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Drug naïve animals given a single dose of ethanol show changed responses to subsequent doses,

including the development of ethanol tolerance and ethanol preference. These simple forms of

behavioral plasticity are due in part to changes in gene expression and neuronal properties. Surpris-

ingly little is known about how ethanol initiates changes in gene expression or what the changes

do. Here we demonstrate a role in ethanol plasticity for Hr38, the sole Drosophila homolog of the

mammalian Nr4a1/2/3 class of immediate early response transcription factors. Acute ethanol

exposure induces transient expression of Hr38 and other immediate early neuronal activity genes.

Ethanol activates the Mef2 transcriptional activator to induce Hr38, and the Sirt1 histone/protein

deacetylase is required to terminate Hr38 induction. Loss of Hr38 decreases ethanol tolerance and

causes precocious but short-lasting ethanol preference. Similarly, reduced Mef2 activity in all neu-

rons or specifically in the mushroom body α/β neurons decreases ethanol tolerance; Sirt1 promotes

ethanol tolerance in these same neurons. Genetically decreasing Hr38 expression levels in Sirt1 null

mutants restores ethanol tolerance, demonstrating that both induction and termination of Hr38

expression are important for behavioral plasticity to proceed. These data demonstrate that Hr38

functions as an immediate early transcription factor that promotes ethanol behavioral plasticity.
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1 | INTRODUCTION

Ethanol, one of the most widely used and frequently abused addictive

drugs, is a small molecule that diffuses rapidly throughout the body

and that binds to an as yet incompletely defined spectrum of mole-

cules. Its effects vary based on dose, exposure time and pattern, an

individuals' history of intake, and their genetic makeup. This complex-

ity of action has hampered progress in reducing the prevalence of

alcohol use disorders through rational interventions.1

One approach forward is to define, in detail, the stimulus-response

relationship for ethanol in ethanol naïve animals. While the first ethanol

exposure rarely leads directly to alcoholism, it does cause changes in

behavior that reflect changes in brain function; these changes provide

an altered substrate for subsequent intake and they promote addiction

risk. Furthermore, many genes are oppositely regulated by acute ethanol

exposure and in ethanol withdrawal.2 Practically, this suggests that

detailed mechanistic understanding of acute ethanol exposure action,

especially when coupled to measures of behavioral plasticity, will pro-

vide insight into the more complex mechanisms underlying addiction.

One form of ethanol-induced behavioral plasticity is tolerance, the

acquired resistance to the inebriating and sedating properties of etha-

nol.3 Ethanol tolerance facilitates increased intake, a risk factor for later

developing alcohol use disorders.

Drugs of abuse, including ethanol, cause changes in gene expres-

sion in the brain that can alter the properties of the brain. Drosophila

melanogaster is a useful organism for defining how acute ethanol alters

behavior through gene regulation.4 In Drosophila, as in mammals, acute

ethanol exposure progressively stimulates locomotion, motor incoordi-

nation, and sedation. Ethanol exposure also induces ethanol tolerance,

ethanol preference, ethanol reward, and signs of ethanol withdrawal.
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Acute ethanol exposure causes marked changes in gene expression, and

some ethanol-regulated genes have been shown to be critical for

ethanol-induced behavioral plasticity.5–10

Neural activity and drugs of abuse induce immediate early genes in

the nervous system, including transcription factors like Fos that are

important for driving programs of gene expression.11,12 Neural activity

in Drosophila also induces immediate early genes.13–15 As yet, miRNAs

are the only class of immediate early genes that have been studied in

the context of ethanol behaviors in Drosophila.14 Understanding how

ethanol regulates immediate early response gene expression, and the

consequences of their regulation, can help define how ethanol alters

neural function and behavior.

Hr38 is a Drosophila immediate early response gene that is the sole

homolog of the mammalian Nr4a1/Nr4a2/Nr4a3 gene family. Hr38 is

strongly and consistently induced by artificial neural activation.13,16 It

functions in various processes in both development and adulthood,

including ecdysis, carbohydrate storage and circadian rhythms.17–19

Here, we find that Hr38 and other immediate early genes are induced

by ethanol, we define the mechanisms of Hr38 induction, and we dem-

onstrate that Hr38 and its regulators function in the fly brain to promote

the development of ethanol tolerance. These findings define early steps

in gene regulation by ethanol that are important for the expression of

ethanol-induced behavioral plasticity.

2 | MATERIALS AND METHODS

2.1 | Drosophila culturing and strains

All strains were outcrossed for at least five generations to the Berlin

genetic background carrying the w1118 genetic marker mutation. The

genetic background strain was used as an experimental control. Flies

were cultured on standard cornmeal/molasses/yeast medium at 25�C

and 70% relative humidity with a 12/12 hours light/dark schedule.

Nicotinamide (70 mM, Sigma-Aldrich, St Louis, MO USA) was fed to

flies dissolved in 5% sucrose/2% yeast extract on Whatman filter

paper for 48 hours, exchanged at 24 hours. Strains used in this study

were UAS-Mef2.EnR from Justin Blau,20 Hr38y214 from Carl

Thummel,21 MB-Gal80 from Scott Waddell, University of Oxford,

Oxford, UK, UAS-Mef2.IR (Vienna Drosophila Resource Center,

v15549, v15550), Hr38.GFP.FLAG (R. Spokony and K. White, Bloom-

ington Drosophila Stock Center (BDSC) #38651), 17d-Gal4 (BDSC

#51631), elav-Gal4 (c155, BDSC #458), elav-Gal4 (3E1, BDSC #8760),

and Sirt12A-7-11 (BDSC #8838).

2.2 | RNA measurement

RNA was extracted from male heads, DNase treated, and reverse-

transcribed using MultiScribe (Applied Biosystems, Foster City, CA USA).

Quantitative PCR reactions were performed using the SYBR Green

method and custom designed primers on a StepOnePlus machine

(Applied Biosystems). Ct values were normalized to RpL32, expression

was calculated using the ΔΔCt method, and the mean of multiple inde-

pendent biological replicates was calculated. Oligonucleotide primers used

in this study were Cdc7: AATGGAGCTG CAGTCATGG (F),

GGATTCGTGTGAGGAGATCATT (R); CG14186: GGCCAGCTAATCTC-

CAAGTT (F), GTTGTAGATCTCCTCGCCATC (R); CG17778:

GCTGCGCTGACTTACTACTTAC (F), TGCATTGGCCACCGA TTT (R);

Hr38: GAGTGGCTCAACGACATCAT (F), CGTTCTGTGATCAGG

GTTAGG (R); Jra: GTTCCCACCCACTGATTGA (F), GCTTGTTCTTGG

CACTCTTG (R); Kayak: CCGATACTTCAAGTGCCCATAC (F), CCAGGA-

CATTGGAGAAGTTGTT (R); Sirt1: GACTGCCGGATGAGTACC (F),

ACGATCAGTAGATCGCAC (R); Stripe: CCGAGTATGCCGCTCAATTA (F),

GGCGTATGGTGGTGATAAGG (R).

2.3 | Whole mount immunohistochemistry

Brains were dissected in PBS and 0.05% Triton-X 100 (0.05% PBT),

fixed (2% paraformaldehyde in 0.05% PBT) overnight at 4�C or 1 hour

at room temperature. They were washed 5× 10 minutes in 0.1% PBT,

blocked 1 hour in 0.1% PBT with 0.5% wt/vol BSA and 5% normal goat

serum and then incubated with primary antibodies overnight at 4�C.

Brains were washed, blocked, and incubated with secondary antibodies

overnight at 4�C, followed by further washes and then mounted on

glass slides with Vectashield (Vector Laboratories, Burlingame, CA USA).

Antibodies used were rabbit anti-GFP (1:1000, Invitrogen A6455),

mouse anti-Elav (1:50, Developmental Studies Hybridoma Bank 9F8A9),

goat anti-rabbit Alexa 488, and goat anti-mouse Alexa 594 (1:350, Cell

Signaling Technologies Danvers, MA USA). Mushroom body kenyon cell

nuclei were counted by drawing a 50 μm arc at the border between the

mushroom body calyx and nuclei at the location with the greatest num-

ber of GFP-positive nuclei, and counting positive nuclei within 25 μm of

the border.

2.4 | Ethanol behaviors

Ethanol sensitivity and tolerance were measured as previously

described.5 Briefly, groups of 20 genetically identical flies (n = 1) were

exposed to 55% ethanol vapor or 100% humidified air, and the num-

ber of flies that lost the righting reflex were counted at 6 minutes

intervals. The time to 50% sedation (ST50) was calculated for each

group, and the experiment was repeated across different days and

from different parental crosses. Flies were allowed to rest for

3.5 hours and then re-exposed to an identical concentration of

ethanol vapor, and tolerance was calculated as the difference in ST50

between the two exposures. The capillary feeding assay (CAFE) was

used to determine ethanol preference, as previously described.22

Groups of eight adult males were collected 3 to 4 days after eclosion

and allowed to recover from CO2 for 1 day. They were pre-exposed

to either 55% ethanol vapor/air mixture or 100% humidified air alone

for 30 minutes. After 16 hours recovery, flies were placed into the

CAFE chamber, which consists of empty vials with capillary tubes

containing liquid food with or without 15% ethanol, embedded in the

vial plug. The preference index was the volume of food consumed

from the ethanol capillaries minus that consumed from the no-ethanol

capillaries over the total volume consumed, corrected for evaporation

by measuring the volume lost in vials with no flies. Bitter taste avoid-

ance was measured by presenting flies with a choice of 1.25% agarose

containing either 50 mM sucrose (S) or 100 mM sucrose and 1 mM

quinine (SQ). Groups of approximately 20 male flies were food
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deprived on water for 14 hours, placed in a 40 × 90 × 10 mm clear

acrylic arena, and 150 μL S and SQ dots were then placed in apposi-

tion at the center of the arena. The number of flies on each dot was

counted at 30 minutes. Avoidance was calculated as (SQ − S)/(SQ +

S) such that complete avoidance of bitter gives a value of −1.

2.5 | Ethanol absorption and metabolism

Flies were frozen in liquid nitrogen and homogenized in 50 mM Tris-

HCl, pH 7.5. Ethanol concentrations were measured in fly homoge-

nates using the Ethanol Assay Kit from Diagnostic Chemicals Ltd,

Nova Scotia, Canada. (catalog #229-29). To calculate the ethanol con-

centration in flies, the volume of one fly was estimated to be 1 μL.

2.6 | Statistical analysis

GraphPad Prism 7.0c was used for unpaired t-test, one sample t-test,

one-way ANOVA with Tukey's post hoc test for normally distributed

data, and Kruskal-Wallis test with Dunn's post hoc test for non-

parametric data. Significance indicators on the figures indicate the

results of t-tests or post hoc tests for significant effects by ANOVA.

Error bars represent the SEM.

3 | RESULTS

3.1 | Hr38 is induced by acute ethanol exposure

We surveyed a subset of immediate early genes—those that are broadly

induced by neuronal activity—to ask if drug naïve Drosophila respond to

ethanol transcriptionally through similar pathways.13,15,16 Of these genes,

the Nr4a nuclear hormone receptor homolog Hr38 was the only tran-

scription factor whose expression was induced to statistical significance

(Figure 1A). The Jun-related antigen Jra gene showed a strong trend

towards induction, with a significant induction vs air exposure but not vs

the no treatment control. Retrospective analysis of a gene expression

time course following acute ethanol exposure revealed that Hr38 levels

peaked 60 minutes after ethanol exposure termination and then

decreased to baseline within 3 hours, kinetics that are typical for immedi-

ate early response genes (Figure 1B). Thus, ethanol induces immediate

early genes in a pattern that partially overlaps that of neuronal activation.

3.2 | Hr38 promotes ethanol tolerance and ethanol
preference

Induction of the transcription factor Hr38 suggested that it may regu-

late gene expression in the nervous system to promote ethanol

behavioral plasticity. To ask if Hr38 functions in ethanol behaviors, we

tested flies underexpressing or overexpressing the gene for ethanol

sensitivity, ethanol rapid tolerance, and ethanol preference. Ethanol

sensitivity was measured as the time to 50% sedation for groups of

genetically identical flies. Ethanol tolerance was measured by giving

these flies a second, identical ethanol exposure 3.5 hours after the

first exposure, and calculating the difference in sedation time between

exposures: flies acquire resistance to the sedative effects of ethanol.23

Hr38y214 null mutants are pupal lethal, so we tested heterozygotes

with 50% normal Hr38 levels, which we confirmed (53% �12.5% SEM

compared to the genetic background control, n = 8).21 Hr38 heterozy-

gotes showed increased ethanol resistance and decreased ethanol tol-

erance (Figure 1C). A BAC insertion of the Hr38 genomic region,

when heterozygous in wild-type flies, increased Hr38 genomic copy

number from two to three and expression 1.78-fold (P = .0154 two-

tailed t-test, n = 6 biological replicates). Hr38 overexpression did not

affect ethanol sensitivity, but it markedly increased ethanol tolerance

(Figure 1D). This suggests that Hr38 levels induced by ethanol are crit-

ical for setting the magnitude of ethanol tolerance, and that the role

of Hr38 in ethanol sensitivity and tolerance may be separable.

Drosophila develops a preference for ethanol intake.24 Ethanol pref-

erence was measured in the two choice CAFÉ assay, where flies can drink

from capillaries containing sucrose and yeast either with or without 15%

ethanol.22,25 Ethanol preference in wild-type was induced by pre-

exposure to ethanol vapor (Figure 1E).26 In contrast, Hr38 loss-of-function

mutants showed precocious ethanol preference, and this preference dissi-

pated with ethanol pre-exposure (Figure 1E). Ethanol exposure did not

affect Hr38 mutant viability measured over a week, arguing against non-

specific tissue damage (not shown). A similar phenotype was previously

observed in flies lacking Sirt1, where precocious preference and lack of

induced preference were shown to be separable.5 Bitter taste avoidance

was unaffected in the Hr38 mutants, suggesting that their ethanol taste

reactivity is intact (Figure 1F). Moreover, ethanol absorption and metabo-

lism were unaffected in Hr38 mutants (Figure 1G). Taken together, these

results suggest that the levels of Hr38 expression are important for two

forms of ethanol behavioral plasticity, tolerance and preference.

3.3 | Hr38 is expressed in neurons where it is
induced by ethanol

Hr38 on the genomic BAC is C-terminal tagged with GFP (Hr38.GFP),

which allowed us to determine its expression pattern in the fly brain

(Figure 2). Hr38.GFP was localized to the cell nucleus but was also pre-

sent in the cytoplasm in some brain regions, most notably in the axons of

the mushroom body lobes (Figure 2A, Movie S1, Supporting Information).

Co-labeling indicated that Hr38-positive cells were neurons (Figure 2A).

Hr38.GFP expression was found sporadically throughout the adult brain,

and the mushroom body kenyon cell nuclei were prominently labeled

(Figure 2B). To ask if ethanol exposure recruited additional neurons to

express Hr38, we counted GFP-positive Kenyon cell nuclei. The number

of Hr38-labeled nuclei increased about 2-fold in the mushroom body

1.5 hours after termination of ethanol treatment (Figure 2C).

3.4 | Mef2 acts upstream of Hr38 for ethanol
tolerance in the mushroom bodies

Mammalian homologs of Hr38 are transcriptionally induced by the

Mef2 transcription factor.27,28 We asked if ethanol upregulates Hr38

through Mef2 to promote tolerance development. Mef2 consensus

DNA binding sites (CTAWWWWTAG) are overrepresented in the

Hr38 genomic region, two of which are located less than 2 kb

upstream of the Hr38 transcription start site (Figure 3A).29,30 Two of

the Mef2 consensus sites at the Hr38 locus bind Mef2 in chromatin

immunoprecipitation from fly heads, and they are conserved in
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Drosophila simulans.30 Consensus sites also exist in the Apis melifera

Hr38 enhancer region (not shown). We used a transgenic dominant

negative Mef2 (Mef2.EnR) and Mef2 RNAi (Mef2.IR) to inhibit tran-

scriptional activity at Mef2 enhancers in neurons.20 In Mef2.EnR, the

Mef2 activation domain is replaced with the Engrailed repressor

domain. Expression of Mef2.EnR in all neurons with elav-Gal4 reduced

Hr38 expression (Figure 3B). Further, Hr38 induction by ethanol was

lost (Figure 3C). However, ethanol induction of Hr38 was also lost in

the + >Mef2.EnR controls. Quantitative PCR confirmed the presence

of Mef2.EnR fusion transcripts in these controls (not shown), which is

consistent with previously observed phenotypic effects of the unin-

duced transgene.20 Ectopic leaky expression of dominant negative

Mef2 in + >Mef2.EnR may more broadly interfere with ethanol

induction of Hr38 in non-neuronal tissues in the sample, or it may act

indirectly through constitutive binding at other Mef2 enhancers in the

genome. In contrast, pan-neuronal expression of Mef2.IR specifically

blocked Hr38 induction by ethanol (Figure 3D). These data suggest

that Mef2 is an immediate early activator of Hr38 gene transcription,

and that acute ethanol exposure acts at or upstream of Mef2 to

change gene expression in neurons.

These findings predicted that decreased Mef2 activity in neurons

would decrease ethanol tolerance. Mef2 RNAi in all neurons increased

ethanol sensitivity and decreased ethanol tolerance (Figure 3E). A

second Mef2 RNAi appeared to be weaker, specifically reducing
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FIGURE 1 Hr38 is an ethanol immediate

early response gene that bidirectionally
regulates the development of ethanol
tolerance. (A) Steady state transcript
levels of genes induced by neuronal
activity, 60 minutes after termination of
30 minutes ethanol or mock air
exposure, presented as fold change vs
no treatment (gray line) in the wild-type
control strain. One way ANOVA/Tukeys
per gene, n = 5 biological replicates/
condition. (B) Time course of Hr38
expression following air (black) or
ethanol (blue). Data extracted from a
published microarray experiment.8

(C) Time to 50% sedation (ST50) for
Hr38 null mutant heterozygotes vs wild-
type controls (+/+) exposed to ethanol
once (E1) for sensitivity or twice (E2-E1)
for tolerance, t-test, n = 30 groups.
(D) Ethanol sensitivity and tolerance in
flies with three copies of the Hr38
genomic region (HR38.GFP) t-test, n = 12
groups. (E) Ethanol preference in Hr38
null heterozygotes. Flies are pre-exposed
to either air or ethanol and after
16 hours placed into the 2 choice CAFÉ
assay. A positive index indicates
preference for ethanol intake. One-
sample t-test compared to zero
preference, n = 20 groups. (F) Hr38 null
heterozygotes show avoidance of a
bitter but sweeter food source in a two-
choice seeking assay. One sample t-test
compared to zero preference, n = 5
groups. (G) Ethanol accumulation
immediately following a 20 minutes
exposure, and after a 20 minutes rest,
allowing ethanol to be metabolized;
t-test, n = 8 groups. *P < .05,
**P < .01, ***P < .001
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ethanol tolerance (not shown). Dominant negative Mef2 in all neurons

also decreased ethanol tolerance, but it had no effect on ethanol sen-

sitivity (Figure 3F).

Neuronal activity in the mushroom body α/β neurons promotes

ethanol tolerance, where Mef2 and Hr38 expression are enriched.5,31

Expression of dominant negative Mef2 in these neurons using the

17d-Gal4 mushroom body driver reduced ethanol tolerance

(Figure 3G). Co-expression of the Gal4 repressor Gal80 specifically in

the mushroom bodies blocked the effect of Mef2.EnR on ethanol tol-

erance, indicating that Mef2 promotes tolerance in the mushroom

bodies (Figure 3H).

3.5 | Sirt1 terminates ethanol-induction of Hr38 to
promote ethanol tolerance

Sirt1 (also known as Sir2) is a histone/protein deacetylase that regu-

lates responses to drugs of abuse in Drosophila and mammals.5,32

Mushroom body α/β neuron promotion of ethanol tolerance, prefer-

ence, and reward requires Sirt1. Further, Sirt1 broadly allows gene

expression regulation by acute ethanol exposure. We therefore asked

if absence of Sirt1 affected ethanol induction of Hr38. Hr38 was

induced normally at 1 hour after acute ethanol exposure in Sirt1 null

mutants (Figure 4A). We also assessed Hr38 expression 3 hours after

ethanol termination, when Hr38 levels have returned to pre-exposure

levels. Hr38 expression was markedly higher in Sirt1 null mutants at

3 hours (Figure 4A). The failure to terminate Hr38 induction in Sirt1

nulls may be a consequence of lacking Sirt1 throughout development

and adulthood, or it may reflect loss of a more temporally direct action

of Sirt1 in repressing Hr38. To help distinguish between these possi-

bilities, we fed adult flies nicotinamide, a potent end-product inhibitor

of Sirt1 deacetylase activity that is active against Sirt1 in vivo, and

that phenocopies Sirt1 nulls by decreasing ethanol tolerance.5 As in

Sirt1 null mutants, adult wild-type control flies treated with nicotin-

amide showed prolonged ethanol induction of Hr38 (Figure 4B). Thus,

Sirt1 is required specifically for termination of Hr38 gene expression

induction by acute ethanol exposure. Finally, we detected no change

in Sirt1 levels with neuronally expressed dominant negative Mef2,

indicating that Mef2 and Sirt1 act independently to regulate Hr38

expression (Figure 4C).

Our findings suggested that ethanol induction of Hr38 may need

to be terminated rapidly in order for behavioral plasticity to proceed.

We performed a test of this by making double mutants with Sirt1 and

Hr38, predicting that genetically decreasing Hr38 expression by half

may moderate the prolonged Hr38 induction in Sirt1 mutants and

allow ethanol tolerance to develop. The double mutants showed

restored ethanol tolerance, compared to either mutant alone

(Figure 4D). Consistent with our hypothesis, 3 hours after ethanol

exposure termination Hr38 transcript levels in the double mutants

were reduced compared to Sirt1 mutants alone (Figure 4E). These

findings suggest that termination of Hr38 expression is critical for the

development of ethanol tolerance.

4 | DISCUSSION

How ethanol changes gene expression in the nervous system is a key

to understanding how ethanol causes maladaptive changes in brain

function. Here we show that ethanol exposure in drug naïve Drosoph-

ila causes a Mef2-dependent increase in Hr38 expression, that Sirt1 is

required for Hr38 induction termination, and that Hr38 controls the

extent of ethanol tolerance development. These data suggest that

ethanol acts upstream of or directly on the Mef2 transcription factor

to cause gene expression changes in the nervous system. Our studies

also reveal a requirement for temporally precise termination of the

immediate early transcriptional response. Genes regulated by the

Hr38 transcription factor are candidate effectors for ethanol-induced

behavioral plasticity.

In flies and mammals, acute ethanol exposure causes changes in

both gene expression and chromatin structure in the brain. In Dro-

sophila, transcriptomic experiments that used varying ethanol expo-

sures and recovery times on whole head samples discovered over

200 common ethanol responsive genes.8–10 Similarly, ethanol expo-

sure increases histones H3 and H4 acetylation marks that generally

indicate the opening of chromatin.5,7 Like gene expression, histone
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H4 acetylation was modified at a large number of genomic loci 6 and

24 hours after ethanol exposure.33 Further, the increase in histone

acetylation can be quite rapid, starting during inebriation.5 Therefore,

acute ethanol induces genomic changes rapidly, broadly, and lastingly.

Hr38 and the other ethanol-induced immediate early response genes

we identified are candidates for controlling major aspects of ethanol

neuroadaptation. In particular, Hr38 as a transcription factor may con-

trol the expression of downstream effector genes. The reciprocal

effects on ethanol tolerance of lowering and raising Hr38 levels, plus

the consequences of prolonging Hr38 expression, all argue that Hr38

is a key regulator of the genomic program for ethanol

neuroadaptation.

Hr38, the sole homolog of the mammalian Nr4a1/2/3 gene fam-

ily, may carry out some of the functions ascribed to distinct

mammalian family members. Mammalian Nr4a transcription factors

are induced by neuronal activity, stress and drugs of abuse.34 In par-

ticular, Nr4a1, also known as Nur77 and NGFIB, is upregulated by

cocaine and morphine in brain regions implicated in addiction, and

deletion of Nr4a2, also known as Nurr1, decreases ethanol

preference.35–37 Nr4a1 and Nr4a2 are also implicated in forms of

long-term memory.38 Nr4a1, induced by neuronal activity, regulates

the density and distribution of dendritic spines, suggesting a possible

link between acute ethanol activation of Hr38 and changes in the

functional connectivity of the brain.39

Hr38 in Drosophila controls cuticle development and glycogen

storage, and its expression is regulated by neuronal activity, social

cues, light and extreme drops in temperature.16,19,21,40,41 Hr38’s role

in ethanol responses is likely distinct from most of these roles, as
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FIGURE 3 Mef2 promotes ethanol

induction of Hr38, and ethanol tolerance
in the mushroom bodies. (A) Diagram of
the Hr38 genomic locus, indicating the
positions of Mef2 consensus binding
sites. Consensus sites conserved in other
Drosophila species are indicated by a
black dot. (B) Hr38 transcript levels in

untreated flies expressing dominant
negative Mef2.EnR pan-neuronally,
normalized to elav-3E1 > + (gray line).
Kruskal-Wallis/Dunn's, n = 10 biological
replicates. (C) Ethanol induction of Hr38
60 minutes after ethanol treatment is
blocked by Mef2.EnR. Expressed as the
difference between ethanol and
untreated per biological replicate. No
difference was detected between
genotypes for the unexposed of mock air
exposures. One sample t-test compared
to 1 (no induction), n = 5. (D) Ethanol
induction of Hr38 is blocked by pan-
neuronal Mef2 RNAi (Mef2.IR). One
sample t-test compared to 1, n = 6. No
difference in Hr38 expression was
detected between the untreated
genotypes. (E) Ethanol sensitivity and
tolerance with pan-neuronal expression
(elav-c155) of Mef2 RNAi. One way
ANOVA/Tukey's, n = 30 groups.
(F) Ethanol sensitivity and tolerance with
pan-neuronal expression of Mef2.EnR.
One way ANOVA/Tukey's, n = 14
groups. (G) Ethanol sensitivity and
tolerance with expression of Mef2.EnR
restricted to the mushroom body α/β
neurons (17d-Gal4). One way ANOVA/
Tukey's, n = 15 to 16 groups. *P < .05,
**P < .01. (H) Ethanol sensitivity and
tolerance in 17d > Mef2.Enr in the
presence of the mushroom body-specific
MB-Gal80 (MB80). One way ANOVA/

Tukey's, n = 10 to 12 groups.
*P < .05, **P < .01
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manipulating its levels specifically in the nervous system affects the

development of tolerance, and as we detected no change in ethanol

absorption as would be expected for altered cuticle integrity.42 Fur-

ther, we showed that blocking Mef2 activity in the mushroom bodies,

where Hr38 expression is increased by ethanol, decreases ethanol tol-

erance. Mushroom body induction of Hr38 also occurs in males when

presented with females, suggesting a possible molecular and anatomi-

cal link between ethanol and sexual behaviors.16

How is Hr38 expression controlled? We show that Mef2 sets Hr38

levels under steady state conditions and promotes Hr38 induction by

ethanol. In mammals, Mef2A and Mef2D both increase Nr4a1 expres-

sion to regulate synapse number and dendrite differentiation.27,28

Further, Mef2C and NR4a1 are coordinately increased in the striatum

by cocaine, and Mef2 promotes cocaine sensitization in the nucleus

accumbens, a brain region critical for drug reward.43,44 Mef2 expression

and activity can be regulated by many different signaling pathways,

including those associated with neural activity like intracellular calcium

levels, and also those that are known to be regulated by ethanol in

mammals.27,45,46 The concomitant upregulation by ethanol of numerous

other immediate early genes suggests that acute ethanol may act in part

through pathways related to those engaged by neuronal activity.13

Transcript instability coupled with fast shutdown of transcription

work concomitantly to keep immediate early gene expression

transient.47 We showed that the rapid termination of Hr38 expression

is critical for the development of ethanol tolerance, and that Hr38

induction termination depends on Sirt1. Whether Sirt1 is permissive

or instructive for Hr38 expression termination requires additional

mechanistic studies. However, an adult role for Sirt1 is suggested by

pharmacological inhibition phenocopy of the Sirt1 null tolerance and

Hr38 expression phenotypes.5 A possible model for a direct role for

Sirt1 is as follows. As a histone deacetylase, Sirt1 may normally

decrease Hr38 locus acetylation marks associated with open chroma-

tin: complete lack of Sirt1 may prolong the opening of Hr38 chromatin

and its availability for transcription. Sirt1 also deacetylates various

transcription factors that may control Hr38 expression termina-

tion.48,49 Two additional findings suggest a more complex mechanism.

First, in wild-type flies, acute ethanol exposure rapidly reduces Sirt1

protein levels by half, and this occurs at the same time as the termina-

tion of Hr38 expression.5 Accordingly, the 50% Sirt1 protein remain-

ing after acute ethanol exposure in wild-type flies may be sufficient to

promote Hr38 expression termination. Second, whereas Sirt1 is

broadly required for ethanol induction of gene expression, it is not
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FIGURE 4 Sirt1 terminates Hr38

induction to promote ethanol tolerance.
(A) Hr38 transcript expression levels in
wild-type controls (+/+) and Sirt1 null
mutants 1 and 3 hours after treatment,
normalized to untreated controls. One
way ANOVA/Tukey's, n = 14 biological
replicates. (B) Hr38 transcript expression
levels in wild-type control flies treated
with the sirtuin end-product inhibitor

nicotinamide (70 mM). One-sample
t-test compared to 1 (no induction),
n = 5 to 10 biological replicates. (C) Sirt1
transcript levels in flies expressing
dominant negative Mef2 in all neurons
(elav-3E1), normalized to elav>+.
Kruskal-Wallis/Dunn's, n = 4 to
5 biological replicates. (D) Ethanol
tolerance in flies null for Sirt1 and
heterozygous for Hr38. Because of the
high resistance in exposure 2 in the
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sedation (ST25) was measured. One way
ANOVA/Tukey's, n = 8 to 21. (E) Hr38
transcript levels in flies mutant for Sirt1
and heterozygous for Hr38, normalized
to untreated controls. One way
ANOVA/Tukey's, n = 6 biological
replicates. *P < .05, **P < .01
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required for ethanol induction of Hr38.5 Immediate early genes that

are poised for transcriptional activation have distinct chromatin struc-

ture and may not need Sirt1 for activation to occur.50 This may imply

that the chromatin structure at the Hr38 locus in Sirt1 mutants is by

and in large intact. However, induction and termination of immediate

early gene expression may be controlled by distinct chromatin-based

mechanisms operating on the same gene locus.

Timely termination of Hr38 may be important for setting the

levels or the timing of downstream gene expression changes that

influence tolerance development. Moreover, because reducing the

amount of Hr38 in Sirt1 mutants restores ethanol tolerance, Hr38

dysregulation appears to be a central mechanism for Sirt1 ethanol

behavioral phenotypes. Which Sirt1-dependent ethanol response

genes are regulated by Hr38 may help define the transcriptional path-

way that ethanol uses to control behavioral plasticity. In particular,

the regulation of presynaptic and postsynaptic properties by ethanol

may proceed through an evolutionarily conserved Mef2/Sirt1/Hr38

pathway.5,39
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