

References 

Amyrin Nucleocapsid protein, Spike protein, 2′-o- 
ribose methyltransferase 

Homology modeling, AutoDock VINA, molecular 
docking, and supervised ML (NN, and NB) 

- NA [42] 

Chlorobutanol 3C-like protease Homology modeling and DL (DFCNN) - NA [45] 
D-Mannitol 3C-like protease Homology modeling and DL (DFCNN) - NA [45] 
D-Sorbitol 3C-like protease Homology modeling and DL (DFCNN) - NA [45] 
Ebselen 3C-like protease "In-silico screening, FRET assay, in-vitro antiviral assays + NA [47] 
Ile + Lys + Pro 3C-like protease Homology modeling and DL (DFCNN) - NA [45] 
Loniflavone Spike protein Homology modeling, AutoDock VINA, molecular 

docking, and supervised ML (NN, and NB) 
- NA [42] 

Meglumine 3C-like protease Homology modeling and DL (DFCNN) - NA [45] 
Palmatine 3C-like protease DL(DeepScreening), AutoDock VINA, ADMET analysis, 

and MM-PBSA 
- NA [54] 

Sauchinone 3C-like protease DL(DeepScreening), AutoDock VINA, ADMET analysis, 
and MM-PBSA 

- NA [54] 

Sodium_gluconate 3C-like protease Homology modeling and DL (DFCNN) - NA [45] 
ZINC000008635575 Spike protein, 2′-o-ribose 

methyltransferase 
Homology modeling, AutoDock VINA, molecular 
docking, and supervised ML (NN, and NB) 

- NA [42] 

ZINC000027215582 Nucleocapsid protein, Spike protein, 2′-o- 
ribose methyltransferase 

Homology modeling, AutoDock VINA, molecular 
docking, and supervised ML (NN, and NB) 

- NA [42]  
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the simultaneous disease in the infected person needed to be performed 
by advances in data collections that could feed the machine learning 
platforms. 

The use of resident stem cells, which can act as immunomodulatory 
and pro-osteogenic players in the local environment by taking advan-
tage of AI progression to find treatment for SARS-CoV-2 infection, shall 
be further investigated in the near future. Some advancements in this 
field of study, with AI’s help, would contribute to the improvement of 
personalized treatments with regenerated tissues by employing predic-
tive modeling, which leads to reducing the complexity of the infection 
and abating the costs [62]. 

Mesenchymal Stem Cells (MSC) Assist human beings by having an 
immunomodulatory function in viral infections as well as efficiently 
lessening inflammation in acute lung injuries [63,64]. Various tech-
nologies have been applied in order to enhance the phenotype of cells 
developed from MSCs, which are employed as therapeutic supports in 
clinical applications [65]. Oral tissues are known to be valuable due to 
being rich in stem cells deriving out of various sources. Besides the 
Dental pulp stem cells (DPSCs), which are hugely investigated, 
hPCy-MSCs, stemming from wisdom teeth, has recently depicted 
promising characteristics such as vascular and neural phenotypes while 
maintaining the ability to proliferate [66,67]. Furthermore, the role of 
biomaterials or scaffolds as study models and the role of preclinical 
studies on biomaterials as part of tissue engineering protocols could be 
briefly improved with the help of AI. The robust effects of surface 
harshness on the mechanical intensity of samples, including Zirconia, 
have been identified [68]. The aforementioned study arranged 
two-layered zirconia-covered samples in order to do three-point bending 
evaluation tests. Due to the significance of the effect of surface rough-
ness, researchers proposed employing Computer-Aided Design (CAD) or 
Computer-Aided Manufacturing (CAM) for the establishment of 
zirconia-based bridges and crowns. 

Another proposed challenge in managing such a viral pandemic is 
scoring the performance of the health care or research and development 
staff in terms of following the biosafety level protocols. A personal 
reliable system can be developed using ML to estimate the reliability of 
the robustness of the individuals’ performance in working with 

infectious samples or patients to be recruited or kept in the high-risk 
working area. Some algorithms can be employed to train software pro-
grams to estimate the individuals’ physiological susceptibility (cell-
phone monitoring) to get symptomatic or severe infection by SARS-CoV- 
2 virus. In the long-term future, this estimation can turn into a more 
accurate prediction of the type of data for the machine learning changes, 
from physiological values to the individuals’ genomic sequence. 

Genomic computational tools can also increase data extraction by 
introducing new ML approaches for nucleotide sequence analysis. The 
rapid response needed by the highly contagious viral agents demands 
the development of ML-based decision-making, which needs to be 
developed for the policymakers. Another future upcoming advancement 
will be the addition of the ML analysis tools to the viruses’ database to 
estimate some situations, which are queried from the database. The 
endurance testing process of the biosafety level-3 labs can also be 
improved using ML techniques to teach the machine the consequence of 
the flaws and predict the level of biosecurity in case of any deviations. 
Fig. 2. 

The predominantly used approaches in training the machines also 
need to be enhanced by mathematical advances in developing new al-
gorithms. In other words, it seems that in the data generation for the 
pandemic, the computational ability of the software is still not balanced 
with the capacity of the hardware. 

7. Concluding remarks 

The most recent publications regarding the advancement and use of 
ML and DL approaches in response to the SARS-CoV-2 infection are 
summarized in this paper to facilitate the pace of dealing with the 
pandemic around the globe. With the advancement of data recording 
and collection and their diverse assortment of applications, applying 
these models can prevail upon discovering the most effective and ac-
curate approaches in managing and treating this lethal infection, aba-
ting the medical costs, and aiding the field of data analytics. We 
proposed a detailed overview through the aforementioned sections, 
intending to provide researchers with a thorough review of related and 
the most accurately developed models in various fields in managing this 
pandemic. 

The majority of studies have been focused on drug repurposing using 
virtual screenings, analysis of dissemination patterns of the spread of the 
infection, and clinical diagnosis of the SARS-CoV-2. On the other hand, 
in areas such as drug development, clinical trials, and prediction of the 
treatment’s end-result, more authentic and advanced machine learning- 
based models are still required to be developed. 

In modeling the dissemination pattern of the spread of the infection 
and its transmission processes, SVR, LSTM, and optimization problems, 
among other models, have been frequently used to investigate the SARS- 
CoV-2 pandemic properties so far. 

Machine learning methods including, CNN, SVM, and Generative 
Adversarial Network (GAN) are broadly applied to process the SARS- 
CoV-2 diagnosis for classification purposes in the field of medical 
image processing. These models often evaluate CT, X-ray, and LUS im-
ages of the patients. Several models in the aforementioned studies have 
been able to achieve more than 90% accuracy in detecting the infection. 

Models including SVM, Decision tree (DT), and Spatial Transformer 
Networks (STN), have been dominantly employed by researchers in 
order to identify SARS-CoV-2 patients with the potential to develop 
more critical illnesses, based on evaluating LUS images of patients, or 
other clinical characteristics. According to the so far reports, Deep 
Neural Network (DNN), homology modeling, and molecular docking are 
the most used SARS-CoV-2 drug repurposing models in the rapid iden-
tification of potentially effective drugs for the treatment of the SARS- 
CoV-2 infection. 

So far, all ML applications can be categorized in detection/moni-
toring, prevention/treatment, and pathogenesis analysis of this virus. 
More efforts have been focused on the drug repurposing, analysis of 

Table 6 
An outline of the employed novel AI models in the treatment of the SARS-CoV-2 
infection.  

Method Type Purpose of analysis Performance Reference 

trRosetta MD Simulating the 3D 
structure of ten 
viral SARS-CoV-2 
proteins 

Less than 1.5 
MolProbity score for 
the generated 
models 

[51] 

Several 
methods 

ML 
and 
DL 

Publishing ideal 3D 
designs of Mpro 

28 ML models were 
employed to 
optimize the reward 
function 

[52] 

CNN DL Estimating the 
localization of sub- 
cellular viral 
proteins of SARS- 
CoV-2 

Accuracy of more 
than 98% 

[53] 

AIMDP, and 
CNN 

DL Predicting the 
response of SARS- 
CoV-2 patients to 
treatment 

Achieved more 
precision, accuracy, 
and sensitivity than 
other models such as 
COVNet and 
DeConNet 

[35] 

Radiomics ML 
and 
DL 

Anticipating the 
patient end-result 
concerning ICU 
acceptance 

AUC of 75% [59] 

3D analysis 
and 2D 
slice-level 
methods 

ML 
and 
DL 

Assess the progress 
of the infection in 
each SARS-CoV-2 
patients over time 

AUC of 99.6%, 
sensitivity of 98.2%, 
and specificity of 
92.2% 

[60]  
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dissemination patterns, and clinical radiographs in terms of the reports’ 
quantity. Nevertheless, the proper data record of the disease trend and 
individual status and response to the administrated antiviral drugs could 
lead to the best-recommended treatment with the existing drugs. How-
ever, in vast distributed clinical centers in world, there is not a proper 
recording of the cases that could feed the ML analysis for this purpose. 
Such inferred biomedical knowledge graphs are critically demanding for 
the appropriate management of the infected cases. 

Among the ML algorithms, supervised and unsupervised ones such as 
SVM and NB, have been more functional for the analysis of coronavirus 
related data, and the reinforcement approach is employed more in 
clinical rather than population analysis. 

The most continuous line of data generation is the daily deposition of 
the genome sequence of the SARS-CoV-2 clinical isolates worldwide. ML 
can aid in predicting pathogenesis, the evolution of the virus, and its 
drug susceptibility for the comparative sequence analysis. Improvement 
of technologies and their accreted accessibility is remarkably shaping 
the landscape of the ongoing research on managing treatment of Coro-
navirus infection using a machine learning approach. 

With the aid of ML, intelligent systems can be developed to make 
autonomous decisions in such pandemic instead of clinicians and poli-
cymakers. Previous data samples can teach these algorithms through 
statistical analysis and pattern matching. Then, based on the trained 
data, they provide the predicted results. The exponential data generated 
by research on this virus accumulates daily, feeding the machine 
learning developments to get meaningful insights from this large 
collected data. 
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