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Abstract: The state-of-the-art procedure for examining the lymph nodes in a lung cancer patient in-
volves using an endobronchial ultrasound (EBUS) bronchoscope. The EBUS bronchoscope integrates
two modalities into one device: (1) videobronchoscopy, which gives video images of the airway
walls; and (2) convex-probe EBUS, which gives 2D fan-shaped views of extraluminal structures
situated outside the airways. During the procedure, the physician first employs videobronchoscopy
to navigate the device through the airways. Next, upon reaching a given node’s approximate vicinity,
the physician probes the airway walls using EBUS to localize the node. Due to the fact that lymph
nodes lie beyond the airways, EBUS is essential for confirming a node’s location. Unfortunately, it is
well-documented that EBUS is difficult to use. In addition, while new image-guided bronchoscopy
systems provide effective guidance for videobronchoscopic navigation, they offer no assistance for
guiding EBUS localization. We propose a method for registering a patient’s chest CT scan to live
surgical EBUS views, thereby facilitating accurate image-guided EBUS bronchoscopy. The method
entails an optimization process that registers CT-based virtual EBUS views to live EBUS probe views.
Results using lung cancer patient data show that the method correctly registered 28/28 (100%) lymph
nodes scanned by EBUS, with a mean registration time of 3.4 s. In addition, the mean position and
direction errors of registered sites were 2.2 mm and 11.8◦, respectively. In addition, sensitivity studies
show the method’s robustness to parameter variations. Lastly, we demonstrate the method’s use in
an image-guided system designed for guiding both phases of EBUS bronchoscopy.

Keywords: bronchoscopy; endobronchial ultrasound; image registration; image-guided surgery
systems; multimodal imaging; lung cancer

1. Introduction

The state-of-the-art procedure for examining the lymph nodes in lung-cancer patients
draws on an endobronchial ultrasound (EBUS) bronchoscope [1–4]. The EBUS broncho-
scope, also referred to as a convex-probe EBUS or linear EBUS bronchoscope, integrates two
modalities into one device (Figure 1): (1) videobronchoscopy, which gives video images
of the airway walls (endoluminal surfaces); and (2) convex-probe EBUS, which gives 2D
fan-shaped views of extraluminal structures situated outside the airways. Due to the fact
that lymph nodes lie outside the airways—hence, are unobservable by videobronchoscopy—
EBUS is essential for confirming a node’s location.

Before the procedure, the physician first examines a patient’s 3D chest computed
tomography (CT) scan to select suspicious lymph nodes (Figure 2a). Later, during the
live surgical procedure, the physician uses the EBUS bronchoscope to localize and biopsy
the lymph nodes (Figure 2b). In particular, for each node, the physician first employs
videobronchoscopy to navigate the device through the airways. Next, upon reaching the
node’s approximate expected vicinity, the physician probes the nearby airway walls using
EBUS to localize the node.
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Figure 1. Device tip and example views for an integrated EBUS bronchoscope. The video camera
provides bronchoscopic video, while the EBUS transducer gives 2D EBUS views. The magenta and
blue arrows correspond to videobronchoscope camera axis nC and EBUS probe axis nUS, respectively.

Figure 2. Overview of an image-guided EBUS bronchoscopy procedure. Top part of the figure focuses
on the 3D CT-based virtual chest space, whereas the bottom part features the analogous real 3D chest
space. (a) Before the live procedure, the physician selects lymph nodes of interest from a patient’s
chest CT scan. (b) During the live surgical procedure, the physician then uses this plan to navigate
the bronchoscope toward the lymph node. (c) When using an image-guided bronchoscopy system,
the physician receives additional graphical feedback on how to navigate the device toward the lymph
node. VB views situated along a precomputed guidance path (blue line) lead the physician toward the
lymph node. Image registration between the CT-based VB views and live bronchoscopic video (red
dotted-line box) facilitates device synchronization during navigation and leads the physician to the
proper airway closest to the node (green region). (d) Existing image-guided bronchoscopy systems
offer no means for helping to place the EBUS probe for live localization of the extraluminal lymph
node. (Bronchoscopy drawing by Terese Winslow, “Bronchoscopy,” NCI Visuals Online, National
Cancer Institute.)

Unfortunately, EBUS can be difficult to use effectively [5]. This situation arises for
three reasons [6–8]. First, the physician must mentally translate their anatomical knowledge
to CT scan observations and live EBUS views. Second, EBUS views generally do not lie on
the orthogonal 2D axial, coronal, or sagittal planes readily observed in CT. This makes it
hard to correlate CT observations to live EBUS views. Finally, because of EBUS’s limited



J. Imaging 2022, 8, 189 3 of 18

field of view (FOV), the physician performs an essentially blind trial-and-error EBUS sweep
to localize a node. This can be challenging given the typical small size of lymph nodes
(≈10 mm long-axis length) and the complex 360◦ cylindrical span of the airway walls.

Recently proposed image-guided bronchoscopy systems have proven to make video-
bronchoscopic navigation through the airways a high-success, skill-independent opera-
tion [9,10]. Using the concept of virtual bronchoscopy (VB), the live bronchoscopic video
can be readily correlated and registered to precomputed CT-based VB views that mimic
the video views of the real bronchoscope’s video camera [11–14]. Figure 2c illustrates this
operation during a live procedure. The physician follows the guidance system’s presented
sequence of VB views along a preplanned guidance route, which, in turn, leads the physi-
cian to each diagnostic site. Along the way, image registration synchronizes the position of
the real device and virtual camera.

These systems, however, do not offer any means to guide the placement of the EBUS
probe for localizing extraluminal sites, as suggested by Figure 2d. Thus, accurate local-
ization, crucial for effective biopsy, continues to be problematic [8,15]. To emphasize this
point, a multi-physician study showed that a physician’s biopsy success rate was only 43%
despite successfully navigating to the correct airway 78% of the time [16]. Other studies
have shown that, even when image-guided navigation and EBUS are used together, biopsy
success rates barely >50% still occur [17,18]. We propose a method for registering the pre-
operative chest CT scan to the live EBUS views, thereby facilitating accurate image-guided
EBUS bronchoscopy.

Several recent works have attempted to extend image guidance to EBUS localiza-
tion [19–23]. For EBUS bronchoscopy as applied to lymph node examination, the approach
of Sato et al. entails considerable manual interaction to preplan sites for invoking EBUS, and
offers no virtual-to-real EBUS registration to help with EBUS localization [19]. Sorger et al.
proposed a commendable electromagnetic navigation system that draws upon an extra
sensor attached to the EBUS bronchoscope [20,21]. However, the system does not register
the live EBUS probe view to the pre-operative CT, thereby limiting optimal EBUS placement.
It also adds the well-known issues arising from using electromagnetic technology, namely
the extra device cost and susceptibility to patient motion [24].

The other works applied virtual bronchoscopy to the allied problem of peripheral
nodule diagnosis [22,23]. The physician uses VB to navigate a standard videobronchoscope
close to the nodule and then inserts a radial-probe EBUS, which gives 360◦ views of
the extraluminal airway structure, into the videobronchoscope’s working channel. Since
radial-probe EBUS is not designed for examining central-chest lymph nodes, it presents
a different guidance scenario (separate devices, requires probe removal before biopsy,
dissimilar imaging scenario) [1]. This research, however, does give impetus for work with
convex-probe EBUS. The approach of Tamiya et al. does not give direct guidance for EBUS
placement [22]. The method of Luo and Mori does accomplish EBUS localization. However,
it needs extra sensors to track the device and was only tested in a controlled phantom
environment [23].

Our proposed registration method draws upon the concept of a CT-based virtual
EBUS, as introduced by Zang et al. [25,26]. The virtual EBUS, which mimics the FOV of the
convex-probe EBUS, acts as a complementary analog to the virtual bronchoscope used for
image-guided navigation. With the virtual EBUS and associated registration method, live
image-guided EBUS probe localization can now be performed.

The method, partially motivated by previous research in ultrasound registration,
draws upon the idea of mutual information (MI). MI techniques have been commonly used
to register ultrasound and CT images since the MI metric does not require the two sources to
have similar image appearances [27,28]. Figure 3, discussed in Section 2, clearly illustrates
how the real and virtual EBUS views differ in appearance. Unfortunately, because the
MI metric relies on a joint intensity probability model, while completely ignoring spatial
information, MI-based techniques can fail when shading artifacts exist [29,30]. To improve
MI-based methods, Studholme et al. proposed a normalized MI (NMI) metric, which is



J. Imaging 2022, 8, 189 4 of 18

more robust to image overlap [31]. They also integrated spatial information by calculating
mutual information among local regions [32]. As a further enhancement, researchers have
included prior knowledge, such as the region shape, to achieve more robust accurate
registration. For example, Knops et al. performed k-means clustering to distinguish image
pixels having similar intensities but belonging to different regions. They then used these
modified intensity bins to calculate NMI during registration [33].

Figure 3. Example videobronchoscope and EBUS views constituting the multimodal EBUS bron-
choscope. (Top) bronchoscopic video sources for the real EBUS bronchoscope and virtual device.
(Bottom) corresponding fan-shaped EBUS views, IUS and ICT, for the real and virtual devices, respec-
tively. For virtual EBUS view ICT, the blue lines demarcate the EBUS FOV, the magenta line indicates
the video camera’s viewing direction nC, and the green region denotes a lymph node predefined in
the chest CT scan. In this figure, the videobronchoscope and EBUS view pairs are not at the same site.
In addition, both view pairs are registered.

During live EBUS localization, our proposed method uses an optimization process,
which combines both NMI and region shape information, to register CT-based virtual
EBUS views to the live views generated by the real EBUS probe. We also integrated the
method into an image-guided EBUS bronchoscopy system that features a multimodal
virtual EBUS bronchoscope, which integrates both the standard virtual videobronchoscope
and the virtual EBUS [26]. Thus, intuitive image guidance is now attainable for both video-
bronchoscopic navigation and EBUS localization. Section 2 details the method. Section 3
validates the method performance using lung cancer patient data. It also illustrates the
method’s utility in our image-guided EBUS bronchoscopy system. Finally, Section 4 offers
concluding comments.

2. Methods
2.1. Overview

We first overview the protocol employed by our image-guided EBUS bronchoscopy
system [26]. Section 2.2 then discusses the method for registering the virtual EBUS to live
EBUS probe views.

To begin, the system complied with the standard protocol of nodal staging bron-
choscopy. First, prior to the procedure, a guidance plan was derived from the patient’s
high-resolution 3D chest CT scan (voxel dimensions ∆x, ∆y, ∆z < 1 mm) using methods
similar to those employed by existing image-guided bronchoscopy systems [9,24,34]. This
gives the airway tree’s endoluminal surfaces, a set of target lymph nodes, and an airway
guidance route for each node. We used previously validated methods to generate the
guidance plan [25,34–37].
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Next, in the operating room, the EBUS bronchoscope was interfaced to the guidance
computer. It was assumed that the physician uses the Olympus BF-UC180F EBUS broncho-
scope, the de facto standard device for EBUS nodal staging [1,3]. This device produces data
streams for both the videobronchoscope and EBUS probe (Figure 1), which serve as system
inputs. Section 2.3 gives technical detail for the guidance computer and interfacing to the
bronchoscopy suite.

Image-guided EBUS bronchoscopy fundamentally involves aligning planning data
derived from the patient’s chest CT scan to live views provided by the EBUS bronchoscope.
This requires the definition of virtual and real spaces representing the chest (Figure 2). For
our scenario, the 3D chest CT scan defines a virtual chest space, whereby a virtual EBUS
bronchoscope moves through the CT-based virtual airways. Similarly, as the real device
navigates through the physical airways, the EBUS bronchoscope’s data streams give views
inside the corresponding real 3D chest space. This is similar to what current image-guided
bronchoscopy systems perform, where virtual and real videobronchoscopes simultaneously
navigate through distinct manifestations of the same physical chest space [14,38]. For our
problem, image guidance involves synchronizing the two spaces during both videobron-
choscopic navigation and EBUS localization. In this way, the location of the real device can
be confirmed at all times.

During the live procedure, the system used a multimodal virtual EBUS bronchoscope,
which extends the concept of the CT-based virtual bronchoscope. This tool’s multimodal
display mimics both components of the real EBUS bronchoscope, as shown in Figure 3.
The CT-based virtual videobronchoscope simulated the views supplied by the real device’s
videobronchoscope camera, as in existing image-guided bronchoscopy systems. In addition,
a CT-based virtual EBUS probe simulated 2D fan-shaped EBUS views mimicking the scan
plane of the real EBUS probe.

We designed the virtual device’s videobronchoscope camera and EBUS probe to
comply with the known geometry and specifications of the Olympus BF-UC180F. Both com-
ponents are at 3D orientations identical to the configuration of the real EBUS bronchoscope,
and both components have identical FOVs of the real device. We give the specific design
parameters below, per Figure 4:

• Bronchoscope tip starts at point sB with axis nB.
• Videobronchoscope camera axis = nC, offset by an angle ∆ = 20◦ from nB.
• EBUS probe axis nUS ⊥ nB at a distance 6 mm from the tip start sB; i.e., ||sB − sUS|| =

6 mm, where sUS is the origin of nUS.
• 2D EBUS fan-shaped scan plane sweep = 60◦ with range = 4 cm.

(a) Tip model (b) EBUS FOV

Figure 4. EBUS probe model: (a) device tip model; (b) 2D EBUS probe view; red lines denote the 60◦

fan-shaped view. Standard EBUS display settings were used throughout (gain = 19; contrast = 6).

With reference to Figure 1, the magenta arrow represents the virtual bronchoscope’s
camera axis nC, and the blue arrow represents the virtual EBUS probe axis nUS. In addition,
per Figure 3, in virtual EBUS view ICT, the blue lines delineate the virtual EBUS’s fan-
shaped field FOV in ICT, whereas the magenta line denotes the camera axis nC. In this way,
the virtual EBUS bronchoscope gives a mechanism for relating the two live data streams
to the CT-based virtual space. In particular, it provides the necessary linkage to enable
image-guided EBUS bronchoscopy.
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For a given lymph node, the physician follows the system display as follows. First, the
physician navigates the “real” EBUS bronchoscope close to the node along the preplanned
airway guidance route by following the standard virtual bronchoscope. This step draws
on an established approach for registering live bronchoscopic video to CT-based VB views
(e.g, Merritt et al. [14])—this synchronizes the positions of both the virtual and real devices.
Next, the physician follows the virtual EBUS display to localize the lymph node via EBUS.
As discussed in Section 2.2, this second step critically hinges on our proposed CT-EBUS
registration method, which synchronizes the positions of the virtual and real EBUS probes.
Section 3 later highlights the complete system during image-guided bronchoscopy, while
Zang et al. gives more system detail [26].

2.2. Virtual-to-Real EBUS Registration

Proper localization of a lymph node depends on our proposed method for registering
the virtual and real EBUS probes. To this point, registration involves aligning the virtual
EBUS view derived from the preoperative CT scan and the live “real” intraoperative EBUS
probe view.

For our EBUS bronchoscopy problem, we performed virtual-to-real EBUS registration
by solving an optimization problem. Let IUS denote the target EBUS view in 3D real space
and Ip

CT denote a CT-based virtual EBUS view at pose p within the 3D virtual space, where

p =
{

a, b, c, tx, ty, tz
}

, (1)

(a, b, c) denote the Euler angles, and (tx, ty, tz) denote the 3D position. Per Figure 4a, p
specifies the location sUS and probe axis direction nUS of the virtual EBUS probe. Upon
reaching a lymph node’s general vicinity via standard videobronchoscopy guidance as
specified by known pose pi along the preplanned airway guidance route (e.g., using [14]),
the physician next pushes the EBUS probe against the airway wall to give view IUS. The
pose of IUS is technically unknown, since the physician manually performs this scan at
their discretion. However, assuming that the physician follows the cues supplied by the
guidance system during the guided procedure, we can surmise that the pose of IUS is close
to the known pose pi of view Ipi

CT. Hence, pose p in (1) is initialized to known pose pi in
virtual space. This is the starting point of our optimal registration problem.

To formulate the optimization, we employed a cost function C that combines raw
image intensity information and known ROI segmentation knowledge. In particular,

C(Ip
CT, IUS) = CN(Ip

CT, IUS)− CD(Ip
CT, IUS) , (2)

where CN is the NMI metric, focusing on intensity information, and CD is the Dice index,
focusing on ROI shape knowledge. The NMI metric, adapted from Helferty et al. [39], is
given by

CN(Ip
CT, IUS) = 1−

h(Ip
CT) + h(IUS)

h(Ip
CT, IUS)

, (3)

whereas the Dice index, a commonly used measure of ROI overlap between two images [40,41],
is given by

CD(Ip
CT, IUS) =

2|Rp
CT ∩ RUS|

|Rp
CT|+ |RUS|

. (4)

In (3), h(Ip
CT) and h(IUS) are marginal entropies of images Ip

CT and IUS, whereas
h(Ip

CT, IUS) is a joint entropy:
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h(Ip
CT) = −

M−1

∑
k=0

M−1

∑
l=0

PCT,US(k, l) log PCT(k)

h(IUS) = −
M−1

∑
k=0

M−1

∑
l=0

PCT,US(k, l) log PUS(l)

h(Ip
CT, IUS) = −

M−1

∑
k=0

M−1

∑
l=0

PCT,US(k, l) log PCT,US(k, l) (5)

where PCT(·) and PUS(·) are the respective marginal probability density functions of the
pixel intensity values in images Ip

CT and IUS, PCT,US(·, ·) is the joint density function between
corresponding pixels in the two images, and M = 256 is the number of gray levels that an
image pixel can assume. In (4), Rp

CT represents the target lymph node’s region of interest
(ROI) as it appears in virtual EBUS view Ip

CT; i.e.,

Rp
CT(x, y) =

{
1, if Ip

CT(x, y) ∈ target node’s ROI in CT

0, otherwise
, (6)

where the ROI was defined during planning. Similarly, RUS equals the segmented ROI
appearing in EBUS frame IUS, where we used the previously validated automatic method
of Zang et al. for this operation [42]. Thus, the collection of CT scan voxels constituting Rp

CT,
as given by (6), corresponds to the known ROI knowledge that will be correlated with RUS
during optimization. Cost C of (2) is in the range −2 ≤ C(Ip

CT, IUS) ≤ 1, since CN(Ip
CT, IUS)

ranges from −1 (strongest NMI correlation) to 1 (no correlation) and CD(Ip
CT, IUS) ranges

from 0 (no ROI overlap) to 1 (total ROI overlap).
Given ((2)–(6)), our optimization problem was formulated as

po = arg

{
min
p∈Npi

C(Ip
CT, IUS)

}
, (7)

where pi is the initial pose, Npi is a search neighborhood around pi, and po is the optimal
pose minimizing cost C(·, ·). To solve (7), we adapted the simplex optimization algorithm
to our EBUS registration problem to iteratively search for pose po giving minimum cost
C [43]. To this search, we added a constraint that took into account that the physician
must push the EBUS probe against the airway wall to acquire an EBUS view. This implies
that pi and poses p ∈ Npi must be situated on the airway wall surface. Therefore, we
interleaved a surface-voxel search with the simplex algorithm. We now summarize the
complete Algorithm 1.

Algorithm 1: Multimodal CT-EBUS Registration Algorithm.

1. Initialize optimization (7) with captured EBUS frame IUS and VB view Ipi
CT at

pose pi.
2. Segment ROI RUS in IUS using the method of Zang et al. [42].
3. Derive a modified pose pi and a simplex Npi that constrains the possible

candidate neighboring poses to be situated on the airway wall, as depicted
in the chest CT scan.

4. Using cost function C(·, ·) defined by ((2)–(6)) and simplex Npi , run the
simplex algorithm on (7) to update pose po until it does not change for
T iterations.

5. Repeat steps 3–4 using pi = po until po no longer changes.
6. Output po and virtual EBUS view Ipo

CT.
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At the conclusion of the registration algorithm, we now know the precise location in
3D chest space of the lymph node depicted in the live intraoperative EBUS probe view IUS,
as specified by po. We elaborate on the algorithm’s steps below.

Regarding steps 1–2, Figure 5a,b depicts an example of initial real and virtual EBUS
views

{
IUS, Ipi

CT

}
for a station-10 lymph node. For the real space, IUS is initialized as an

EBUS frame captured after completing bronchoscopic navigation. For the virtual space,
pi is the known final pose reached during navigation, whereas Rpi

CT equals the predefined
nodal ROI as it appears in Ipi

CT (green regions in right-side views of Figure 5a–c).

(a) Initial views (b) EBUS segmentation (c) CT-EBUS registration

Figure 5. CT-EBUS registration for a station-10 lymph node (case 21405-139). (a) Initial raw EBUS
view IUS (left) and corresponding CT-based virtual EBUS view Ipi

CT (right). (b) Result after segmenting
the nodal ROI RUS in EBUS view IUS; the green outline signifies the ROI contour [42]. (c) Registered
pair (IUS, Ipo

CT) after final registration; IUS depicts the fused registered CT-based ROI. In all virtual
EBUS views, green regions denote nodal ROIs RCT predefined during planning, whereas red regions
represent blood vessels.

Step 3 next generates a simplex Npi of suitable candidate search poses, where Npi

is defined by seven vertices situated on the airway wall within CT-based virtual space.
Each simplex vertex represents a pose on the airway wall neighboring pi. To begin, we
first derived a modified pose pi as the first voxel along the virtual EBUS device’s viewing
axis nUS whose value was >−600 HU (HU = Hounsfield units). In chest CT images, it
is well known that air appears as dark voxels with HU value ≈−1000 and the brighter
surrounding airway walls have HU values in the range [50, 200]. Hence, we picked the
conservative threshold −600 to identify potential airway wall voxels [35]. Next, to derive
simplex Npi , we first computed six candidate vertices pv defining the simplex by changing
the six parameters of pi separately with increments ∆a, ∆b, ∆c, ∆tx, ∆ty, and ∆tz, per (1) [44].
We then adjusted the vertices pv to corresponding surface points on the airway wall.

To find the surface points defining the simplex, we used the algorithm of Gibbs
et al. [35]. The search drew upon the airway-tree surface-voxel structure constituting the
previously derived airway-tree endoluminal surfaces. To begin, we constructed a k-d tree
structure for these voxels to facilitate a quick search. Subsequently, for each vertex pv
of the initial simplex, we searched the k-d tree for the point ps closest to pv. Since the
marching cubes algorithm was used to compute the airway-tree endoluminal surfaces, it
had a thickness of 1 layer [45]. However, larger airways have walls of thickness >1 voxel;
this introduces uncertainty into the surface voxel locations [35]. Thus, to account for thicker
airway walls, we also considered neighboring voxels surrounding surface point ps as
valid candidate vertices. In particular, if pv has HU value above the surface threshold and
||pv − ps|| < 1 mm, then we accepted pv as an adjusted vertex. Note, however, that the
k-d tree was based only on surface voxel coordinates, without regard for airway location.
Hence, the closest ps to a given pv could be on the wrong airway tree branch, as Gibbs et al.
noted [35]. To ensure that ps is on the same airway branch as pv, we performed the
following, per Figure 6:

1. Compute dot product ~v1 ·~v2, where ~v1 = pv − pi and ~v2 = pv − ps.
2. If ~v1 ·~v2 > 0, ps is part of the correct airway and is kept as the updated vertex.
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3. Otherwise, ps is from the wrong branch. Find the closest airway centerline point pl to
pi and search for a new surface voxel candidate p′s based on the HU threshold along
the direction from pl to pv.

The six adjusted vertices pv along with pi delineate the initial simplex Npi for opti-
mization step 4.

Figure 6. Locating airway wall point ps. Green dot denotes the current surface point pi, yellow dot
denotes the candidate position pv, red dot is the closest k-d tree point ps to pv, cyan dot is the closest
airway centerline point pl to pv, and orange hollow dot is the correct surface voxel p′s.

Step 4 now applies the iterative simplex algorithm to collapse the simplex around
an optimal pose po [43,44]. During each iteration, cost C was evaluated for all vertices.
Depending on these results, various geometric operations were performed that either
expand, contract, or reflect the simplex vertices toward a minimum cost voxel solution
po. The algorithm continued until po stayed unchanged for T iterations. Steps 3–4 of the
top-level multimodal CT-EBUS registration algorithm were then repeated until the voxel
corresponding to po no longer changed.

The marginal densities (5) used by cost function CN in ((2)–(3)) were estimated by
normalized image histograms of images Ip

CT and IUS, while the joint density was given by
the normalized joint histogram between the two images. These calculations, however, did
not use an entire image. Since EBUS images are noisy and filled with bland low-information
regions, major portions of Ip

CT and IUS provided misleading/useless information. Instead,
we first defined the smallest trapezoid that bounds the segmented ROI in the given image
IUS and stays within the EBUS’s fan-shaped scan region. This region contains the most
useful findings. Next, for both Ip

CT and IUS, we only used pixels within the bounding
trapezoid to calculate the required histograms; see Figure 7.

(a) IUS (b) RUS (c) Ip
CT (d) RCT

Figure 7. Limiting region of calculations for (5) in cost CN. (a) Trapezoidal EBUS region delineated
by the lines encompassing the EBUS ROI in IUS with (b) showing segmented ROI RUS. (c,d) Corre-
sponding virtual EBUS view Ip

CT and predefined ROI RCT.
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For the station 10 node example of Figure 5, the final registration (Figure 5c) re-
quired 57 iterations of steps 3–5. The result clearly confirms that the physician has settled
at an effective site. Figure 3 gives another registration example for a station 4R node
(case 21405-116).

2.3. Implementation

We ran all experiments on the guidance computer. For our tests, this computer was a
Dell Precision T5500 64-bit Windows-based PC (dual 2.8 GHz 6-core CPUs, 24 GB RAM)
powered by an Nvidia Quadro 4000 2GB PCIe graphics engine and a Matrox Vio IA/OA
frame grabber. All software was implemented in C++. Many data-intensive operations
were parallelized using Nvidia’s compute-unified device-architecture (CUDA) tools and
OpenMP. A 24-inch Dell monitor served as the guidance system’s display. A standard
Olympus Evis Exera III bronchoscopy suite was used for all tests (CV-190 video system,
CLV-190 light source, EU-ME1 ultrasound unit, and display monitor). To interface the
EBUS bronchoscope to the guidance computer, we connected a BNC-to-BNC cable from
the bronchoscope display monitor’s PnP (picture-in-picture) video output to the guidance
computer’s Matrox video input. This gave access to the live video streams from the EBUS
bronchoscope (both the bronchoscopic video and EBUS).

3. Results

Section 3.1 tests the efficacy of our virtual-to-real EBUS registration method, whereas
Section 3.2 presents example results using our method within a complete image-guided
EBUS bronchoscopy system.

3.1. CT-EBUS Registration Study

We developed and tested our method using data collected retrospectively from 10 lung-
cancer patients. These data were collected at our University’s lung cancer management
clinic through two IRB-approved study protocols under informed consent. Chest CT scans
were generated by Siemens CT scanners. Each scan was made up of 512 × 512 axial-plane
sections (number of sections per scan: 570 to 720), with section thickness = 0.75 mm,
section spacing ∆z = 0.5 mm, and axial-plane resolution ∆x = ∆y ranging from 0.60 mm
to 0.81 mm. Seven studies drew upon a standard definition EBUS bronchoscope video
feed giving 300 × 300 EBUS views, and three studies drew upon a high-definition video
feed giving 816 × 848 EBUS views. Over the 10 patients, 28 ROIs were predefined, with a
typical long axis length >15 mm: 27 lymph nodes and 1 azygos vein. The lymph nodes
were distributed over the nodal stations as follows: station 4, 10 nodes; station 7, 9 nodes;
station 10, 5 nodes; and station 11, 3 nodes.

To define the ground truth for each ROI, we first picked a 2D EBUS frame IUS that
depicts the ROI. Next, we performed 2D EBUS segmentation using Zang’s method to
extract the ROI in IUS [42]. Finally, we established the ground-truth virtual EBUS view IpG

CT
best matching IUS. To achieve this, we started at the final pose pi of the ROI’s precomputed
optimal airway route in CT-based virtual space [25]. We then manually moved the virtual
EBUS bronchoscope around this pose to locate a ground-truth pose pG such that view IpG

CT
most closely mimics the anatomical appearance shown in IUS.

To perform the test for each ROI, we began by running the registration method at
initial pose pi in virtual space. Upon convergence, the method returned a virtual EBUS
view Ip

CT at an optimal pose p = po. Let

pG = [tG
x , tG

y , tG
z ] , po = [to

x, to
y, to

z]

represent the 3D positions and

dG(aG, bG, cG) , do(ao, bo, co)
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denote the direction vectors for pG and po, respectively. To quantify the registration
performance, we compared po and pG using three metrics, as suggested in [14]:

1. Position difference ep, which measures the Euclidean distance between po and pG:

ep = ||po − pG|| (8)

2. Direction error ed, which gives the angle between do and dG:

ed = cos−1(do · dG) (9)

3. Needle difference eN , which indicates the distance between two extended needle tips
at po and pG:

eN = ||(po + lNdo)− (pG + lNdG)|| (10)

Regarding these metrics, ep indicates the positional error of the bronchoscope on
the airway surface, ed quantifies the orientation error, and eN measures the potential
biopsy error.

For the 28-ROI test set, the registration method correctly localized 28/28 ROIs (100%),
with average registration time = 3.4 s, which represents the time to complete the iterative
simplex optimization algorithm for (7) after segmenting the ROI in the captured EBUS
frame RUS. (We chose T = 15 for this test.) Table 1 gives the aggregate performance for
the error metrics. Lastly, Figure 8 illustrates two registration examples. The results firmly
assert the effectiveness of the method.

Table 1. Registration performance over the 28-ROI test set.

Metric Mean ± Std. Dev. [Low, High]

ep (mm) 2.2 mm ± 2.3 mm [0.2 mm, 11.8 mm]
eN (mm) 4.3 mm ± 3.0 mm [1.1 mm, 11.7 mm]

ed (◦) 11.8◦ ± 8.8◦ [0.4◦, 41.3◦]

We next performed a parameter sensitivity test for the registration method. For the
test, we first randomly picked one ROI from each human case used in the 28-ROI study.
We then performed tests on these 10 ROIs, whereby one search parameter was varied over
a given range:

1. Positional parameters ∆tx, ∆ty, and ∆tz, range [−10 mm, 10 mm], step size = 2.5 mm.
2. Angle parameters ∆a, ∆b, and ∆c, range[−100◦, 100◦], step size = 25◦.
3. Iteration parameter T from 5 to 25, step size 5.

(The angle range accounts for the physician’s limitations in twisting the broncho-
scope [46]). For each test, one parameter was changed, whereas all others were held at
the default values. Each run always started at the ground truth pose pi that terminates an
ROI’s derived optimal path.

Tables 2–4 summarize the results for three parameters; results for the other parameters
are similar. All results are given over the 10-ROI test set. As a disclaimer, we point
out that technician judgment was required in interactively deriving the “best matching”
virtual EBUS bronchoscope views serving as the ground truth. As a result of the inherent
degradations in EBUS views (broken edges, speckle, low detail content), it was difficult to
locate the single pose for which the virtual EBUS view “best” matches the real EBUS frame.
This adds bias to our ground truth. In addition, ambiguity can exist when registering a 2D
EBUS image to a 3D CT subvolume because the lymph nodes often have approximately
spherical/elliptical 3D shapes. Thus, results can vary over different initial conditions.
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(a) Initial IUS (b) Registered IUS (c) Registered ICT

(d) Initial IUS (e) Registered IUS (f) Registered ICT

Figure 8. CT-EBUS registration examples. (a–c) Station 4L node for case 20349-3-84. (d–f) Station
4L node for case 21405-108. Parts (a,d) show the automatically segmented ROI in EBUS frame IUS

using [42]. Parts (b,e) show the registered CT-based predefined ROI superimposed on IUS. Parts (c,f)
depict the CT-based virtual EBUS view Ipo

CT after registration. In all views, the green region corre-
sponds to the lymph node, whereas the red regions represent major vessels (PA = pulmonary artery).

Table 2. Registration sensitivity to variation in ∆tx.

∆tx (mm) ep (mm) eN (mm) ed (◦)

−10.0 3.7 ± 3.4 [1.1, 11.7] 7.3 ± 5.1 [2.1, 14.6] 18.1 ± 11.1 [4.6, 38.3]
−7.5 4.3 ± 3.3 [1.8, 12.2] 8.4 ± 5.3 [2.5, 18.7] 21.2 ± 15.2 [6, 55.9]
−5.0 4.5 ± 3.5 [1.3, 12.2] 6.4 ± 4 [1.5, 11.4] 18.9 ± 12.7 [5.9, 45.8]
−2.5 4.6 ± 3.1 [1, 10.2] 7.8 ± 4 [2.1, 14.4] 22.5 ± 14.5 [6.2, 46.5]
0.0 3.7 ± 3.2 [1.4, 10.5] 7.8 ± 3.9 [2.7, 14.4] 22.8 ± 12.9 [8.8, 46.2]
2.5 4 ± 2.8 [0.9, 9.4] 8.5 ± 6.7 [1.4, 20.9] 25.9 ± 19.4 [5.7, 61.5]
5.0 3.8 ± 4.5 [0.6, 14.5] 6.4 ± 4.8 [2, 14.9] 19.3 ± 12.1 [5.9, 41.8]
7.5 2.8 ± 3.8 [0.3, 11.8] 4.8 ± 4.5 [1.1, 11.7] 10.8 ± 8.8 [0.4, 22.9]

10.0 3.8 ± 3.9 [1.1, 12] 5.7 ± 4.1 [1.6, 11.7] 16 ± 9.8 [5.5, 30.3]

Table 3. Registration sensitivity to variation in ∆a.

∆a (◦) ep (mm) eN (mm) ed (◦)

−100.0 6.6 ± 4.2 [2.2, 13.4] 9.0 ± 4.1 [5.4, 14.5] 25.0 ± 12.6 [7.1, 41.2]
−75.0 4.8 ± 4.0 [1.2, 11.5] 8.6 ± 4.8 [3.3, 16.2] 24.2 ± 11.5 [8.0, 40.4]
−50.0 5.0 ± 4.6 [1.3, 14.9] 6.7 ± 3.2 [2.8, 12.3] 17.3 ± 8.8 [5.3, 28.2]
−25.0 3.6 ± 3.6 [0.6, 11.2] 8.2 ± 6.2 [1.3, 20.1] 23.3 ± 13.6 [5.2, 50.8]

0.0 4.4 ± 3.6 [1, 11.8] 8 ± 2.4 [5.5, 12] 26.3 ± 10.3 [15.9, 47.9]
25.0 3.5 ± 2.9 [1, 9.9] 7 ± 3.4 [2.1, 13.4] 20.1 ± 11 [7.8, 36]
50.0 2.8 ± 3.8 [0.3, 11.8] 4.8 ± 4.5 [1.1, 11.7] 10.8 ± 8.8 [0.4, 22.9]
75.0 3.1 ± 3.2 [0.9, 10.4] 6.1 ± 2.8 [3.0, 11.5] 16.5 ± 9.5 [5.6, 29.4]

100.0 3.6 ± 3.2 [1.0, 11.0] 5.0 ± 4.1 [1.4, 10.5] 19.0 ± 11.5 [8.1, 43.7]
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Table 4. Registration sensitivity to variation in iteration number T. Time denotes computation time
to complete the optimization.

T ep (mm) eN (mm) ed (◦) Time (s)

5 3 ± 4.2 [0.9, 13.2] 5.9 ± 5.2 [2, 17.7] 17.3 ± 9.3 [6.4, 36] 1.3
10 2.8 ± 3.8 [0.9, 11.8] 5.3 ± 4.2 [1.3, 11.7] 13.6 ± 7.3 [1.3, 21.9] 2.6
15 2.8 ± 3.8 [0.3, 11.8] 4.8 ± 4.5 [1.1, 11.7] 10.8 ± 8.8 [0.4, 22.9] 3.4
20 3.2 ± 3.9 [0.3, 11.8] 4.4 ± 3.9 [1.1, 11.7] 9.6 ± 7.5 [0.4, 20.5] 5.0
25 2.7 ± 3.8 [0.3, 11.8] 4.2 ± 3.7 [1.1, 11.7] 9.8 ± 7.6 [0.4, 20.5] 8.0

Overall, the initial condition step sizes, which affect the size of the initial simplex, had
a minimal impact on the performance. The bronchoscope position and needle errors, ep and
eN , were generally always under 5 mm and 9 mm, respectively, which are smaller than the
typical clinically considered lymph node (long axis > 10 mm). The angle error ed also fluctu-
ated under 25◦. Larger errors are attributable to the aforementioned ambiguity. Increasing
iteration number T beyond five iterations does result in performance improvement. This
gain was less significant, however, from 15 to 25 iterations, especially considering that the
mean execution time increased from 3.4 to 8.0 s. Hence, for the previous 28-ROI study and
all later human studies, we chose T = 15 as the default iteration number.

Regarding the 28-ROI test, the precise mean registration time = 3.4 s ± 1.6 s, with a
range = [1.9 s, 10.0 s]. Notably, the registration time does depend somewhat on the size of
the node. We note that the two largest nodes considered required the longest registration
times: (1) 10.0 s for a station 7 node with all axes ≥ 2.4 cm (long axis = 3.1 cm); and
(2) 7.9 s for a station 4R node with all axes ≥ 1.6 cm (long axis = 2.7 cm). Excluding these
two outliers, the mean registration time for the other 26 test nodes = 3.0 s ± 0.5 s (range,
[1.9 s, 4.1 s]. As the discussion later highlights, these times are acceptable for real usage.
Overall, these results support the method’s robustness.

3.2. Image-Guided EBUS Bronchoscopy System

The registration method has been integrated into a complete image-guided EBUS
bronchoscopy system, as described more fully in [26]. Figure 9 illustrates a retrospective ex-
ample of system guidance for a 68-year-old female lung cancer patient presenting a station
4R lymph node. Both a high-resolution chest CT and a whole-body PET/CT study were
available. The chest CT, produced by a Siemens SOMATOM Definition Flash, has specifica-
tions ∆x = ∆y = 0.77 mm, ∆z = 0.5 mm, and volume dimensions = 512 × 512 × 570, while
the PET/CT study, generated by a Philips TrueFlight integrated scanner, provided a PET
scan with ∆x = ∆y = 4 mm, ∆z = 3 mm, and volume dimensions = 144 × 144 × 284. The
example depicts both the videobronchoscopic navigation and EBUS localization guidance
phases. Figure 9c clearly shows successful registration during the EBUS localization of the
node. Notably, Figure 9c also depicts a CT-based simulated EBUS view, generated by the
method in [47]. While CT-EBUS registration is performed using the CT-based EBUS view,
the supplemental EBUS simulation, which strongly resembles the real EBUS view, adds
confidence in the attained position of the real EBUS probe.

Figure 10 gives a second example from a live prospective guided procedure for a
77-year-old female lung cancer patient presenting a station 4R node. As with the previous
example, both a high-resolution chest CT and a whole-body PET/CT study were available.
The chest CT, produced by a Siemens SOMATOM Definition Flash, has specifications
∆x = ∆y = 0.57 mm, ∆z = 0.5 mm, and volume dimensions = 512 × 512 × 663, while the
PET/CT study, again generated by a Philips TrueFlight integrated scanner, provided a PET
scan with ∆x = ∆y = 4 mm, ∆z = 3 mm, and volume dimensions = 144 × 144 × 284. The
composite display view during EBUS localization indicates that the EBUS bronchoscope
has reached the target node. In addition, the virtual and real EBUS views align well, with
the simulated view corroborating the expected appearance of the real view.



J. Imaging 2022, 8, 189 14 of 18

(a) Rendered airway tree and PET projection (b) Registered video and VB view after navigation

(c) Real and CT-based EBUS views

Figure 9. Image-guided EBUS bronchoscopy for a station 4R lymph node for patient 21405-116. (a) 3D
airway tree rendering and whole-body PET projection image indicating the target lymph node (red).
(b) Registered real video and VB view after navigation. (c) Registered real EBUS view IUS, virtual
EBUS view ICT (green region = node), and a CT-based simulated EBUS view, respectively, at final site.

(a) Rendered airway tree and coronal fused CT/PET section

(b) Real and CT-based EBUS views

Figure 10. Image-guided EBUS bronchoscopy for a station 4R lymph node for patient 20349-3-87.
(a) 3D airway tree rendering and coronal fused CT/PET section indicating the target lymph node
(color scale bar indicate PET SUV value). (b) Registered real EBUS view IUS, virtual EBUS view ICT

(green region = node), and a CT-based simulated EBUS view, respectively, at final site.
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4. Discussion

Lung cancer persists as the most common type of cancer death, with a mortality rate
>85% [48]. The staging of the chest lymph nodes via EBUS bronchoscopy is one of the
major steps in managing a lung cancer patient. While physicians can readily navigate
the device close to the correct vicinity of a lymph node—i.e., get into the right “room”
(airway)—their subsequent attempt to then correctly localize the node with EBUS and
then perform an adequate biopsy—i.e., hit the right wall in the room (airway wall)—is
well-known to be problematic.

We proposed a near real-time CT-EBUS registration method that facilitates an accurate
EBUS-based examination of a lymph node during an EBUS bronchoscopy. In particular,
after the physician navigates the bronchoscope near the lymph node’s vicinity, the method
enables accurate image-guided EBUS probe placement; i.e., the physician can immediately
localize the lymph node without the uncertainty encountered in standard EBUS usage.
Laboratory results using data from lung cancer patients show the registration method’s
robust performance.

The method has also been integrated into a complete image-guided EBUS bron-
choscopy system designed for chest nodal staging, as demonstrated with system examples.
A companion paper by Zang et al. gives more detail related to the system’s guidance and
display capabilities [26]. As discussed fully in the companion paper, the system’s function-
ality and feasibility has been validated in both retrospective and prospective human studies
at our University Hospital. For the 13-patient prospective study run within our hospital’s
standard clinical work flow, 100% of preselected target lymph nodes were successfully
localized using the system, a strong indicator of our registration method’s efficacy. The
mean time for performing image-guided EBUS for a particular node was 87.4 s, with a total
mean procedure time of 6 min 43 s (4.61 nodes per patient). This time includes all time for
device navigation, EBUS localization, EBUS segmentation, and final registration, and it
excludes biopsy time. In addition, the system appeared to be safe and feasible in the live
clinical setting, with no adverse events reported. Complete detail of this study appears
in [26].

While these results point to the potential practicality of the method for live clinical
practice, a larger multi-center study is needed to more fully ascertain our methodology’s
utility for enabling more efficacious EBUS-based nodal staging. One notable limitation
is the need to segment ROIs live in the captured real EBUS frame. Some ROIs required
multiple segmentation attempts. However, the prospective study gave an acceptable 18.1 s
mean time to segment an ROI in a real EBUS frame (part of the 87.4 s mean procedure time
per node). Finally, the system requires integration into an approved system meeting federal
FDA quality standards.

As an additional point, for all lymph nodes considered in our studies, the physician
specified the nodal station labels while selecting target lymph nodes on CT during pro-
cedure planning. Hence, during the later image-guided EBUS bronchoscopy procedure,
when a node scanned by the “real” EBUS is registered to the target CT-based node, this
not only confirms the 3D physical location of the node, but it also implicitly confirms the
real node’s station label. While not a part of this paper, we had devised a methodology
previously for automatically defining the nodal stations and assigning station labels to
lymph nodes identified in CT; e.g., [49,50].

On another note, we also easily adapted the registration method to the newer Olympus
BF-UC190F EBUS bronchoscope by a simple adjustment of scope tip specifications [51]. By
making a similar adjustment, other related devices, such as a recently proposed thinner
EBUS bronchoscope capable of going deeper into the airway tree [52], could also be guided
using our methodology. Finally, our methodology could help to drive robotics-based
bronchoscopy systems, which currently offer assistance for the bronchoscope only [10].
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