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Objective: Alzheimer’s Disease (AD) is a progressive condition characterized by
cognitive decline. AD is often preceded by mild cognitive impairment (MCI), though
the diagnosis of both conditions remains a challenge. Early diagnosis of AD, and
prediction of MCI progression require data-driven approaches to improve patient
selection for treatment. We used a machine learning tool to predict performance in
neuropsychological tests in AD and MCI based on functional connectivity using a whole-
brain connectome, in an attempt to identify network substrates of cognitive deficits
in AD.

Methods: Neuropsychological tests, baseline anatomical T1 magnetic resonance
imaging (MRI), resting-state functional MRI, and diffusion weighted imaging scans were
obtained from 149 MCI, and 85 AD patients; and 140 cognitively unimpaired geriatric
participants. A novel machine learning tool, Hollow Tree Super (HoTS) was utilized to
extract feature importance from each machine learning model to identify brain regions
that were associated with deficit and absence of deficit for 11 neuropsychological tests.

Results: 11 models attained an area under the receiver operating curve (AUC-ROC)
greater than 0.65, while five models had an AUC-ROC ≥ 0.7. 20 parcels of the Human
Connectome Project Multimodal Parcelation Atlas matched to poor performance in
at least two neuropsychological tests, while 14 parcels were associated with good
performance in at least two tests. At a network level, most parcels predictive of both
presence and absence of deficit were affiliated with the Central Executive Network,
Default Mode Network, and the Sensorimotor Networks. Segregating predictors by
the cognitive domain associated with each test revealed areas of coherent overlap
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between cognitive domains, with the parcels providing possible markers to screen for
cognitive impairment.

Conclusion: Approaches such as ours which incorporate whole-brain functional
connectivity and harness feature importance in machine learning models may aid in
identifying diagnostic and therapeutic targets in AD.

Keywords: cognitive impairment, neuropsychological tests, MRI, neural networks, machine learning,
neuroimaging markers

INTRODUCTION

Alzheimer’s Disease (AD) is the most common form of dementia,
affecting millions worldwide (Prince et al., 2013). AD is
characterized by the deposition of β-amyloid and tau protein,
which often precede the onset of dementia symptoms by at least
10–20 years (Villemagne et al., 2013). AD initially progresses
through a prodromal stage of mild cognitive impairment (MCI),
defined as impairment in any single cognitive domain (Vega
and Newhouse, 2014). Patients with MCI may also progress
to other types of dementia, remain stable, or return to a
cognitively unimpaired state (Giorgio et al., 2020). There is
therefore a need to disentangle higher cognitive functioning in
the neurodegenerative disease states and examine overlaps and
differences to provide insight into both pathological and normal
age-related neurocognitive functioning. This will in turn improve
diagnostic and therapeutic approaches.

Currently the diagnosis of MCI and AD is based on clinical
evaluation, while structural changes are often not detected in
early disease, even when imaging is interpreted by experienced
radiologists. Due to the advancement of machine learning
algorithms and new data, we have the opportunity to analyze
large data sets and build prediction models to inform clinical
practice (Panch et al., 2018; Davenport and Kalakota, 2019).
Various studies have utilized machine learning to predict
the conversion of MCI to AD based on neuropsychological
measures and clinical markers, with several studies focusing on
neuroimaging models (Huang et al., 2020; Stamate et al., 2020;
Syaifullah et al., 2020; Grueso and Viejo-Sobera, 2021). Wee
et al. (2012) employed support vector machines to demonstrate
that a multimodal approach combining functional and structural
connectivity data improved the accuracy of MCI classification.
Shi and Liu extracted features from resting-state functional
magnetic resonance imaging (rsfMRI) to classify stages of
MCI (Shi and Liu, 2020). Syaifullah et al. (2020) developed a
technique combining SVM with voxel-based morphometry and
MMSE scores which substantially outperformed radiologists in
diagnosing AD. Jitsuishi and Yamaguchi investigated multiple
types of modalities to demonstrate that diffusion parameters was
most accurate in distinguishing early and late MCI (Jitsuishi and
Yamaguchi, 2022). In contrast, most of the existing literature
preselects features to focus the machine learning model’s
classification. While this results in high diagnostic accuracy,
potentially crucial information about the disease process may be
discarded. In the case of resting state functional connectivity,
several studies have demonstrated key changes in brain network

architecture across several large-scale networks, including the
default mode, salience and limbic networks (Prasad et al.,
2013; Badhwar et al., 2017; Ye et al., 2019). Many of these
changes are can also be seen up to 4 years before the
symptomatic onset of AD (Wisch et al., 2020). Since these
large-scale functional networks comprising the seven-network
model detailed by Yeo et al. (2011) are responsible for the
complex processes underlying cognition (Yeo et al., 2011), it
is important to formulate a network-based model of cognition
in AD. This feat is, however, complicated by the magnitude of
the data, which requires sophisticated machine learning tools to
both make predictions, but also identify clinically meaningful
targets for treatment. Therefore, models incorporating whole-
brain functional connectivity and employing a network-based
analysis may provide actionable insight and guide symptom-
specific therapies.

In this study, we performed functional connectivity-based
analysis and utilized a recently described machine learning
approach (Doyen et al., 2021) to identify commonalities and
differences in brain regions across neuropsychological domains
in a cohort of MCI and AD patients, and age-matched cognitively
unimpaired subjects. We sought to explore patterns among these
regions to identify potential markers which may be used in
future studies to develop better disease classifiers. We believe
our methods will provide a basis for the utility of functional
connectivity in improving diagnosis and patient selection for
treatment in MCI and AD.

MATERIALS AND METHODS

Patient Cohort
Participants were recruited from the Department of Neurology
and Memory Clinic in Shanghai Tongji Hospital between
September 2017 and January 2021. All participants were
Chinese, right-handed, and between 50 and 85 years old. The
participants were divided into three groups: AD group, MCI
and control group.

Exclusion criteria included: (1) definite history of stroke;
(2) definite history of other diseases of the central nervous
system such as infection, demyelinating diseases, and
Parkinson’s disease; (3) definite history of mental illness such as
schizophrenia, major depressive disorder; (4) serious physical
disease; (5) alcohol or drug addiction; (6) unable to cooperate
with neuropsychological tests; (7) MRI contraindication;
(8) iodine allergy.
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Subjects included in the AD group had to meet the
clinical diagnostic criteria set out by the National Institute
on Aging and the Alzheimer’s Association (NIA-AA) (Albert
et al., 2011). Inclusion in the MCI group was based on
the neuropsychological Jak/Bondi criteria (Bondi et al., 2014)
and the Petersen/Winblad criteria as operationalized by the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) (Marder,
2005). Specifically, the criteria included (a) the subject and
their caregiver had complaint of memory/cognitive decline; (b)
Mini-Mental State Examination (MMSE) MMSE or MoCA-
B scores met the following criteria adjusted by education:
MMSE ≤ 24 for Junior high school or above, or MMSE ≤ 20
for primary school, or MMSE ≤ 17 for illiteracy; or MoCA-
B ≤ 24 for Bachelor degree or above, or MoCA-B ≤ 22
for middle school, or MoCA-B ≤ 19 for primary school
or below; (c) Clinical Dementia Rating Scale (CDR) of 0.5;
(d) met any of the following three criteria: (1) at least
two performances within a cognitive domain fell below the
established cutoff (> 1SD); (2) at least two cognitive domains
were impaired (> 1SD); (3) had more than one function
described in instrumental activities of daily living (IADL-14)
scale scored 0 point.

All participants provided informed consent. This study was
reviewed and approved by the Institutional Review Board at
Tongji University.

Neuropsychological Testing
All participants underwent a comprehensive Neuropsychological
Test Battery (NTB) that included the MMSE, MoCA-B, tCDR,
IADL-14, and the Hachinski Ischemic Score (HIS). Memory
function was assessed by the Hopkins Verbal Learning Test-
Revised (HVLT-R, including immediate recall test, the 5-
min delayed recall, the 20-min delayed recall test), and
the logical memory test (Wechsler memory scale). Language
function was measured by the Verbal Fluency test and the
Boston Naming Test (BNT; the 30-item version). Executive
function was assessed using the Shape Trail Test-A and
B (STT-A, STT-B). The larger scores in STT-A or STT-
B test indicates longer time to complete the task and
poorer executive performance. Visual space navigation function
was measured by the Rey-Osterrieth Complex Figure Test
(CFT, including the copy test and the recall test). The
assessments were performed by a neurology clinician qualified in
neuropsychological assessment.

Statistical Analysis
Differences in demographic factors and neuropsychological test
scores were analyzed using non-parametric tests; the Kruskal–
Wallis test for continuous data, and Fisher’s Exact test for
categorical data.

Imaging Protocol
All examinations were performed with a 3.0T MR system
(Magneton Verio, Siemens Medical Systems, Erlangen, Germany)
with an orthonormal head coil. During the MRI scan, all
participants were asked to remain still in the supine position with
the surrounding space being filled with sponge.

We here relied on diffusion weighted images (DWI)
and rsfMRI data with the following parameters: DWI:
b1 = 0 s/mm2, b2 = 1,000 s/mm2, b3 = 2,000 s/mm2/64
directions, Matrix = 112 × 112, FOV = 224 mm × 224 mm,
TR = 2,400 ms, TE = 71 ms, 76 slices, 2 mm thickness,
no gap. and rsfMRI: TR = 500 ms, TE = 30 ms, flip angle
(FA) = 60◦, FOV = 224 mm × 224 mm, matrix = 64 × 64,
slices = 35, thickness = 3.5 mm, gap = 0.5 mm. A 3D MPRAGE
(magnetization prepared rapid acquisition gradient echo) image
(voxel size 1 mm × 1 mm × 1 mm, TE: 2.98 ms, TR: 2,530 ms,
flip angle = 7◦) was also obtained.

Diffusion Tractography Preprocessing Steps
The DWI images were processed using the Infinitome software
(Omniscient Neurotechnology, 2020), which employs standard
processing steps in the Python language. The processing pipeline
includes the following: (1) the diffusion image is resliced to ensure
isotropic voxels, (2) motion correction is performed using a rigid
body registration algorithm to a baseline scan, (2) slices with
excess movement (defined as DVARS > 2 sigma from the mean
slice) are eliminated, (3) the T1 image is skull stripped using
the HD-BET software (Isensee et al., 2019), which is inverted
and aligned to the DWI image using a rigid alignment, which
is then used as a mask to skull strip the aligned DWI image,
(4) gradient distortion correction is performed by applying a
diffeomorphic warping registration method between the DWI
and T1 images, (5) The fiber response function is estimated and
the diffusion tensors are calculated using constrained spherical
deconvolution, (7) deterministic tractography is performed with
uniform random seeding, 4 seeds per voxel, usually creating
about 300,000 streamlines per brain.

Creation of a Personalized Brain Atlas Using Machine
Learning Based Parcelation
In order to minimize the effects of gyral variation, we used a
machine-learning based, subject specific version of the Human
Connectome Project Multimodal Parcelation (HCP-MMP1) atlas
(Glasser et al., 2016) generated based on each subject’s structural
connectivity, which has been described elsewhere (Doyen et al.,
2022). Figure 1 demonstrates the steps in creation of this
personalized atlas. Briefly, a machine learning model was trained
by entering preprocessed tractography data from 178 healthy
controls obtained from the SchizConnect database to learn the
structural connectivity pattern between voxels included within
the 379 parcels of the HCP-MMP1 atlas. The same unaltered
atlas was then warped onto each brain of the study sample.
The trained machine learning model was then applied to each
individual in the study sample to appoint voxels located at the
endpoint of tractography streamlines to their most likely warped
HCP parcelation based on the structural connectivity feature
vectors, resulting in reparcelation of voxels. This method creates
a version of the HCP-MMP1 atlas with 180 cortical parcels
and 9 subcortical structures per hemisphere, along with the
brainstem as one parcel.

We mapped the identified parcels to known resting-state
networks based on the hierarchical structure described by Akiki
and Abdallah (2019): the Default Mode Network (DMN), the
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FIGURE 1 | A flowchart demonstrating the process of creating a personalized atlas for each individual in the study sample, referred to as reparcelation.

Central Executive Network (CEN), Dorsal Attention Network
(DAN), Salience Network (SN), Sensorimotor Network (SMN),
and Visual Network (VN). These networks are based on the
model first demonstrated by Yeo et al. (2011), who mapped
specific parts of the cortex to known large-scale networks (Yeo
et al., 2011). These networks have since been investigated across
the spectrum of healthy and pathological cognitive states and
have been demonstrated to underlie key cognitive processes.
This template was therefore applied to our dataset to investigate
patterns in the identified brain regions, and the networks with
which they are associated.

rsfMRI Preprocessing Steps
The rsfMRI images were processed using standard processing
steps including: (1) motion correction on the T1 and BOLD
images using a rigid body alignment, (2) elimination of slices with
excess movement (defined as DVARS > 2 sigma from the mean
slice), (3) skull stripping of the T1 image using a convolutional

neural net (CNN), which is inverted and aligned to the resting
state bold image using a rigid alignment, and used as a mask
to skull strip the rsfMRI image, (4) slice timing correction, (5)
Global intensity normalization, (6) gradient distortion correction
using a diffeomorphic warping method to register the rsfMRI
and T1 images, (7) High variance confounds are calculated using
the CompCor method (Behzadi et al., 2007); these confounds
as well as motion confounds are regressed out of the rsfMRI
image, and the linear and quadratic signals are detrended. Note
this method does not perform global signal regression, (8) spatial
smoothing is performed using a 4 mm FWHM Gaussian kernel.
The personalized atlas created in previous steps is registered to
the T1 image, and gray matter atlas regions are aligned with the
gray matter regions in each subject’s scans. Thus, it is ideally
positioned for extracting a BOLD time series, averaged over all
voxels within a region, from all 379 regions (180 parcels from
two hemispheres, plus 19 subcortical structures). The Pearson
correlation coefficient is calculated between the BOLD signals
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of each unique area pair (self to self-inclusive), which yields
143,641 correlations.

Mapping of Neuropsychiatric Tests to Brain Regions
Using the Hollow-Tree Super Method
We subsequently built machine learning models to predict a
subject’s performance on a given test based on their functional
connectome. The black box problem in machine learning
generally limits the ability to utilize machine learning techniques
in clinical practice, as there is generally a need-to-know which
parts of the brain contribute to a given pathology. In order to
address this, we used a boosted trees approach, called Hollow-tree
Super (HoTS) (Doyen et al., 2021), to determine which features
of each machine learning model, in this case the functional
connectivity among brain regions, were contributing most to the
model’s prediction of performance on each neuropsychological
test. Performance in each test was classified by a tertile split,
with the upper and lower tertiles classed as poor and good
performance, respectively. The binarization of these test scores
was necessary to apply logistic regression to continuous scores.
However, since the mapping of psychometric testing to brain
regions using machine learning is a novel technique, the
thresholds were chosen to reflect differences between the worst
and best performing groups. This was done to ensure that
the model was identifying biological differences which were
reflective of the clear functional differences between these two
groups. Test specific tertile limits were: MOCA-B (< 17, poor
performance; > 24 good performance), the Clock Drawing Test
(< 3, poor performance; 3, good performance), and the Hopkins
Verbal Learning Test Delayed Recall (0, poor performance; > 6,
good performance). The prediction performance of each model
was measured by the area under the receiver-operator curve

(AUC-ROC). The binarization of each test and the class balances
are provided in the Supplementary Figures.

RESULTS

Patient Characteristics
Table 1 shows the demographic characteristics and median
neuropsychological test scores, along with significance of
differences reported on Kruskal–Wallis and Fisher’s Exact Tests.
Across groups, there were significant differences in age and
education between control, MCI and AD subjects, with control
subjects being generally younger (median ± IQR, 71 ± 10 in
control; 72 ± 11 in MCI; and 75 ± 10 in AD) and having attained
a greater number of years of education (12 ± 6 in control; 9 ± 3
in MCI; 9 ± 3 in AD). Additionally, there were significant group
differences in all neuropsychological tests conducted, with MCI
and AD subjects performing worse.

Machine Learning Reveals Parcels
Underlying Cognitive Deficits
Applying our HoTS methodology to determine features of the
functional connectome associated with performance in each
neuropsychological test, eleven models had a test AUC greater
than 0.65 (Figure 2A): Boston Naming Test (BNT), Boston
Naming Test—Articulateness and Fluency (BNT-A), Hopkins
Verbal Learning Test Immediate Recall (HVLT-I), Hopkins
Verbal Learning Test 5 min Delayed Recall (HVLT-D), Rey
Osterrieth Complex Figure Imitation (ROCF-I), Rey Osterrieth
Complex Figure Recall (ROCF-R), Shape Trail Test Part A (STT-
A), Shape Trail Test Part B (STT-B), Wechsler Memory Scale
Logical Memory (WMS-LM), Clock Drawing Test (CDT), and

TABLE 1 | Subject demographics.

Control (n = 140)
Median (IQR)

MCI (n = 149)
Median (IQR)

AD (n = 85)
Median (IQR)

p-value

Age (years) 71 (65, 75) 72 (70, 81) 75 (67, 77) <0.001

Education (years) 12 (9, 15) 9 (9, 12) 9 (9, 12) <0.001

Sex n (%)
Female
Male
Missing

68 (48.6)
72 (51.4)

0

81 (54.7)
67 (45.3)

1

53 (62.4)
32 (37.6)

0

0.130

MMSE 27.5 (26, 28) 24 (22, 26) 15 (11, 19) <0.001

MOCA-B 24 (22, 26) 16 (14, 19) 8 (5, 11) <0.001

Wechsler Memory Scale Logical Memory 9 (7, 11) 6 (4, 7.25) 2 (1, 4) <0.001

Hopkins Verbal Learning Test (Immediate) 19 (16, 22) 14 (11, 17) 7 (3, 10) <0.001

Hopkins Verbal Learning Test (Delayed 5 min) 7 (5, 8) 3 (0, 5) 0 (0, 0) <0.001

Hopkins Verbal Learning Test (Delayed 20 min) 7 (5, 8) 3 (0, 5) 0 (0, 0) <0.001

Boston Naming Test 24 (20, 26) 21 (17, 24) 15 (11.5, 20) <0.001

Boston Naming Test Articulateness and Fluency 15 (12, 17) 12 (9, 14) 6 (4, 9) <0.001

Rey Osterrieth Complex Figure Imitation 32 (6, 35) 21 (6, 33.5) 6 (1, 22) <0.001

Rey Osterrieth Complex Figure Recall 11 (5, 19) 4 (0, 10) 0 (0, 0) <0.001

Shape Trail Test Part A 56 (44, 73) 73 (58, 94.75) 108.5 (80.75,
140.5)

<0.001

Shape Trail Test Part B 145 (109, 179) 181 (153, 230) 232 (189.5, 273) <0.001

Non-parametric tests conducted, with median and interquartile range (IQR) reported. MCI, mild cognitive impairment; AD, Alzheimer’s Disease.
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MOCA-B. Results were categorized into the domains of Language
(BNT), Verbal Learning and Memory (HVLT-I, HVLT-D, WMS-
LM), Attention and Executive Function (BNT-A, STT-A, STT-B),
Visuospatial Function (ROCF-I, ROCF-R, CDT), and MOCA-B
as a standalone general cognitive test.

Injury to Sensory and Higher Order
Association Regions Underlie Naming
Deficits in AD
Right 3a (SMN), right 10r (DMN), left OP1 (SMN), and left
9–46 days (SN) were most predictive of poor performance in
the BNT, whereas there were no predictors of absence of deficit.
Supplementary Figure 1 shows the log odds of each parcel as a
predictor for performance in the BNT.

DLPFC and IFOF-Connected Regions
Are Abnormal in People With Impaired
Verbal Recall
Table 2 lists the parcels identified by each model for tests
associated with verbal learning and memory. Poor performance
in the HVLT-I was associated with multiple core networks,
including DMN, CEN, SN, and VN. Anatomically, a subset of
these parcels were in the right dorsolateral prefrontal cortex
(DLPFC) (right 8Av, right 8Ad, right p9-46v), right premotor area
(area 6d, area 6a, area 6r), right insula (right PoI2), left DLFPC
(left 46), left medial frontal lobe (left 10r) and left occipital
cortex (left V1, left V3B, left FST). The distribution of these
parcels suggest that the model may be highlighting alterations in
the connectivity of the inferior fronto-occipital fascicle (IFOF).
Expectedly, absence of deficit in the HVLT-I was linked to
regions associated with working memory: left PHA1, left p10p,
and left 23 days.

Deficits in Delayed and Episodic Verbal
Recall Highlight Possible Functional
Compensation
The CEN and DMN were most associated with deficits in the
HVLT-D, whereas the VN, SN, and DMN were linked to absence
of deficits. Notably, the right-sided analogs of speech areas, right
55b, and right 45 were associated with absence and presence of
deficit, respectively.

When looking at the substrates for verbal episodic memory,
presence of deficit in the WMS-LM was associated with the DMN,
CEN, SMN and VN; while absence of deficit was associated with
parcels in the medial temporal lobe and limbic components of
the DMN, CEN, SN and the right Amygdala. Supplementary
Figures 2–4 show the log odds of each parcel as a predictor for
performance in each language test.

Performance in Executive Function Is
Associated With Executive and Sensory
Networks
The parcels our models associated with performance in tests
associated with attention and executive function are listed in
Table 3. For the BNT-A, parcels predictive of deficit were
affiliated with the CEN, DMN, DAN, and SMN. Conversely,

parcels associated with absence of deficit were mostly associated
with the DMN, especially its limbic components.

Furthermore, deficits in the STT-A were associated with
several networks, including the DMN, CEN, DAN, and SMN,
while absence of deficit was predicted by parcels in the CEN,
and SMN. In the STT-B, the DAN, CEN, DMN, SMN, and VN
were associated with deficit; whereas the SN, DAN and SMN
were associated with absence of deficit. Both tests demonstrate
impairment in areas known to be associated with executive
function, though there was also involvement of unexpected
networks such as the SMN. Supplementary Figures 5–7 detail
the feature importance of each parcel as a predictor in the models
for the attention and executive function tests.

Visuospatial Deficits Are Associated
With Multiple Large-Scale Networks
Table 4 shows the identified parcels associated with performance
in visuospatial tests, along with their network affiliation. Presence
of deficit in the ROCF-I was mainly associated with subcortical
structures and SN; while absence of deficit was mostly linked to
the VN and DMN. Functional connectivity of parcels in the DAN
and VN were predictors of deficit in ROCF-R, whereas absence
of deficit was linked to the limbic and language components of
the DMN and CEN.

Moreover, language regions of the DMN and the SMN were
associated with deficit in the CDT, whereas the SMN, CEN, and
DMN were associated with absence of deficit.

Log odds of each parcel as a predictor of performance for the
visuospatial tests are shown in Supplementary Figures 8–10.

Parcels Associated With Performance in
MOCA-B May Provide Markers of
Cognitive Decline
Finally, poor performance in the MOCA-B was associated with
the CEN (right 13l, left POS2, right 8Av, right p9-46v, left PFm),
VN (left V1, right VIP, left V7), and SMN (right 4, right Pir, left
7PC); and absence of deficit was linked to the SMN (right FOP2,
left MBelt), SN (left FOP1), DMN (right PCV) and VN (right
PIT). Although the AUC of 0.68 for this model was relatively
low, these areas may be studied further as possible markers to
predict cognitive decline. The log odds for each parcel is provided
in Supplementary Figure 11.

Overlaps and Differences Across
Cognitive Domains May Provide Insight
Into Distinct Progression Trajectories in
AD
We next explored overlaps between parcels associated with
each neuropsychological test to derive patterns which may
aid in diagnosis. At a network level, predictors of deficit
in each test were affiliated with a variety of networks,
although the CEN was most common, followed by the DMN
(Figure 2B). We identified 20 parcels which were predictors
of poor performance in at least two neuropsychological tests
(Figure 2C). Most of these were affiliated with the CEN,
DMN, and DAN. When examining parcels associated with
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FIGURE 2 | Baseline resting-state fMRI parcels predicting deficits in neuropsychological tests. (A) 11 neuropsychological tests surpassed an AUC of 0.65. (B) Parcel
to network mapping showed that parcels in the CEN and DMN were most frequently associated with poor performance in neuropsychological testing, though other
networks were also represented. (C) Neuropsychological test to parcel mapping of twenty parcels which were predictors of at least two tests. The parcels have been
placed in relative anatomical positions, while the colors of the arrows represent the networks associated with the parcels. Each arrow is drawn from the
neuropsychological test (rectangle) to a single parcel (oval). CEN, Central Executive Network; DAN, Dorsal Attention Network; DMN, Default Mode Network; BNT-A,
Boston Naming Test—Articulateness and Fluency; BNT, Boston Naming Test; HVLT-I, Hopkins Verbal Learning Test—Immediate Memory; HVLT-D, Hopkins Verbal
Learning Test—Delayed Recall; ROCF-I, Rey Osterrieth Complex Figure Imitation; ROCF-R, Rey Osterrieth Complex Figure Recall; STT-A, Shape Trail Test—Part A;
STT-B, Shape Trail Test Part B.

absence of deficit, the DMN and CEN were also over-
represented (Figure 3A). 14 parcels were predictors of good
performance in at least two neuropsychological tests (Figure 3B),
and most parcels were associated with temporal structures
affiliated with the DMN.

Although each neuropsychological test assesses distinct
functions, to identify commonalities and differences in our data,
we grouped parcels by the cognitive domain associated with
each test. We then identified parcels which were predictors
of performance in at least two neurocognitive tests within
each domain. Language and the MOCA-B were left out of
this analysis as only one model was associated with each
of these. Within Verbal Learning and Memory, four out
of six parcels were associated with poor performance in at
least two tests, whereas right 6d was associated with poor
performance in the WMS-LM and good performance in HVLT-I,
and left 23d was associated with good performance in both

the WMS-LM and HVLT-I (Figures 4A,B). Common parcels
associated with attention and executive function were located
within the frontal and parietal lobes (Figures 4C,D). All parcels
were associated with poor performance, except right 43, which
was associated with poor performance in the STT-A, but good
performance in STT-B. Given the difference between the two
tasks is the cognitive flexibility required in STT-B, which is
the harder task, this region may be indicating initial functional
compensation which is successful in some individuals. Finally, all
common parcels associated with visuospatial function were in the
temporooccipital region, with the addition of the right Thalamus
(Figures 4E,F). All parcels identified were common predictors
of absence of deficit, except right V8, which was associated
with absence of deficit in the CDT and presence of deficit in
the ROCF-D; and left EC, which was associated with absence
of deficit in the CDT and presence of deficit in the ROCF-I.
These differences may again be indicative of different stages or
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FIGURE 3 | Baseline resting-state fMRI parcels predicting absence of deficits in neuropsychological tests. (A) Parcel to network mapping showed that parcels in the
CEN and DMN were most frequently associated with absence of deficit in neuropsychological testing, and these networks were the most common overall.
(B) Neuropsychological test to parcel mapping of fourteen parcels which were predictors of good performance in at least two tests. The parcels have been placed in
relative anatomical positions, while the colors of the arrows represent the networks associated with the parcels. Each arrow is drawn from the neuropsychological
test (rectangle) to a single parcel (oval). CEN, Central Executive Network; DAN, Dorsal Attention Network; DMN, Default Mode Network; BNT-A, Boston Naming
Test—Articulateness and Fluency; BNT, Boston Naming Test; HVLT-I, Hopkins Verbal Learning Test—Immediate Memory; HVLT-D, Hopkins Verbal Learning
Test—Delayed Recall; ROCF-I, Rey Osterrieth Complex Figure Imitation; ROCF-R, Rey Osterrieth Complex Figure Recall; STT-A, Shape Trail Test—Part A; STT-B,
Shape Trail Test Part B.

FIGURE 4 | Overlaps within cognitive domains may provide insight into functional compensation and cognitive trajectories in AD. Parcels associated with
performance in at least two neurocognitive tests associated within each cognitive domain: Verbal Learning and Memory (A), Attention and Executive Function (C),
and Visuospatial Function (E). Each arrow is drawn from the neuropsychological test (rectangle) to a single parcel (oval). The arrows are colored by whether the
association was to poor performance (Deficit Present) or good performance (Deficit Absent) as defined in the methodology for each test, while the parcels are
colored by their associated networks. Anatomical locations of the given parcels are also shown on a T1 MRI (B,D,F). BNT-A, Boston Naming Test—Articulateness
and Fluency; BNT, Boston Naming Test; HVLT-I, Hopkins Verbal Learning Test—Immediate Memory; HVLT-D, Hopkins Verbal Learning Test—Delayed Recall;
ROCF-I, Rey Osterrieth Complex Figure Imitation; ROCF-R, Rey Osterrieth Complex Figure Recall; STT-A, Shape Trail Test—Part A; STT-B, Shape Trail Test Part B,
WMS-LM, Wechsler Memory Scale—Logical Memory.
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TABLE 2 | Predictors of performance in neuropsychiatric tests associated with verbal learning and memory.

Wechsler Memory Scale Hopkins Verbal Learning Test Immediate Memory Hopkins Verbal Learning Test Delayed Recall

AUC = 0.65 AUC = 0.65 AUC = 0.67

Deficit Present Deficit Absent Deficit Present Deficit Absent Deficit Present Deficit Absent

Area Network Area Network Area Network Area Network Area Network Area Network

L_V1 Visual L_PHA1 DMN R_H DMN L_PHA1 DMN L_9-46d Salience L_PIT Visual

R_TE1p CEN R_TF DMN R_23d CEN L_p10p CEN R_LIPd CEN L_23c Salience

R_6d SMN R_AAIC CEN R_8Av CEN L_23d CEN R_6r DAN L_9m DMN

R_47m DMN R_9a DMN R_6a DAN L_11l CEN R_TPOJ1 DMN

L_FST Visual L_MI Salience R_pOFC CEN R_7AL SM R_55b Salience

R_8BL DMN L_RSC CEN R_6d SM R_45 DMN R_LO2 Visual

R_11l CEN R_PHA1 DMN R_Accumbens SC L_10pp DMN L_VMV2 Visual

L_1 SMN L_23d CEN L_FST Visual L_PEF DAN

L_3b SMN R_Amygdala SC L_V1 Visual R_PGs CEN

R_STSva DMN R_8Ad DMN R_13l CEN

R_8Ad DMN L_IFJp CEN R_V4t Visual

L_SCEF Salience R_p9-46v CEN

L_V3B Visual L_p32 DMN

R_PoI1 Salience

L_10r DMN

R_p9-46v CEN

L_46 Salience

CEN, Central Executive Network; DAN, Dorsal Attention Network; DMN, Default Mode Network; SC, Subcortical Deficit Present refers to good performance, whereas
Deficit Absent refers to poor performance in a given test, as defined in the methodology.

trajectories of disease, though the lack of longitudinal data limited
further analysis.

We finally looked at commonalities between domains by
classifying the 20 parcels associated with presence of deficit in
two or more tests into five domains based on the associated
neuropsychological test (Figure 5A). The common areas tended
to be in the frontal lobe and affiliated with the CEN (right p9-46v,
right 13l, right 8Av, left 11l), DAN (right 6a, right 6d) DMN (right
8BL, left 7Am), SMN (right 4, right 6a), SN (left 9–46d), and
right Accumbens. Interestingly, we noted a convergence of verbal
learning and visuospatial function at areas right 6a, right 6d and
right 6r. Furthermore, a similar grouping of parcels associated
with absence of deficit (Figure 5B) revealed several temporal and
perisylvian regions within the DMN (R_TF, R_PHA1, left PGs,
left STGa), SMN (left MBelt, right PBelt, right FOP2), DAN (right
PHT), CEN (left IFJa) and VN (right PH).

DISCUSSION

Despite rising prevalence and ongoing efforts, we still lack
adequate tools to track the progression of MCI and diagnose AD
early in its pathological stage. Data-driven methods are needed to
a priori identify pathological progression and functional decline
and enable premorbid treatment. Our machine learning models
demonstrate that different neurocognitive deficits in AD are
associated with functional connectivity abnormalities in multiple
bi-hemispheric neural networks. Notably, the limbic components
of the DMN and CEN, and the DAN were most associated with

performance measures. Deficits in multiple domains revealed
impairments in top-down processing, and possible recruitment of
analog areas in the contralateral hemisphere, which may underlie
response to injury in AD. We propose these regions may serve
as possible neuroimaging markers of disease progression, and aid
in establishing clinical trajectories, though longitudinal data are
needed to explore this further. Ultimately, we demonstrate the
utility of data-driven methods to explore the neural networks
underlying functional and cognitive deficits in AD. Further
analyses have the potential to revolutionize diagnosis and
treatment, and improve quality of life in AD.

Cognitive Deficits in AD Arise From
Impairment in Multiple Networks
A commonality between all the models in our analysis was the
involvement of multiple networks in each cognitive task, and the
involvement of areas which would not classically be associated
with a given task. For example, deficits in naming were associated
with regions outside of language or motor planning areas.
Similarly, our data suggest that fluency and articulation deficits in
AD may be caused by cognitive abnormalities in motor planning,
with several premotor area parcels being associated with deficit.
The same premotor regions were also associated with visuospatial
deficits in our dataset. Previous studies have identified a possible
role of the premotor area in articulation planning (Paulesu
et al., 1993; Marvel and Desmond, 2012; Liao et al., 2014).
This may suggest that fluency and articulation difficulties in
AD stem from a phenomenon paralleling ideational apraxia,
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TABLE 3 | Predictors of performance in neuropsychiatric tests associated with attention and executive function.

Boston naming test articulateness and fluency Shape trail test (Part A) Shape trail test (Part B)

AUC = 0.71 AUC = 0.68 AUC = 0.65

Deficit Present Deficit Absent Deficit Present Deficit Absent Deficit Present Deficit Absent

Area Network Area Network Area Network Area Network Area Network Area Network

R_IFSa DAN R_IFJp CEN L_47s DMN L_IFJa CEN L_47s DMN R_FOP1 Salience

R_47s DMN L_PGs DMN L_13l CEN R_PH Visual L_11l CEN L_p32pr Salience

L_9a DMN L_STGa DMN R_LBelt SMN R_PFt DAN L_V3CD Visual R_TE2p DAN

R_2 SMN R_OP2-3 SMN L_AIP DAN L_p47r CEN R_a9-46v CEN R_43 SMN

L_6mp SMN L_PeEc DMN R_p9-46v CEN R_PHT DAN L_AIP DAN

L_LIPv Visual R_H DMN R_PSL Salience L_PFm CEN L_7Am DAN

R_6a DAN R_6a DAN R_PBelt SMN L_s6-8 CEN

R_OFC CEN R_8BL DMN L_p24 CEN R_STSdp DMN

L_IFSa CEN R_43 SMN L_Pir SMN R_PSL Salience

L_d32 DMN R_8BM CEN L_V1 Visual

R_9-46d CEN R_RI SMN L_PFcm SM

L_AVI CEN L_PH Visual

L_AIP DAN L_9a DMN

R_4 SMN

R_TA2 SMN

R_IFSa DAN

CEN, Central Executive Network; DAN, Dorsal Attention Network; DMN, Default Mode Network; SC, Subcortical Deficit Present refers to good performance, whereas
Deficit Absent refers to poor performance in a given test, as defined in the methodology.

TABLE 4 | Predictors of performance in neuropsychiatric tests associated with visuospatial function.

Rey osterrieth complex figure imitation Rey osterrieth complex figure recall Clock drawing test

AUC = 0.70 AUC = 0.78 AUC = 0.75

Deficit present Deficit Absent Deficit Present Deficit absent Deficit Present Deficit absent

Area Network Area Network Area Network Area Network Area Network Area Network

R_Caudate SC L_TE1p CEN L_OFC CEN L_TGd DMN L_31a DMN L_PBelt SMN

L_p32pr Salience L_SFL DMN R_6r DAN R_V1 Visual L_STSva DMN R_TE1m CEN

Brainstem SC R_PoI2 SMN R_6a DAN L_TE1p CEN L_44 DMN L_Thalamus SC

L_Caudate SC L_PHA1 DMN R_V8 Visual L_STGa DMN R_5m SMN L_PGs DMN

L_EC DMN R_PHT DAN R_6d SMN R_STSda DMN R_V8 Visual

R_13l CEN R_PH Visual L_V1 Visual L_Accumbens SC R_IP2 CEN

L_PF Salience L_PHA3 DMN L_TE1a DMN L_PHA1 DMN

L_5L SMN R_V2 Visual L_a32pr CEN L_EC DMN

R_PFt DAN L_VIP Visual R_TF DMN L_5m SMN

L_LIPv Visual R_OP1 SMN R_9-46d CEN

L_8Av DMN L_MBelt SMN L_TE2p DAN

R_Thalamus SC L_IP1 CEN

L_IFJa CEN R_PBelt SMN

L_PeEc DMN L_VVC Visual

R_FOP2 SMN

R_Thalamus SC

CEN, Central Executive Network; DAN, Dorsal Attention Network; DMN, Default Mode Network; SC, Subcortical Deficit Present refers to good performance, whereas
Deficit Absent refers to poor performance in a given test, as defined in the methodology.
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FIGURE 5 | Commonalities across cognitive domains may provide potential targets for screening, diagnosis, and treatment. The Venn diagrams show the parcels
which are predictors of (A) deficit and (B) absence of deficit across at least two cognitive domains.

rather than exclusively explicit damage to language areas. Overall,
these data suggest that many deficits in AD present a multi-
network cognitive problem, rather than localized functional
deficits. A multi-network perspective of functional deficits in
AD must be assumed when describing the disease which should
underlie the development of any therapeutic intervention.

The Role of the DLPFC and IFOF in
Working Memory
Several parcels within the DLPFC were associated with poor
performance in the immediate recall portion of the HVLT. The
DLPFC bilaterally is known to play an important role in verbal
and spatial working memory (Sisi and Yixuan, 2018). In AD,
impaired plasticity of the left DLPFC, measured as potentiation
of cortical evoked activity has been correlated with working
memory (Kumar et al., 2017). Increased activation of the right
DLPFC on the other hand has also been associated with memory
deficits in AD (Erk et al., 2011; Liang et al., 2011). Whether this
is a maladaptive or compensatory mechanism remains unclear.
Our model for poor performance in the HVLT-I predominantly
highlighted the right DLPFC, which may indicate a similar
maladaptive reorganization or nociferous compensation.

Furthermore, our machine learning model associated the
functional connectivity of parcels in the left occipital and
frontal lobes with impaired immediate recall. The IFOF is a
white matter bundle which runs between these two regions,
connecting the frontopolar, orbitofrontal and inferior frontal
cortices to the occipital lobe (Conner et al., 2018). The role
of the IFOF remains controversial. Several neuroimaging and
neuromodulation studies have suggested a role in visual semantic
processing (Moritz-Gasser et al., 2013; Almairac et al., 2015;
Yordanova et al., 2017). However, it is still unclear how this
pathway functionally differs from the parallel, indirect path
in the ventral stream, anatomically described as the inferior
longitudinal fascicle (ILF)/uncinate fasciculus (UF). Since the

IFOF is connected to executive areas in the frontal lobe,
it is possible that the IFOF is primarily involved in top-
down processing of language, whereby the frontal lobe aids in
visual semantic processing by biasing the visual system toward
cognitively relevant goals. Indeed, planning spoken language has
been shown to require attentional control (Roelofs and Piai,
2011). Our data may therefore be pointing to a similar paradigm,
whereby individuals performing poorly on a verbal working
memory task have left IFOF deficits. The model for deficits in
HVLT-I also identified the right insula. This may be suggestive
of ineffective compensation by the right IFOF, which also has
subinsular components, however, further functional and lesion
studies are required to investigate these hypotheses.

Modulating Compensatory Plasticity in
AD
Our models highlighted several possible compensatory
mechanisms underlying deficits in MCI and AD, including
the recruitment of alternate networks and contralateral
analogous areas. Further exploring these changes in functional
connectivity hold potential in targeting neuroplastic responses
to injury in AD. Congruent to this, a recent study on a small
cohort of patients with subjective cognitive decline (SCD),
MCI, and AD demonstrated decrease in functional connectivity
centrality measures in the somatomotor and visual networks
in SCD patients (Wang et al., 2019). In contrast, AD patients
showed an increase in centrality measures, and the authors
proposed that as associative networks such as the DMN, CEN,
and DAN were damaged, there was attempted compensation in
the primary sensory networks. The frequent association of the
sensorimotor and visual networks with presence of deficit within
our data may therefore be explained by maladaptive recruitment
of these networks in AD patients. These findings were echoed
by another study demonstrating increased connectivity within
the prefrontal, parietal and occipital lobes in AD, alongside
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decreased connectivity between the frontal and prefrontal lobes
(Wang et al., 2007). This phenomenon of anterior-posterior
functional connectivity dysfunction (Tao et al., 2020) may
also be reflected in our data set, as many parcels which were
predictors of dysfunction in multiple tests were in the parietal
and frontal cortices. Moreover, the use of functional connectivity
measures in the diagnosis and treatment of AD may enable
precision medicine to improve patient outcomes. Functional
connectivity may be a marker of cognitive reserve (Topiwala
et al., 2019; Ewers et al., 2021), a hypothesis which may underpin
the different clinical trajectories seen in AD (van Loenhoud et al.,
2019). Indeed, patients with higher cognitive reserve were seen
to have a more efficient functional connectome, suggesting they
are better able to cope with progressing AD pathology (Weiler
et al., 2018). Exploring the individual differences in the ability
of the brain to adapt to network changes may enable harnessing
methods to improve compensation in response to AD.

Predicting MCI Conversion to AD
There have been several studies demonstrating the utility of
machine learning tools in predicting MCI conversion to AD, and
in diagnosing AD, with varying degrees of success (Syaifullah
et al., 2020; Kumar et al., 2021). Each study utilizes a different
combination of features in their models, ranging from clinical
data, neuropsychological testing (Battista et al., 2017; Gupta and
Kahali, 2020), behavioral and psychiatric data (Gill et al., 2020;
Lo et al., 2020), and various imaging modalities (Jo et al., 2019).
It is however unclear how early these models can be employed
to screen individuals. The heterogeneity in clinical trajectories,
and the likely need to implement treatment much earlier
than the onset of symptoms require biological markers which
indicate risk prior to decline in neuropsychological testing. This
accounts for the popularity of incorporating imaging modalities
into many of these models, as they provide a minimally
invasive means of diagnosis independent of neuropsychological
testing. The strength of the present study is the ability of
our machine learning model to provide visibility into the
features of the functional connectome associated with cognitive
function. In fact, the neuroanatomical information provided by
this method, specifically the areas of coherent overlap between
domains as highlighted in Figure 5, and differences within, and
across domains can be integrated with the neuropathological
perspective in AD to build a progression model which can
be used in screening and diagnosis. For example, Vogel et al.
(2021) identified four trajectories in AD based on tau deposition.
Rate of tau deposition has also been associated with functional
connectivity in AD (Franzmeier et al., 2020) and functionally
connected regions demonstrated shared levels of tau (Franzmeier
et al., 2019), The close link between tau deposition and cognitive
decline warrants further exploration of the role of functional
connectivity in tau progression in AD. While some regions we
identified overlapped with common areas of β-amyloid and tau
deposition (Braak and Braak, 1991; Braak et al., 2011), it is not
possible to apply pathological models without longitudinal data,
and on a mixed cohort of AD and MCI patients. Nonetheless, our
methods can enable an exploration of the differential effects of

β-amyloid and tau deposition and provide means of predicting
pathological progression in vivo.

Machine Learning Models in AD
It is difficult to directly compare the performance of our model
to models used in previous studies. While most studies utilize
machine learning to classify patients into a diagnostic category,
often by focusing the model on a feature within a given modality,
our model classified individuals into test performance based
on functional connectivity. This was performed in order to
identify specific anatomical regions associated with cognitive test
performance, rather than develop a diagnostic tool. Nonetheless,
many studies utilizing machine learning have reported excellent
performance, with accuracy, sensitivity and specificity at times
exceeding 99% (Odusami et al., 2021), though a recent systematic
review demonstrated a mean accuracy of 75.4% for support
vector machines in predicting progression of MCI to AD (Grueso
and Viejo-Sobera, 2021). However, a primary reason preventing
the implementation of these models in clinical practice is their
replicability, where the same models which have often overfitted
to the study sample will underperform with independent data sets
(Beam et al., 2020; Crowley et al., 2020). This in turn may lead
to false conclusions and prevent the implementation of machine
learning in settings where it may revolutionize diagnostics. It is
therefore imperative that applied methodology is rigorous and
validated using independent data sets.

The novelty of the machine learning technique used in this
study lies in the ability to identify which features the model is
relying the most on to make its prediction. This is generally
difficult to do when a model has a large number of features as its
input, as is the case with functional connectivity among 379 brain
regions. Traditional methods would instead attempt to identify
significant features prior to feeding these into a model, therefore
biasing the model to focus solely on, for example, the default
mode network. This however potentially removes global network
information which may reveal key insights about the pathology.
Our method therefore provides an embedded solution to directly
analyze rsfMRI data, though further analysis techniques are
necessary to identify markers from the large amount of data that
results from this method.

LIMITATIONS

As stated previously, machine learning models are currently
unable to determine which feature of the functional connectivity
of each parcel the model uses to predict the response. The
models may be highlighting either reduced activation, indicating
deficits in the underlying network, or alternatively, there may
be increased activity due to greater reliance on networks
which are compensating, albeit ineffectively. The former may
be used as markers in diagnosis and screening, whereas the
latter could potentially be targeted using TMS to strengthen
networks and improve symptoms, though current evidence for
the therapeutic value of TMS in AD remains unclear (Weiler
et al., 2020). Beyond improving computational techniques, this
problem could be addressed through longitudinal studies on large
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cohorts to track functional connectivity changes and connect
this with clinical data and comparing these observations to
neuropathological data.

Furthermore, the functional connectivity features were
resolved from baseline resting-state fMRI rather than task-based
fMRI. Consequently, the parcels identified by each model are
not necessarily those activated when completing these tasks,
but rather an association between changes in the functional
connectome and the performance in each test. Finally, we did not
stratify our models by diagnosis due to our limited sample size,
instead favoring more stable models by opting in for classification
based on best and worst performance in neuropsychiatric testing.

CONCLUSION

Diagnosing and treating AD remains one of the foremost
challenges of modern medicine. We present a model of MCI
and AD which provides further insight into the anatomical
correlates of neuropsychological dysfunction. We demonstrate
that function and dysfunction in AD is mediated by the
interaction of several networks, including the DMN and CEN
but also sensorimotor and visual networks. While other machine
learning methods have been applied to AD with comparable
performance, our machine learning model is able to peek into
the black box and explain the network components contributing
to models of AD directly from a whole-brain connectome. This
avoids the elimination of potentially key network information
which accompanies feature selection in targeted studies looking
at specific networks. Focusing on whole-brain network changes
in AD could potentially lead to disentangling factors contributing
to a disparity between functioning individuals and those with
inefficient compensation or low cognitive reserve. In turn, these
insights may empower therapeutic targeting to improve disease
trajectory and identify early biomarkers of disease.
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