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ABSTRACT

The study of the gene repertoires of microbial
species, their pangenomes, has become a key part
of microbial evolution and functional genomics. Yet,
the increasing number of genomes available compli-
cates the establishment of the basic building blocks
of comparative genomics. Here, we present PanA-
CoTA (https://github.com/gem-pasteur/PanACoTA),
a tool that allows to download all genomes of a
species, build a database with those passing qual-
ity and redundancy controls, uniformly annotate and
then build their pangenome, several variants of core
genomes, their alignments and a rapid but accurate
phylogenetic tree. While many programs building
pangenomes have become available in the last few
years, we have focused on a modular method, that
tackles all the key steps of the process, from down-
load to phylogenetic inference. While all steps are in-
tegrated, they can also be run separately and multiple
times to allow rapid and extensive exploration of the
parameters of interest. PanACoTA is built in Python3,
includes a singularity container and features to facil-
itate its future development. We believe PanACoTa
is an interesting addition to the current set of com-
parative genomics tools, since it will accelerate and
standardize the more routine parts of the work, al-
lowing microbial genomicists to more quickly tackle
their specific questions.

INTRODUCTION

Low cost of sequencing and the availability of hundreds of
thousands of genomes have made comparative genomics a
basic toolkit of many microbiologists, geneticists, and evo-
lutionary biologists. Many bacterial species of interest have
now over 100 genomes publicly available in the GenBank
RefSeq reference database, and a few have more than ten
thousand. This trend will increase with the ever decreasing

costs of sequencing, the availability of long-read technolo-
gies, and the use of whole-genome sequencing in the clinic
for diagnostics and epidemiology. As a result, researchers
that would like to use available assemblies are faced with
extremely large amounts of data to analyze. Comparative
genomics has spurred important contributions to the un-
derstanding of the organization and evolution of bacterial
genomes in the last two decades (1,2). It has become a stan-
dard tool for epidemiological studies, where the analysis of
the genes common to a set of strains — the core or per-
sistent genome — provides unrivalled precision in tracing
the expansion of clones of interest (3,4). The use of routine
sequencing in the clinic will further require rapid and re-
liable analysis tools to query thousands, and soon possibly
millions of genomes from a single species (5). Population ge-
netics also benefits from this wealth of data because one can
now track in detail the origin and fate of mutations or gene
acquisitions to understand what they reveal of adaptive or
mutational processes (6). Finally, genome-wide association
studies have been recently adapted to bacterial genetics, to
account for variants in single nucleotide polymorphism and
gene repertoires (7). They hold the promise of helping biol-
ogists to identify the genetic basis of phenotypes of interest.
Given the high genetic linkage in bacterial genomes, these
studies may require extremely large datasets to detect small
effects. More specifically, reverse vaccinology is also a note-
worthy application of these pangenomics methods, to iden-
tify novel potential antigens among core surface-exposed
proteins of a given clade (8).

The availability of large genomic datasets puts a heavy
burden on researchers, especially those that lack extensive
training in bioinformatics, because their analysis implicates
the use of automatic processes, efficient tools, extensive
standardization and quality control. Many tools have been
recently developed to make rapid searches for sequence sim-
ilarity with excellent recall rates for highly similar sequences
(9-11).

Other tools provide methods to rapidly cluster large num-
bers of sequences in families of sequence similarity, to get
the families common to a set of genomes, to align them, or
to produce their phylogeny, four cornerstones of compara-
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tive genomics. A number of recent programs have recently
been published that include some of these tools to compute
bacterial pangenomes (for a review, see (12)). Many of these
programs compute alignments and clusters of families using
programs that are very fast. They use tools that make some
compromises between accuracy and speed, such as DIA-
MOND (9), USEARCH (13) and CD-HIT (14). The lat-
ter is used, among others, by Roary (15), which is currently
the most popular tool to compute pangenomes, and Pana-
roo (16), a very recent tool aiming at reducing the impact of
erroneous automated annotation of prokaryotic genomes.
BPGA (17), using USEARCH or CD-HIT to cluster pro-
teins, also provides some downstream analyses. PanX (18),
which has an outstanding graphical interface, uses DIA-
MOND to search for similarities among genes.

More recently, SonicParanoid introduced the use of the
highly efficient and accurate program mmseqs2 to build
pangenomes, and PPanGGOLIN used the same tool to
provide a method to statistically class pangenome fami-
lies in terms of their frequency (19-21) . Some recent pro-
grams also use graph-based approaches to further refine the
pangenomes, such as PPanGGOLiN and Panaroo (16). For
that matter, the analysis of a dataset of 319 Klebsiella pneu-
moniae genomes by both tools provided similar results (16).
Some tools, such as PIRATE (22) have also been recently
developed to cluster orthologues between distant genomes.
However, all these programs lack some or all of initial and
final steps that are essential in comparative genomics, in-
cluding download, quality control, alignment and phylo-
genetic inference. This spurred the development of PanA-
CoTA (PANgenome with Annotations, COre identification,
Tree and corresponding Alignments). To take advantage
of the vast amount of genomic information publicly avail-
able, one needs six major blocks of operations. (i) Gather
a set of genomes of a clade automatically. This requires
some quality control, to avoid drafts with an excessive num-
ber of contigs. It is also often convenient to check that the
genomes are not too redundant, to minimize computational
cost and biases due to pseudo-replication. On the other side,
it is important to check that genomes are neither too unre-
lated, to eliminate genomes that were misclassified in terms
of bacterial species (or the taxonomic organization of rel-
evance). (ii) Define a priori an uniform nomenclature and
annotation, without which the calculation of pangenomes
and core genomes becomes unreliable for large datasets.
(iii) Produce the pangenome, a matrix with the patterns of
presence/absence of each gene family in the set of genomes,
using an accurate, simple and fast method. (iv) Use the
pangenome to identify sets of core or persistent genes. (V)
Produce multiple alignments of the gene families of the
core or persistent genomes. (vi) Finally, produce quickly a
reasonably accurate phylogeny of the set of core/persistent
genes. These four collections of data, pangenome, core
genome, alignments and phylogenetic tree, are the basis of
most microbial comparative genomics studies. At the end of
this process, the researcher can produce more detailed anal-
yses, specific to the questions of interest, which often lead
to changes such as including/excluding taxa, changing the
thresholds of sequence similarity, increasing alignment ac-
curacy, or rebuilding phylogenies using different methods.
Such re-definitions can be achieved more efficiently when

pipelines are modular and allow to restart the analyses at
several key points in the process.

Considering the current availability of pipelines for mi-
crobial comparative genomics, we have built one that is
modular, easy to setup, uses state-of-the-art tools and al-
lows simple re-use of intermediate results. The goal was
to provide a pipeline that allows to download all genomes
from a taxonomic group and make all basic comparative ge-
nomics work automatically. The pipeline is entirely built in
a single language, Python v3, and uses modern methods to
facilitate its future maintenance and to limit unwanted be-
havior. PanACoTA is freely available under the open source
GNU AGPL license. Here, we describe the method and
illustrate it with an analysis of two datasets of 225 com-
plete and 3980 complete or draft genomes of K. pneumoniae.
This species is interesting for our purposes because there are
many genomes available and it has a very open pangenome
(23). The first dataset describes a situation where sequence
quality is usually high, and the second illustrates how the
method scales-up to a very large dataset where some se-
quences and assemblies are of lower quality. The procedure
is detailed in the Materials and Methods section, whereas
the illustration of its use, and how it changes in relation to
key options in the two datasets, is detailed in the Results
section.

MATERIALS AND METHODS

PanACoTa is implemented in six independent sequential
modules, described in the sections below. This allows to
start or stop at any step and re-run an analysis with other
parameters (see overview in Figure 1 and key parameters in
Table 1). It also provides a module a1 1, which allows to run
all modules in a single-command.

Datasets
The first module prepare fetches the com-
pressed non-annotated fasta files assemblies from

the NCBI matching a given taxonomy ID using
the scripts from ncbi_genome download library
(https://github.com/kblin/ncbi-genome-download).

We use two datasets of K. pneumoniae genomes to illus-
trate how PanACoTA functions. DTS1 contains all com-
plete and draft assemblies from the NCBI refseq database
on 10 October 2018. DTS2 is the subset of DTSI con-
taining only the complete genomes (genomes with assem-
bly level = Complete Genome, based on the NCBI
summary file).

Quality control procedure

PanACoTA removes assemblies that do not conform with
basic requirements in terms of assembly and taxonomy.
This is done by the prepare module after downloading the
genomes, or by the annotate module before the annota-
tion step (if the user did not use the prepare module).
The first control procedure filters genomes in terms of
sequence quality. Since there is usually no standard de-
scription of the quality of the sequence assembly in RefSeq
genomes, the program infers it from the sequences. First, it


https://github.com/kblin/ncbi-genome-download

NCBI taxid \

prepare module

Download

Quality control
(L90, #contigs)

Filter
(species checking)

Kept genome sequences
+ quality file

annotate module

™ [Quality control] 1

Genome sequences \

Annotate

Format

Annotated and formated sequences
(replicons, proteins and genes)

pangenome module

Pangenome file with other information on families
(quantitative and qualitative matrices, etc.)

corepers module

Core or Persistent genome
families with corresponding
proteic and nucleid sequences

Protein sequences
Pangenome

Persistent or Core genome file

alignment module

nucleic and amino acid alignments for each
_ core/persistent family
+ File with nucleic sequences of all core/

Nucleic alignments of
families by genome

\\piistent families aligned by genome
tree module

\>Tree in Newick

format

Figure 1. Overview of PanACoTA method.

is common usage to put stretches of "N’ to separate con-
tigs in a same fasta sequence. Hence, PanACoTA splits se-
quences at each stretch of at least a given number of "N’
to get one fasta entry per contig. Assuming that the user is
analyzing genomes from the same species, those genomes
should have relatively similar characteristics in terms of
number of contigs and length. Hence, PanACoTA calcu-
lates the total number of contigs, and the L90 (the minimum
number of contigs necessary to get at least 90% of the whole
genome). Very high values of these two variables are usually
an indication of low quality of sequencing or assembling,
resulting in genome exclusion.

The second procedure filters redundant and misclassified
genomes. This is done based on the genetic distance be-
tween pairs of genomes, as calculated by Mash (24), which
can be computed very fast and is accurate for closely re-
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lated genomes. Mash reduces each genome sequence to a
sketch of representative k-mers, using the MinHash tech-
nique (25). It then compares those sketches, instead of the
full sequences. The Mash distance D strongly correlates with
alignment-based measures such as the Average Nucleotide
Identity (ANI) based on whole-genome sequence compar-
isons using the blast algorithm (26): D ~ 1 — ANI. For ANI
in the range of 90-100%, the correlation with Mash dis-
tance is even higher when increasing the sketch size. Since
pangenomes are typically computed for a single bacterial
species, we are here using Mash to discriminate genomes
having at least 94% identity. A few recent programs have
been published showing slightly more accuracy than Mash,
but we found them too slow for the use as a systematic fil-
ter when performing millions of pairwise genome compar-
isons. For example, using 15 cores, FastANI (27) requires
around 1h15 to compare all pairs of 200 genomes (40 000
pairwise comparisons), where Mash with a sketch size of
10° does the task in less than 3 min. The program dRep
(28) uses Mash as a pre-filter and then makes more accurate
and time-consuming analyses. This is very useful when com-
paring draft genomes of very different sizes, like metage-
nomic assembled genomes, but less so for the analysis of
within-species complete genomes. Users requiring a finer
grade study of ANI may wish to post-analyze their genomes
using these programs.

Bacterial species are usually defined as groups of genomes
at more than 94% identity (29), which sets the default
threshold for D (max_mash_dist = 0.06). On the other
extreme, genomes with very high similarity (low Mash
distances) provide very similar information. Their exclu-
sion decreases the time required for the analysis and di-
minishes over-sampling of certain clades. PanACoTA sets
min_mash_dist to 10* by default. This represents one
point change every 10 genes, which may be close to
the sequencing and assembling accuracy of many draft
genomes.

The two procedures, quality control and Mash filtering,
are linked together. The information on the number of con-
tigs and L90 is useful to chose the genome that is kept be-
tween a pair of very similar genomes. In summary, the con-
trol procedure works as follows:

1. Genomes with an excessively high number of contigs or
L90 are excluded.

2. Genomes are primarily sorted by increasing L90 value,
and secondarily by increasing number of contigs to pro-
duce a list ordered in terms of quality.

3. The genomes are compared with Mash. For that, the first
genome of the ordered list (the one with best quality)
is compared to all the others. The ones which do not
obey to the distance thresholds are discarded. The pro-
cedure then passes to the subsequent genome in the or-
dered list (if not rejected before), compares it to all re-
maining genomes, and discards those not respecting the
thresholds. The process continues until the ordered list
is exhausted.

The output of the prepare module is a database with
the genomes that passed the two steps of the quality con-
trol procedure: 3980 genomes for DTS1 and 225 complete
genomes for DTS2 (accession numbers in Supplementary
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Table 1. Key parameters for each module of PanACoTA

Module Key parameters Short description Default values
prepare NCBI species taxid If user wants to download
NCBI species Genomes from NCBI
- -cutn n Split contig when there are at least ‘n’ N in a row 5
--190 x Discard genome(s) with L90 higher than x 100
- -nbcont x Discard genome(s) with more than x contigs 999
- -min_dist X Discard genome(s) closer than a Mash distance of x 104
- -max_dist x Discard genome(s) with a Mash distance higher than x 0.06
annotate - -190 x Discard genome(s) with L90 higher than x 100
- -nbcont x Discard genome(s) with more than x contigs 999
- -prodigal Use only prodigal instead of Prokka False
pangenome -ix Minimum sequence identity to be considered in the 0.8
same family
-CX Clustering mode (0 for ‘set cover’, 1 for ‘single-linkage’, 1
2 for ‘CD-Hit’)
corepers -t tol Min % of genomes having at least 1 member in a family 1 (core-genome)
to consider the family as persistent
-M ‘Multiple persistent genome’ False
-X ‘Mixed persistent genome’ False
align -c file File containing core genome
tree -s software Software to infer phylogeny 1Qtree

Table S1). PanACoTA also provides a file listing the dis-
carded genomes and why they were discarded.

Annotation

The annotate module provides uniform gene annotation.
It takes as input a database of fasta sequences, from the
prepare module or provided by the user. If no informa-
tion is given on the quality control of those genomes (num-
ber of contigs and L90), this quality control is done here
(see previous section for more information on the quality
control step).

PanACoTA annotates all genomes with Prokka (30). The
latter uses Prodigal (31) to identify gene positions. It then
adds functional annotations using a series of programs, in-
cluding BLAST+ (32) to search for homologs in a database
of proteins taken from Uniprot and HMMER3 (33) to
search for proteins hitting selected profiles from TIGRFAM
(34) and PFAM (35). All annotated sequences are renamed
using a standard sequence header format. The header of
each gene contains 20 characters and provides human read-
able information on the genome and contig of the gene, its
relative position in the genome and if it is at the border of a
contig (see Figure 2).

If the user does not need the functional annotation, the
module gives the possibility of running only the gene find-
ing part, i.e. only running Prodigal. For very large datasets
it is much faster to use this option and annotate a posteriori
only one gene per family of the pangenome using Prokka or
more complete annotation systems like InterProScan (36).
The output of this step consists in five files per genome: the
original sequence, the genes, the proteins (all in fasta for-
mat), a gff file containing all annotations and a summary
information file.

Identification of the pangenome

The pangenome module of PanACoTA computes the set
of all protein families in the genomes (on the ’Proteins’
folder generated by the annotate module).

The inference of the pangenome involves comparisons
between all pairs of proteins, i.e. its complexity is to the
square of the number of genes (and thus of genomes). To
generate a reliable pangenome in a reasonable time, PanA-
CoTA calls the MMseqs?2 suite (20). The mmseqgs search
module has a very good speed/sensitivity trade-off. In or-
der to reduce time, it uses three consecutive search stages,
with increasing sensitivity and decreasing speed. Everything
is highly parallelized and optimized on multiple levels. The
first step filters up to 99.9% of the sequences by eliminating
high dissimilarities, i.e. sequences not having at least two
consecutive kmer matches. The second step filters out an-
other 99% of the remaining sequences using an ungapped
alignment. This leaves a small amount of sequences to pro-
cess with an optimized version of the Smith—Waterman
alignment, where only scores are calculated, and not the full
alignments.

We used the mmsegs cluster module included in
MMseqs2 suite, with the default Cascaded cluster-
ing option. This module works in two main steps. It
first clusters proteins using linclust (37), a linear time pro-
tein sequence clustering algorithm as a prefilter. Then,
the representative sequences of this first step are han-
dled by the mmsegs search module and clustered.
This second step is repeated three times, each time with
a higher sensitivity at the mmseqgs search algorithm
module.

PanACoTA uses the Connected component mode
for clustering, because it has provided results consistent
with our previous methods. This mode uses transitive con-
nections to merge pairs of homologous genes. Alternatively,
two other clustering modes (Greedy Set cover, or
Greedy incremental) are available in the pangenome
module. Importantly, the tuning of the options of mm-
seqs2 allows the sequence similarity analyses to be exceed-
ingly fast or extremely sensitive (20). In PanACoTA the user
can change the key parameters --min-seg-id and --
cluster-mode, and re-run the mmseqgs cluster mod-
ule to explore their effect on the results. More specific mm-
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Informations contained in name:

Species
Date

Strain number
Contig number

r(b

Protein number

Example:

protein P1: ESC0.0119.00001.001b.00001
protein P2: ESC0.0119.00001.001i.00015
protein P3: ESC0.0119.00001.001b.00016
protein P4: ESC0.0119.00001.002i.00020

Contigl

Contig2

Genome: ESC0.0119.00001

Figure 2. Description of the standard output header format for proteins annotated by PanACoTA.

seqs2 parameters have, for the time being, to be used with
the standalone version of the program.

This step outputs files containing one line per family of
the pangenome and indicating the gene identifiers, the pres-
ence of the gene family (binary matrix), or the number of
elements. The latter can be used as input for Tree WAS (38).

Panacota does not take into account synteny between
genes in the genomes, which has limited interest in draft
genomes. Several programs can do such analyses, e.g.
panOCT (39,40), SynerClust (41) or PANINI (42).

Identification of core and persistent genomes

The classification of gene families present in a large num-
ber of taxa is done by the corepers module using a
file generated by the pangenome module. In early stud-
ies, the pangenome matrix was used to identify the gene
families present in all genomes in a single copy: the core
genome. However, the increase of the number of genomes
in the dataset tends to decrease drastically the size of the
core genome. This is because sequencing or annotation er-
rors as well as rare deleterious polymorphism in the pop-
ulations lead to the rapid decrease of the number of core
genes with the increase in the number of input genomes. To
overcome this problem, one commonly identifies the persis-
tent genome, which is more robust to rare (true or artifac-
tual) variants. PanACoTA defines three types of persistent
genomes (see Figure 3):

1. Strict-persistent: a family that contains exactly one
member in at least N% genomes (N = 100 means it is a
core-family). This definition is particularly practical to
reconstruct phylogenies without having to handle the ex-
istence of multiple copies per genome.

2. Mixed-persistent: a family where at least N% of the
genomes have exactly one member, and other genomes
have cither zero, either several members in the family.
This definition is intermediate between the other two,
i.e. it includes the strict-persistent and is included by the
multi-persistent.

3. Multi-persistent: a family with at least one member in
N% of the genomes. This definition is interesting to ana-
lyze patterns of diversification of nearly ubiquitous pro-
tein families.

The module corepers uses the pangenome instead of a
reference genome (whose choice can be questionable). Re-
running the module is very fast, because it only requires the
re-analysis of the pangenome matrix and can be done mul-
tiple times with different parameters.

The output of this module is a file containing the persis-
tent families of proteins.

If the user wants to identify the persistent genome us-
ing a statistical approach rather than using fixed thresholds,
the gff file generated by annotate module is compatible
with PPanGGOLIN (21). This software generates the multi-
persistent version of the persistent genome (multigenic fam-
ilies are allowed).

Multiple alignments of the persistent gene families

The alignment of the persistent gene families is done by
the align module using the persistent genome coming
from the corepers module, or independently provided by
the user. When using the strict-persistent genome, all genes
are aligned. When using the other definitions of persistent
genomes, some genomes can lack a gene or have it in mul-
tiple copies and must be handled before phylogenetic infer-
ence. When a genome lacks a member or has more than one
member (mixed or multi persistent) of a given gene family,
PanACoTA adds a stretch of gaps (‘-’) of the same length as
the other aligned genes. Adding a few ‘-” has little impact on
phylogeny reconstruction. For example, it has been showed
that adding up to 60% of missing data in the alignment ma-
trix could still result in informative alignments (43). In our
experience, when this approach is applied to within-species
persistent genomes, it usually incorporates <1% of gaps.
The effect of missing data should thus be negligible relative
to the advantage of using the phylogenetic signal from many
more genes (i.e. in contrast to using the strict-persistent
genome). Alignments are more accurate when done at the
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Figure 3. Different types of persistent genomes proposed by PanACoTA, with a threashold of N = 90%.

level of the protein sequence. This has the additional advan-
tage of producing codon-based nucleotide alignments that
can be used to study selection pressure on coding sequences.
Hence, PanACoTA translates sequences, aligns the corre-
sponding proteins and then back-translates them to DNA
to get a nucleotide alignment. This last step constitutes in
the replacement of each amino acid by the original codon.
Hence, at the end of the process, the aligned sequences are
identical to the original sequences.

PanACoTA does multiple sequence alignment using
MAFFT (10) as it is often benchmarked as one of the most
accurate multiple alignment programs available and one of
the fastest (44). It has options that allow to make much
faster alignments, at the cost of some accuracy, to handle
very large datasets. This loss of accuracy is usually low for
very similar sequences as it is the case of orthologous gene
families within species, and means that PAanACoTA can very
rapidly align the persistent genome.

This module returns several output files: the concatenate
of the alignments of all families to be used for tree inference,
and, for each core/persistent genome family, a file with its
gene and protein sequences aligned.

Tree reconstruction

The phylogenetic inference is done with the tree module
of PanACoTA. It uses as input the alignments of the align
module or any other alignments in Fasta format.

This is the part that takes most time in the entire pipeline,
because the time required for phylogenetic inference grows
very fast with the size of the dataset. Even efficient imple-
mentations of the maximum likelihood analyses scale with
the product of the number of sites and the number of taxa,
which is a problem in the case of large datasets (thousands
of taxa, with more than ten thousands sites for each one).
PanACoTA proposes several different methods to obtain a
phylogeny: IQ-TREE (45), FastTreeME (46), fastME (47)
and Quicktree (48). According to its needs, the user can
choose one of these methods to infer its phylogenetic tree.
These trees can be used to build more rigorous phyloge-
netic inference using methods that are more demanding in
computational resources, e.g. by changing the options of
IQ-TREE. Whatever the software used, the tree mod-
ule takes as input a nucleotide alignment in Fasta format
(like, for example, the output of align module), and re-
turns at least a tree in Newick format. According to the
software and options used, other output files may be gen-
erated, like bootstrap trees for example. IQ-TREE also re-
turns the BIONIJ tree from which it started tree search,

as well as the pairwise distance matrix corresponding to
the output tree. Recombination is known to affect phyloge-
netic reconstruction (49,50). To tackle this problem, some
researchers detect and then remove recombination tracts
from genomes before inferring the phylogeny. This can be
done outside PanACoTA by modifying the multiple align-
ments before proceeding to the phylogenetic inference. We
have not implemented in PanACoTA the detection or ex-
clusion of recombination tracts. Several studies have shown
that removing the identifiable recombination tracts tends to
distort phylogenetic inference at a larger extent than sim-
ply using all the information in the multiple alignments
(51,52). This is probably because available methods miss
many events of homologous recombination, leading to bi-
ases in phylogenetic inference. When relevant, one can use
methods that simultaneously infer recombination and phy-
logenetic history, altough these tend to be computationally
costly.

Implementation and availability

PanACoTA was developed in Python3, trying to follow the
best practices for scientific software development (53,54).
For that, the software is versioned using git, allowing the
tracking of all changes in source code during PanACoTA’s
development. It is freely distributed under the open-source
AGPL v3 licence (making it usable by many organiza-
tions) and can be downloaded from https://github.com/
gem-pasteur/PanACoTA. The software can be installed
directly from the git repository, or using pip or conda
package-management systems. A singularity image, includ-
ing all needed dependencies, is also hosted via Docker Hub.
By downloading this image, the user can run PanACoTA
without installing anything. This is of particular use for run-
ning on clusters, where there is usually no root access.

Hosting PanACoTA on GitHub allows for issue tracking,
i.e. users can report bugs, make suggestions or, for develop-
ers, participate to the software improvement. To provide a
maintainable and reliable software, we set up continuous in-
tegration process: each time a modification is pushed, there
is an automatic software installation checking, unit tests are
done, and, if necessary, an updated version of the documen-
tation is generated, as well as an update of the docker image
on Docker Hub (which can be used as a singularity image
as described previously).

As introduced just before, we also provide a complete
documentation, including a step by step tutorial, based on
provided genome examples, so that the user can quickly
get started. It also contains more detailed sections on each
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MODULE STEP

DTSI (3980 genomes) DTS2 (225 genomes)

prepare Downloading
Quality control
Filter
With Prokka

With Prodigal

annotate

pangenome

corepers (1 CPU)

align Strict persistent
Mixed-persistent
Strict-persistent
Mixed-persistent

tree (IQ-TREE2) (28 CPUs)

1 h (5805 genomes) 3 min (266 genomes)
<4 min ~15s
20 min ~1 min
5 days 10h
6h 30 min
30 min 1 min
1 min 5s
3h 10 min
7h 11 min
7h (40 GB RAM) 3 min 10
24 h (90 GB RAM) 3 min 30

module, aiming at helping users to tune all parameters, in
order to adapt the run to more specific needs. This docu-
mentation also includes a ’developer’ section, addressed to
developers wanting to participate in the project.

During its execution, PanACoTA provides logging infor-
mation, so that user can see real-time execution progress (a
quiet parameter is also proposed for users needing empty
stdout and stderr). This also provides log file(s) to keep
track on what was ran (command-line used, time stamp, pa-
rameters used etc.).

RESULTS AND DISCUSSION

All execution times mentioned in this section correspond to
wall clock time on eight CPUs (except when the number of
CPUs is given). A summary of all execution times can be
found in Table 2.

Download and preparation of genome sequences

The first module of PanACoTA was used to download all
genomes of K. pneumoniae using the TaxID 573. It took ~1
h to download the 5805 K. pneumoniae genome sequences
(including 266 complete genomes). We used the module
annotate to make the quality control (L90 < 100 and
number of contigs < 999), which took less than 4 min. This
step discarded 233 draft genomes, leaving 5572 for further
analysis (see Figure 4). When the threshold on the number
of contigs was decreased by half (number of contigs < 500),
only 52 more genomes were removed (see Figure 4B). To
define the best thresholds to the analysis, the user can pre-
view its dataset quality with a ’dry-run’ of the annotate
module. Then, the user can launch the real analysis, from
prepare or annotate with the adapted thresholds.

We removed the very distantly related and redundant
genomes using Mash (K-mer size of 21 (default), and
sketches of at most 10 000 non-redundant min-hashed
k-mers). A total of 1592 genomes (including 41 com-
plete genomes) did not respect the distance thresholds
(max_mash_dist = 0.06 and minmash dist = le*).
Most (1448) were too similar to other genomes, whereas 144
were too distantly related with the K. pneumoniae genomes
(Figure 5).

Expert analysis can lead to the definition of nar-
rower ANI values. For example, Kleborate (https:/github.
com/katholt/Kleborate) (55) defines strong K. pneumoniae
matches for distances < 0.01 and weak matches between
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Figure 4. Histograms describing the features of the 5805 Klebsiella pneu-
moniae genomes downloaded from Refseq. (A) Distribution of L90 values.
(B) Distribution of the number of contigs per genome.

0.01 and 0.03. In our dataset, Kleborate would have only
removed 22 additional genomes, that it identifies as K
quasipneumoniae subspecies similipneumoniae. The default
method of Panacota, which is designed for any species, is
thus consistent with Kleborate results regarding the spe-
cific case of K. pneumoniae genomes when starting from the
NCBI taxonomy ID.

Three genomes showed an ANI <84% identity, mean-
ing they may not even be from the same genus, which
emphasizes the necessity of this kind of analysis be-
fore computing a pangenome. They were removed from
the analysis (GCF_900451665.1, GCF_900493335.1 and
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Figure 5. Distribution of Mash distances for the 5572 genomes respecting the L90 and number of contigs thresholds, but having a Mash distance higher

than the threshold (0.06).

GCF_900493505.1). A neighbor-joining tree generated
from Mash distance matrix with scikit-bio (https://github.
com/biocore/scikit-bio) confirmed the gap between those
three genomes and the others (see Supplementary Figure
S1, where genomes kept in DTS1 are in green, while those
discarded are in red).

Finally, these filters left 3980 genomes in the analysis,
with an average of 5307 genes per genome, which will be
called the reference database DTS1. Among them, there are
225 complete genomes that form the dataset DTS2 (see Fig-
ure 6).

We then proceeded to the functional annotation, which
is by far the slowest of the first tasks. The annotation of the
genomes with Prokka 1.11 took ~1 min 50 s per genome,
i.e. around 5 days for the whole dataset. For comparison,
the annotation using only prodigal 2.60 took less than 6 h
(annotation + formatting of all 3980 genomes), i.e. 6 s per
genome. Assuming that genes from the same pangenome
family have similar functions, one can annotate one protein
per family at the end of the process and save considerable
time.

Building pangenomes

The 3980 DTS1 genomes contain 20 765 062 proteins. It
took less than 30 minutes to create the protein database
in the MMseqs2 format (Release 11-elalc), cluster them
(with at least 80% identity and 80% coverage of query and
target), and retrieve the pangenome matrices. The DTSI1
pangenome has 86607 families. Among them, 35 348 (40%)
are singletons (found in a single genome), which is con-
cordant with values observed in Escherichia coli (56). The
pangenome of DTS2, 1 190 485 proteins, was computed in
<1 min. It contains 24 473 families, including 8975 (37%)
singletons.

The comparison of these two pangenomes is interesting
because it reveals the robustness of the method to changes in
sampling size, as summarized in Figure 7. A total of 2147
families contain only members present in both DTSI and
DTS2. Among these, 2122 families are exactly the same in
both pangenomes, whereas only 25 were split in the DTS1
pangenome family relative to the DTS2 pangenome. In
most of the latter, they are split in two different families of
DTSI. This shows that the clustering procedure is quite ro-
bust to the addition of a very large number of genomes.

Most important, 22 744 families (that is more than
92% of all DTS2 families) are identical in DTS1 and
DTS2 pangenomes. Identical here means that the DTS2
pangenome gene family is included in a DTS1 pangenome
gene family, and the other members of this DTSI
pangenome family are only members of genomes not
present in DTS2. Furthermore, around half of the remain-
ing families from the DTS2 pangenome are included in a
DTSI1 pangenome gene family, which contains a few other
proteins from DTS2 genomes. Finally, only 187 gene fami-
lies of the DTS2 pangenome were split into two or three dif-
ferent families of DTS1 pangenome. In other words, 24 286
families (more than 99%) of DTS2 pangenome are subsets
of DTSI1 gene families. In conclusion, the construction of
pangenome families is robust to large variations in the num-
ber of input genomes (see Figure 7).

Core and persistent genomes

This part of the analysis is very fast. Using only one
CPU, it took around 1 min to generate a core or persis-
tent genome from DTS1 pangenome. PanACoTA provides
a core genome and three different measures of persistent
genome (see Figure 3). The strict-persistent genome corre-
sponds to cases when the family is present in a single copy in
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Figure 7. Comparison of the pangenomes generated by PanACoTA for
both DTS1 and DTS2.

99% genomes and absent from the others. In DTS2, the set
of complete genomes, the difference between the core and
strict-persistent genome is appreciable (2238 versus 3295
families), i.e. the persistent genome is 50% larger (see Fig-
ure 8). The difference becomes huge when the analysis is
done on the much larger (and less accurate) DTS1 dataset,
where the two datasets vary by more than one order of mag-
nitude (79 versus 1418 families). In such large datasets of

draft genomes the core genome is not biologically mean-
ingful.

The mixed-persistent genome includes the families
present in a single copy in 99% genomes and present (poten-
tially in several copies) or absent from the others. It includes
the strict-persistent genome. Its size is close to the latter in
the small DTS2 dataset, but much larger in DTSI (see Fig-
ure 8). While the mixed-persistent genome is 65% percent
of the average genome in DTSI, the strict-persistent is only
27% percent in the same dataset. This shows the relevance of
using definitions of the core genome adapted to the dataset
in order to build robust phylogenetic trees or to analyze pat-
terns of genetic diversification and natural selection.

Finally, PanACoTA also computes a multi-persistent
genome that includes all gene families present in at least
99% of the genomes, independently of their copy number
(see Figure 8). Its analysis reveals many genes encoding reg-
ulators, transporters and enzymes that are nearly ubiqui-
tous, but often present in multiple copies. As a rule, this def-
inition is interesting to study gene families present in most
genomes, but present in very different copy number. On the
other hand, it is typically not very useful for phylogenetic
inference.

Phylogenetic tree inference

PanACoTA ran mafft v.7.467 using —auto option to align
all families. For DTSI, it selected the FFT-NS-2 method,
while for DTS2, it selected FFT-NS-i method. This was
done with both the strict-persistent (1418 families, 3 h) and
the mixed-persistent (3441 families, 7h).

PanACoTA used the multiple alignments as input to 1Q-
TREE multicore version 2.0.6, with the -fast option. For
the tree based on the alignment of the strict-persistent (1 438
179 positions), it took around 7 h on 28 CPUs and required
38 GB of RAM. For the tree based on the alignment of the
mixed-persistent (3 393 006 positions), it took 24 h using 28
CPUs and required 88 GB of RAM.

We wished to understand the differences in phylogenetic
inference in terms of the method used to define the per-
sistent genome (strict and mixed persistent). We computed
the patristic distance matrix for each tree and a Pearson
correlation test showed that they are strongly correlated
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(cor =0.99138, P < 2.2¢7'%). This shows that the distances
provided by the two methods are very similar. Hence, if
the strict persistent is large enough to generate a phyloge-
netic tree, it provides adequate distances between genomes.
Aligning all mixed persistent families would just take much
more time, for a similar result. However, if one is interested
in having a robust tree topology, one should use the larger
(and computationally costlier) dataset. Indeed, the analy-
ses of Robinson—Foulds distance with R phangorn pack-
age shows a branch-weighted distance of 0.43 and an ab-
solute distance of 2892 (57). This is because some lineages
of K. pneumoniae account for a large fraction of the data
and these parts of the tree require long informative mul-
tiple alignments to produce accurate topologies. Accord-
ingly, the differences in topology between the trees using
the DTS2 dataset, which have much larger average branch
lengths, show much smaller values of topological distances
between the two datasets of persistent genome (RF = 78,
wRF = 0.027).

CONCLUSION

PanACoTA is a pipeline for those wanting to test hypothe-
ses or explore genomic patterns using large scale compara-
tive genomics. We hope that it will be particularly useful for
those wishing to use a rapid, accurate and standardized pro-
cedure to obtain the basic building blocks of typical anal-
yses of genetic variation at the species level. We built the
pipeline having modularity in mind, so that users can pro-
duce multiple variants of the analyses at each stage. We also
paid particularly care with the portability and evolvability
of the software. These two characteristics, modularity and
evolvability, will facilitate the implementation of novel pro-
cedures in the future.

DATA AVAILIBILITY

The two datasets of K. pneumoniae genomes used to il-
lustrate PanACoTA were downloaded from the NCBI ref-
seq. Their accession numbers are indicated in Supplemen-
tary Table S1. PanACoTA source code is freely avail-
able from https://github.com/gem-pasteur/PanACoTA un-

der AGPLvV3 license. More information in the last part of
Materials and Methods section.

SUPPLEMENTARY DATA
Supplementary Data are available at NARGAB Online.
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