
Determination of the half life of circulating leptin in the mouse

Lisa Cole Burnett1,2,3, Alicja A. Skowronski1,2,3, Richard Rausch2,3, Charles A. LeDuc2,3,4, 
and Rudolph L. Leibel2,3,4

1Columbia University Institute of Human Nutrition

2Columbia University Department of Pediatrics Division of Molecular Genetics

3Naomi Berrie Diabetes Center

4Columbia University Department of Pediatrics Division of Molecular Genetics, Naomi Berrie 
Diabetes Center, New York Obesity Research Center

Abstract

Background—The adipokine hormone, leptin, is a major component of body weight 

homeostasis. Numerous studies have been performed administering recombinant mouse leptin as 

an experimental reagent; however, the half life of circulating leptin following exogenous 

administration of recombinant mouse leptin has not been carefully evaluated.

Methods—Exogenous leptin was administered (3 mg leptin/kg body weight) to ten week old 

fasted non-obese male mice and plasma was serially collected at seven time points; plasma leptin 

concentration was measured by ELISA at each time point to estimate the circulating half life of 

mouse leptin.

Results—Under the physiological circumstances tested, the half life of mouse leptin was 40.2 (+/

− 2.2) minutes. Circulating leptin concentrations up to one hour following exogenous leptin 

administration were 170-fold higher than endogenous levels at fasting.

Conclusions—The half life of mouse leptin was determined to be 40.2 minutes. These results 

should be useful in planning and interpreting experiments employing exogenous leptin. The 

unphysiological elevations in circulating leptin resulting from widely used dosing regimens for 
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exogenous leptin are likely to confound inferences regarding some aspects of the hormone’s 

clinical biology.
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Introduction

Leptin (Lep) is a peptide hormone produced in adipocytes that signals via isoforms of the 

leptin receptor (LepR) (1). A major function of leptin is to signal the levels of peripheral 

energy stores in adipose tissue to the central nervous system (2). Mice and humans 

hypomorphic for LEP or LEPR develop severe, hyperphagic obesity (3–6). Circulating 

leptin concentrations are closely correlated with adipose tissue mass in both humans and 

mice (7–9).

The major site of leptin synthesis is the adipocyte; leptin synthesis is regulated by nutritional 

status, insulin, glucocorticoids, catecholamines, cold exposure, and growth hormone, 

amongst other signals (10). Long term nutritional status regulates leptin at the transcriptional 

level; leptin mRNA levels are elevated in obesity and decreased by calorie restriction (11). 

Circulating signals such as insulin regulate leptin posttranscriptionally; ex vivo insulin 

stimulation of adipose tissue explants increases the association of leptin mRNA with 

translationally active polysomes (12). Leptin is secreted from adipocytes via small 

intracellular vesicles in both constituitive and regulated pathways (13). Leptin secretion in 

humans is diurnal, with a nighttime zenith and morning nadir (14). In the circulation, leptin 

exists in both bound and free forms and is mainly cleared by the kidneys (14).

Leptin signals through its receptor, LepRb, in the arcuate nucleus of the hypothalamus 

primarily through JAK/STAT signaling, but also through PI3K, SHP2/ERK, and p38/MAPK 

signaling pathways (15). Hypothalamic levels of phosphorylated STAT3 following 

recombinant leptin administration in mice are commonly used as a read out of leptin activity 

at this receptor isoform (16). The response of other downstream signaling in the leptin-

melanocortin pathway is also studied in response to leptin administration (17). Despite a 

multitude of studies utilizing the experimental paradigm of exogenous leptin stimulation, 

there have been limited studies investigating the pharmacokinetic properties of leptin. While 

the circulating half life of leptin has been determined in adult human subjects and female 

rats, the circulating half life of leptin in mice, the most commonly used model in obesity-

related research, has not been rigorously calculated (18, 19). Here, we report the circulating 

half life of recombinant leptin in mice and compare the blood levels of commonly used 

concentrations of injected recombinant leptin to endogenous levels during fasting and 

refeeding in mice.
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Materials and Methods

Mouse anthropometric, blood glucose, and food intake measurements

All animal studies were conducted in accordance with IACUC and CUMC standards and 

were IACUC approved under protocol AC-AAAH1203. Ten week old male C57BL/6J mice 

from Jackson Laboratories were used (stock #000664). Body weights, fat mass, and lean 

mass were measured at 8 and 10 weeks of age. Fat mass and lean mass was measured using 

the Bruker Minispec TD NMR. Mice were fed Research Diets PicoLab Rodent Diet 20 

(#5053) with a fat content of 4.5% of calories. Blood was collected by submandibular 

bleeding and used for both blood glucose and plasma leptin measurements. Blood glucose 

was measured following an overnight (16 hours) fast and following 4 hours of ad lib re-

feeding using a FreeStyle Lite blood glucose meter and strips (accurate range 30–372 mg/

dL). Food intake during the 4-hour refeeding period was measured on a per-cage basis. 

Using an Acculab Vicon VIC212 scale; five similarly sized chow pellets were weighed and 

placed in the cage for the feeding period; and were weighed again at its completion; the 

difference in these numbers is the cumulative cage food intake for the 4 hour period. 

Statistical analysis was done using Prism 7 from GraphPad Software, Inc.

Measurement of circulating leptin at fasting and refeeding

Plasma leptin concentrations were measured from plasma following an overnight fast (16 

hours), after 4 hours of re-feeding, and subsequent to injections of recombinant mouse leptin 

in fasted animals. Blood was collected in heparinized tubes and immediately placed on ice 

then centrifuged at 2,000 RCF for 15 minutes at 4 degrees Celsius. The R&D systems 

Mouse/Rat Leptin Quantikine ELISA Kit (SMOB00) was used to measure plasma leptin 

concentrations. Statistical analysis was performed using Prism 7 from GraphPad Software, 

Inc. Variance is reported as the standard error of the mean.

Measurement and calculation of circulating leptin half life

Mouse recombinant leptin was purchased from the National Hormone and Peptide Program 

(www.humc.edu); lyophilized leptin was dissolved in 1X PBS, pH 8.0 (1X PBS = 137 mM 

NaCl, 2.7 mM KCl; 10 mM Phosphate buffer). (Note that mouse recombinant leptin must be 

dissolved into PBS with a slightly basic pH, i.e. pH 8.0). Forty-five mice were arbitrarily 

separated into nine groups containing five mice each. Seven groups received intraperitoneal 

leptin injected at 3 mg/kg body weight at 7:45 AM following an overnight (16 hours) fast. 

Of the seven groups receiving recombinant leptin, circulating leptin concentrations were 

measured at the following time points post-injection: 0.25 hours, 0.5 hours, 1 hour, 2 hours, 

4 hours, 6 hours, and 8 hours (naming convention as follows: 0.25 Hr L, 0.5 Hr L, 1 Hr L or 

1HL, 2 Hr L, 4 Hr L or 4HL, 6 Hr L or 6HL, and 8 Hr L, respectively). All mice remained 

fasting for the duration of the experiment. Two groups of mice were injected with vehicle 

(saline) only, and circulating leptin concentrations were measured at 0.5 hours and 4 hours 

post-injection (naming convention: 0.5 Hr S, 4 Hr S, respectively). Blood collection and 

measurement of plasma leptin concentrations were carried out as described above. The half 

life of leptin was estimated by modeling the data with a single exponential decay process. 

Modeling the half life of leptin using a double exponential decay process did not 
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significantly improve curve fitting. Half life modeling was carried out in Origin8 software 

from OriginLab.

Results

Modeling the plasma concentrations post-injection over time with a single exponential decay 

model yielded an estimate of the half life of circulating leptin of 40.2 minutes (+/− 2.2 

minutes) (Figure 1). We also modeled the half life of circulating leptin using a double 

exponential decay process which did not improve the curve fit; thus we used the single 

exponential decay model. This estimate is similar to that reported by others for injected 

leptin in human subjects (24.9 +/− 4.4 minutes) and for ad lib fed female rats (71 minutes) 

(18, 19).

We then compared plasma concentrations of leptin following 3 mg/kg injection to those of 

mice administered saline. Plasma leptin concentrations of fasted mice administered saline 

were not different from fasted mice that were not injected. At 1 hour following leptin 

administration, the concentration of circulating leptin was 170-fold higher than endogenous 

fasted leptin levels, and 13-fold higher than endogenous fed leptin concentrations in mice 

that were not injected with exogenous leptin (Figure 2). Four hours following injection, 

circulating leptin levels were 76-fold higher than endogenous leptin concentrations in fasted 

animals and 4.75-fold higher than endogenous leptin concentrations in fed animals. Six 

hours following the intraperitoneal injection of exogenous leptin into fasted mice, the 

concentrations of leptin were not different from the endogenous concentrations of leptin in 

non-fasted mice. There were no significant differences in body weights, fat or lean mass, 

food intake, or blood glucose or leptin concentrations among the groups of animals (Figure 

3A–G). All fasted and fed blood glucose concentrations were in the normal physiological 

range (Figure 3 C, F). Blood glucose concentrations increased for all groups from fasting to 

re-feeding (Figure 3C, F). Circulating leptin concentrations also increased for all groups 

from fasting to re-feeding and were similar among the designated groups (Figure 3 D, G).

Discussion

We measured plasma leptin concentrations in fasted, non-obese, male mice at successive 

time points following injection of mouse recombinant leptin. From these data we estimated 

that the half life of circulating mouse leptin is 40.2 (+/− 2.2) minutes (Figure 1). The half 

life was calculated by fitting the serial plasma leptin concentrations to a single exponential 

decay process. Modeling the data with a double exponential decay process did not 

significantly improve the fit. The half life for mice is consistent with those reported for 

humans (24.9 minutes) and rats (71 minutes) (18, 19). These data are also consistent with 

those reported by Ahima et al., with regard to the decay of circulating leptin concentrations 

following administration of recombinant mouse leptin to fasted mice at 1 mg/kg body 

weight (20).

Leptin is secreted from the adipocyte in small intracellular vesicles; ~60% of cellular leptin 

is co-secreted bound to soluble leptin receptor (13, 21). Soluble leptin receptor is the main 

carrier protein for leptin; however, c-reactive protein and other proteins can also bind 
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circulating leptin (22, 23). The main sites of soluble leptin receptor production are adipose 

tissue and liver; fasting upregulates hepatic soluble leptin receptor expression (24, 25). 

Mouse soluble leptin receptor can be produced from alternative splicing of the LepR gene to 

LepRe; other splice forms can also be posttranslationally modified to soluble leptin receptor 

by ectodomain shedding (26, 27). In humans, LEPR transcript is not spliced to LepRe; the 

soluble leptin receptor is produced exclusively by ectodomain shedding (26, 27). Free 

circulating leptin is the bioactive form of leptin and bound circulating leptin has greater 

stability (longer circulating half life) than that of free circulating leptin (28, 29). The KD of 

the leptin-leptin receptor complex has been reported to be 0.23+/−0.08 nM, suggesting high 

affinity ligand binding (30). In fasted, lean animals the majority of circulating leptin is 

bound and this correlates with a minimal pSTAT3 signal in arcuate LepRb neurons at fasting 

(31). The proportion of free to bound leptin decreases in the fed state, thus resulting in 

higher concentrations of circulating free leptin, which likely results in a shorter half life for 

total circulating leptin in the fed state than in the fasted state. In states of chronic 

hyperleptinemia, such as mice in which leptin is continuously perfused by minipumps or 

transgenic mice overexpressing leptin, the half life of circulating leptin may differ from what 

is reported here circumstances (32, 33). Although it is unclear what fraction of leptin is free 

or bound in these circumstances, it is likely that the proportion of free leptin is increased 

thus resulting in a decreased half life of circulating leptin as compared non-hyperleptinemic 

adiposity-matched animals (32, 33).

Plasma leptin accesses the cerebrospinal fluid by active transport mediated at least partially 

by LepRa, LepRc, and LRP2 expression in median eminence tanycytes and ependymal cells 

of the choroid plexus (34–36). Upon leptin binding to LepRb or LepRa homodimers, leptin 

is internalized by clathrin coated vesicles (37). The percentage of leptin receptors at the cell 

surface at any given time is small; however in the presence of leptin at the cell surface, leptin 

receptors may cluster, resulting in enhanced ligand-receptor complexing and endocytosis of 

leptin (38–41). Phosphorylated STAT3 in response to intraperitoneal leptin injection (1–6 

mg leptin/kg body weight) in non-obese, fasted mice can be observed within 30 minutes 

following injection (42–45). We found that 30 minutes following injection of recombinant 

mouse leptin (3mg/kg body weight) plasma leptin concentrations were 4,976-fold higher 

than endogenous fasted plasma leptin concentrations and 391-fold higher than endogenous 

re-fed plasma leptin concentrations (Figures 1, 2). The highest plasma leptin concentrations 

were measured at the first time point of blood collection, 15 minutes following injection, at 

which point plasma leptin concentrations of injected mice were 6,481-fold higher than 

endogenous fasted plasma leptin concentrations and 509-fold higher than endogenous fed 

plasma leptin concentrations (Figures 1, 2). Reduced leptin signaling through LepRb as well 

as decreased plasma concnetrations of soluble leptin receptor in obesity, may play roles in 

determining both the physical and biological half life of leptin in the obese state, which may 

differ from those of fasted, lean mice receiving exogenous leptin.

The results reported here have important implications for data obtained in the many studies 

intended to understand the systemic and neuro-molecular physiology of leptin. As we show, 

the widely applied doses of 2–4 mg/kg in mice clearly produce un-physiological elevations 

in circulating leptin, with consequences for leptin response pathways that could confound 

Burnett et al. Page 5

Int J Obes (Lond). Author manuscript; available in PMC 2017 June 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



inferences regarding the biology of leptin in body weight homeostasis, by altering leptin 

sensitivity.

For example, among the most pressing clinical questions regarding regulation of body 

weight are those relating to whether the apparent “set point” for body fat can be increased by 

environmentally-induced chronic weight gain (46); and whether the compensatory 

behavioral and metabolic responses to maintenance of reduced body fat (hence reduced 

circulating leptin) can be mitigated by the administration of “replacement” exogenous leptin 

(47–49). With regard to the former, experimental parsing of the relative contributions of 

elevated dietary fat - and the elevations of circulating leptin consequent to secondary gains 

in body fat – requires careful titration of administered leptin to levels consistent with those 

resulting from increments in fat mass (32, 50). For the latter, use of high doses of leptin in 

the induction of weight loss, or in the maintenance of reduced body weight, can change 

central leptin responses in ways that will confound interpretation of the efficacy of the 

interventions (51). In short, many of the relevant studies conducted to date have used doses 

of leptin that might obscure important aspects of clinical biology.

Acknowledgments

The authors thank Yiying Zhang, Jayne Martin Carli, and Yann Ravussin for helpful discussions and Benjamin J. 
Burnett for assistance in half life modeling. We thank the Foundation for Prader-Willi Research, the Russell Berrie 
Foundation, and RO1 DK52431 for funding.

References

1. Myers, MG., Leibel, RL. Lessons from Rodent Models of Obesity. In: De Groot, LJB-PP.Chrousos, 
G., et al., editors. Endotext. South Dartmouth: MDText.com, Inc.; 2015. 

2. Rosenbaum M, Leibel RL. 20 years of leptin: role of leptin in energy homeostasis in humans. J 
Endocrinol. 2014; 223(1):T83–96. [PubMed: 25063755] 

3. Montague CT, Farooqi IS, Whitehead JP, Soos MA, Rau H, Wareham NJ, et al. Congenital leptin 
deficiency is associated with severe early-onset obesity in humans. Nature. 1997; 387:903–8. 
[PubMed: 9202122] 

4. Clement K, Vaisse C, Lahlou N, Cabrolk S, Pelloux V, Cassuto D, et al. A mutation in the human 
leptin receptor gene causes obesity and pituitary dysfunction. Nature. 1998; 392:398–401. 
[PubMed: 9537324] 

5. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the 
mouse obese gene and its human homolog. Nature. 1994; 372:425–32. [PubMed: 7984236] 

6. Chua SC, Chung WK, Wu-Peng XS, Zhang Y, Liu S-M, Tartaglia L, et al. Phenotypes of Mouse 
diabetes and Rat fatty Due to Mutations in the OB (Leptin) Receptor. Science. 1996; 271:994–6. 
[PubMed: 8584938] 

7. Maskari MYA, Alnaqdy AA. Correlation between Serum Leptin Levels, Body Mass Index and 
Obesity in Omanis. Sultan Qaboos Univ Med J. 2006; 6(2):27–31.

8. Lönnqvist F, Nordfors L, Jansson Mr, Thörne A, Schalling M, Arner P. Leptin Secretion from 
Adipose Tissue in Women Relationship to Plasma Levels and Gene Expression. The Journal of 
Clinical Investigation. 1997; 99(10):2398–404. [PubMed: 9153282] 

9. Ravussin Y, LeDuc CA, Watanabe K, Leibel RL. Effects of ambient temperature on adaptive 
thermogenesis during maintenance of reduced body weight in mice. Am J Physiol Regul Integr 
Comp Physiol. 2012; 303(4):R438–48. [PubMed: 22761182] 

10. Ahima’ RS, Flier JS. Adipose Tissue as an Endocrine Organ. Trends in Endocrinology and 
Metabolism. 2000; 11(8):327–32. [PubMed: 10996528] 

Burnett et al. Page 6

Int J Obes (Lond). Author manuscript; available in PMC 2017 June 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



11. Lee MJ, Fried SK. Integration of hormonal and nutrient signals that regulate leptin synthesis and 
secretion. Am J Physiol Endocrinol Metab. 2009; 296(6):E1230–8. [PubMed: 19318513] 

12. Lee M-J, Yang R-Z, Gong D-W, Fried SK. Feeding and Insulin Increase Leptin Translation. The 
Journal of Biological Chemistry. 2007; 282(1):77–80.

13. Cammisotto PG, Bukowiecki LJ, Deshaies Y, Bendayan M. Leptin biosynthetic pathway in white 
adipocytes. Biochem Cell Biol. 2006; 84(2):207–14. [PubMed: 16609702] 

14. Ahima RS, Flier JS. Adipose tissue as an endocrine organ. Trends Endocrinol Metab. 2000; 11(8):
327–32. [PubMed: 10996528] 

15. Fruhbeck G. Intracellular signalling pathways activated by leptin. Biochem J. 2006; 393(Pt 1):7–
20. [PubMed: 16336196] 

16. Vaisse C, Halaas J, Horvath C, Darnell J, Stoffel M, Friedman J. Leptin activation of Stat3 in the 
hypothalamus of wild-type and ob/ob mice but not db/db mice. Nature Genetics. 1996; 14(1):95–7. 
[PubMed: 8782827] 

17. Schwartz MW, Seeley RJ, Woods SC, Weigle DS, Campfield LA, Burn P, et al. Leptin Increases 
Hypothalamic Pro-opiomelanocortin mRNA Expression in the Rostral Arcuate Nucleus. Diabetes. 
1997; 46:2119–23. [PubMed: 9392508] 

18. Hill R, Margetic S, Pegg G, Gazzola C. Leptin: its pharmacokinetics and tissue distribution. 
International Journal of Obesity. 1998; 22:765–70. [PubMed: 9725636] 

19. Klein S, Coppack SW, Mohamed-Ali V, Landt M. Adipose Tissue Leptin Production and Plasma 
Leptin Kinetics in Humans. Diabetes. 1996; 45:984–7. [PubMed: 8666153] 

20. Ahima RS, Prabakaran D, Mantzoros CS, Qu D, Lowell BB, Maratos-Flier E, et al. Role of leptin 
in the neuroendocrine response to fasting. Nature. 1996; 382:250–2. [PubMed: 8717038] 

21. Brabant G, Nave H, Mayr B, Behrend M, Harmelen VV, Arber P. Secretion of Free and Protein-
Bound Leptin from Subcutaneous Adipose Tissue of Lean and Obese Women. The Journal of 
Clinical Endocrinology & Metabolism. 2002; 87(8):3966–70. [PubMed: 12161541] 

22. Lammert A, Kiess W, Bottner A, Glasow A, Kratzsch J. Soluble leptin receptor represents the main 
leptin binding activity in human blood. Biochem Biophys Res Commun. 2001; 283(4):982–8. 
[PubMed: 11350082] 

23. Chen K, Li F, Li J, Cai H, Strom S, Bisello A, et al. Induction of leptin resistance through direct 
interaction of C-reactive protein with leptin. Nat Med. 2006; 12(4):425–32. [PubMed: 16582918] 

24. Bornstein S, Abu-Asab M, Glasow A, Päth G, Hauner H, Tsokos M, et al. Immunohistochemical 
and ultrastructural localization of leptin and leptin receptor in human white adipose tissue and 
differentiating human adipose cells in primary culture. Diabetes. 2000; 49(4):532–8. [PubMed: 
10871189] 

25. Cohen P, Yang G, Yu X, Soukas AA, Wolfish CS, Friedman JM, et al. Induction of leptin receptor 
expression in the liver by leptin and food deprivation. J Biol Chem. 2005; 280(11):10034–9. 
[PubMed: 15644325] 

26. Chua SC, Koutras IK, Han L, Liu S-M, Kay J, Young SJ, et al. Fine Structure of the Murine Leptin 
Receptor Gene: Splice Site Suppression is Required to Form Two Alternatively Spliced 
Transcripts. Genomics. 1997; 45:264–70. [PubMed: 9344648] 

27. Maamra M, Bidlingmaier M, Postel-Vinay M, Wu Z, Strasburger C, Ross R. Generation of human 
soluble leptin receptor by proteolytic cleavage of membrane-anchored receptors. Endocrinology. 
2001; 142(10):4389–93. [PubMed: 11564702] 

28. Huang L, Wang Z, Li C. Modulation of circulating leptin levels by its soluble receptor. J Biol 
Chem. 2001; 276(9):6343–9. [PubMed: 11102451] 

29. Yang G, Ge H, Boucher A, Yu X, Li C. Modulation of direct leptin signaling by soluble leptin 
receptor. Molecular Endocrinology. 2004; 18(6):1354–62. [PubMed: 15016839] 

30. Mistrík P, Moreau F, Allen J. BiaCore analysis of leptin-leptin receptor interaction: evidence for 
1:1 stoichiometry. Analytical Biochemistry. 2004; 327(2):271–7. [PubMed: 15051545] 

31. Bates SH, Stearns WH, Dundon TA, Schubert M, Tso AWK, Wang Y, et al. STAT3 signalling is 
required for leptin regulation of energy balance but not reproduction. Nature. 2003; 421:856–9. 
[PubMed: 12594516] 

Burnett et al. Page 7

Int J Obes (Lond). Author manuscript; available in PMC 2017 June 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



32. Ravussin Y, LeDuc CA, Watanabe K, Mueller BR, Skowronski A, Rosenbaum M, et al. Effects of 
chronic leptin infusion on subsequent body weight and composition in mice: Can body weight set 
point be reset? Molecular Metabolism. 2014; 3(4):432–40. [PubMed: 24944902] 

33. Qiu J, Ogus S, Lu R, Chehab F. Transgenic mice overexpressing leptin accumulate adipose mass at 
an older, but not younger, age. Endocrinology. 2001; 142(1):342–58.

34. Balland E, Dam J, Langlet F, Caron E, Steculorum S, Messina A, et al. Hypothalamic tanycytes are 
an ERK-gated conduit for leptin into the brain. Cell Metabolism. 2014; 19(2):293–301. [PubMed: 
24506870] 

35. Rodríguez E, Blázquez J, Guerra M. The design of barriers in the hypothalamus allows the median 
eminence and the arcuate nucleus to enjoy private milieus: the former opens to the portal blood 
and the latter to the cerebrospinal fluid. Peptides. 2010; 4(757–776):757.

36. Roujeau C, Jockers R, Dam J. New pharmacological perspectives for the leptin receptor in the 
treatment of obesity. Front Endocrinol. 2014; 5:167.

37. Uotani S, Bjørbæk C, Tornøe J, Flier JS. Functional Properties of Leptin Receptor Isoforms 
Internalization and Degradation of Leptin and Ligand-Induced Receptor Downregulation. 
Diabetes. 1999; 48:279–86. [PubMed: 10334302] 

38. Stratigopoulos G, LeDuc CA, Cremona ML, Chung WK, Leibel RL. Cut-like Homeobox 1 
(CUX1) Regulates Expression of the Fat Mass and Obesity-associated and Retinitis Pigmentosa 
GTPase Regulator-interacting Protein-1-like (RPGRIP1L) Genes and Coordinates Leptin Receptor 
Signaling. The Journal of Biological Chemistry. 2010; 286:2155–70. [PubMed: 21037323] 

39. Gan L, Guo K, Cremona M, McGraw T, Leibel R, Zhang Y. TNF-α up-regulates protein level and 
cell surface expression of the leptin receptor by stimulating its export via a PKC-dependent 
mechanism. Endocrinology. 2012; 153(12):5821–33. [PubMed: 23070544] 

40. Seo S, Guo D-F, Bugge K, Morgan DA, Rahmouni K, Sheffield VC. Requirement of Bardet-Biedl 
syndrome proteins for leptin receptor signaling. Human Molecular Genetics. 2009; 18(7):1323–31. 
[PubMed: 19150989] 

41. Byun, Kyunghee, G, SY., Namkoong, Churl, Youn, Byung-Soo, Huang, Hu, Shin, Mi-Seon, Kang, 
Gil Myoung, Kim, Hyun-Kyong, Lee, Bonghee, Kim, Young-Bum, Kim, Min-Seon. Clusterin/
ApoJ enhances central leptin signaling through Lrp2-mediated endocytosis. EMBO Reports. 2014; 
15:801–8. [PubMed: 24825475] 

42. Björnholm M, Münzberg H, Leshan R, Villanueva E, Bates S, Louis G, et al. Mice lacking 
inhibitory leptin receptor signals are lean with normal endocrine function. Journal of Clinical 
Investigation. 2007; 117(5):1354–60. [PubMed: 17415414] 

43. Enriori PJ, Sinnayah P, Simonds SE, Rudaz CG, Cowley MA. Leptin Action in the Dorsomedial 
Hypothalamus Increases Sympathetic Tone to Brown Adipose Tissue in Spite of Systemic Leptin 
Resistance. Neurobiology of Disease. 2011; 31(34):12189–97.

44. Ernst MB, Wunderlich CM, Hess S, Paehler M, Mesaros A, Koralov SB, et al. Enhanced Stat3 
Activation in POMC Neurons Provokes Negative Feedback Inhibition of Leptin and 
InsulinSignaling in Obesity. Neurobiology of Disease. 2009; 29(37):11582–93.

45. Stratigopoulos G, Carli JFM, O’Day DR, Wang L, LeDuc CA, Lanzano P, et al. Hypomorphism for 
RPGRIP1L, a Ciliary Gene Vicinal to the FTO Locus, Causes Increased Adiposity in Mice. Cell 
Metabolism. 2014; 19:767–79. [PubMed: 24807221] 

46. Ravussin Y, Gutman R, Diano S, Shanabrough M, Borok E, Sarman B, et al. Effects of chronic 
weight perturbation on energy homeostasis and brain structure in mice. American Journal of 
Physiology-Regulatory, Integrative and Comparative Physiology. 2011; 300(6):R1352–R62.

47. Rosenbaum M, Goldsmith R, Bloomfield D, Magnano A, Weimer L, Heymsfield S, et al. Low-
dose leptin reverses skeletal muscle, autonomic, and neuroendocrine adaptations to maintenance of 
reduced weight. J Clin Invest. 2005; 115(12):3579–86. [PubMed: 16322796] 

48. Galgani J, Greenway F, Caglayan S, Wong M, Licinio J, Ravussin E. Leptin replacement prevents 
weight loss-induced metabolic adaptation in congenital leptin-deficient patients. Journal of 
Clinical Endocrinology & Metabolism. 2010; 95(2):851–5. [PubMed: 20061423] 

49. Hambly C, Duncan J, Archer Z, Moar K, Mercer J, Speakman J. Repletion of TNFα or leptin in 
calorically restricted mice suppresses post-restriction hyperphagia. Disease Models and 
Mechanisms. 2012; 5(1):83–94. [PubMed: 21954068] 

Burnett et al. Page 8

Int J Obes (Lond). Author manuscript; available in PMC 2017 June 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



50. Knight Z, Hannan K, Greenberg M, Friedman J. Hyperleptinemia is required for the development 
of leptin resistance. PLoS One. 2010; 5(6):e11376. [PubMed: 20613882] 

51. Montez J, Soukas A, Asilmaz E, Fayzikhodjaeva G, Fantuzzi G, Friedman J. Acute leptin 
deficiency, leptin resistance, and the physiologic response to leptin withdrawal. Proceedings of the 
National Academy of Sciences. 2005; 102(7):2537–42.

Burnett et al. Page 9

Int J Obes (Lond). Author manuscript; available in PMC 2017 June 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. The half life of mouse recombinant leptin is (40.2 +/−2.2) minutes
The half life of leptin was estimated by modeling the data with a single exponential decay 

process. (n=5 WT, 10 week old male mice/group, error bars are SEM; fasted mice were 

administered recombinant leptin at 3 mg/kg body weight).
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Figure 2. Commonly used recombinant leptin injection concentrations are supraphysiological
Plasma leptin concentrations were measured in the same three groups of wild type (WT) 

mice at fasting, refeeding (5 hours), and following recombinant mouse leptin injection into 

fasted animals. 1HL, 4HL, and 6HL refer to three separate groups of mice in which 

circulating leptin concentrations were measured 1, 4, or 6 hours following leptin injection. 

One hour following injection of recombinant mouse leptin to fasted mice (dose = 3 mg/kg 

body weight) plasma leptin concentrations were 170-fold higher than those at fasting and 

13-fold higher than those at refeeding. By six hours following leptin injection, plasma leptin 

concentrations were not different from those at refeeding (n=5 WT, 10 week old male mice/

group, error bars are SEM).
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Figure 3. Body weight/compositions, blood glucose, food intake, and plasma leptin 
concentrations of wild type mice
There is no difference in body mass or composition measures, blood glucose levels, or leptin 

values for animals used in the study. Naming convention follows that described in Figure 2 

and Methods, S=saline, L=leptin (n=5 WT 10 week old male mice/group, error bars are 

SEM; food intake measurement in panel E is of each cage containing 5 mice).
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