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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:Metacognition and mentalizing are both associated with meta-level mental state representa-

tions. Conventionally, metacognition refers to monitoring one’s own cognitive processes,

while mentalizing refers to monitoring others’ cognitive processes. However, this self-other

dichotomy is insufficient to delineate the 2 high-level mental processes. We here used func-

tional magnetic resonance imaging (fMRI) to systematically investigate the neural represen-

tations of different levels of decision uncertainty in monitoring different targets (the current

self, the past self [PS], and others) performing a perceptual decision-making task. Our

results reveal diverse formats of internal mental state representations of decision uncer-

tainty in mentalizing, separate from the associations with external cue information. External

cue information was commonly represented in the right inferior parietal lobe (IPL) across the

mentalizing tasks. However, the internal mental states of decision uncertainty attributed to

others were uniquely represented in the dorsomedial prefrontal cortex (dmPFC), rather than

the temporoparietal junction (TPJ) that also represented the object-level mental states of

decision inaccuracy attributed to others. Further, the object-level and meta-level mental

states of decision uncertainty, when attributed to the PS, were represented in the precuneus

and the lateral frontopolar cortex (lFPC), respectively. In contrast, the dorsal anterior cingu-

late cortex (dACC) represented currently experienced decision uncertainty in metacognition,

and also uncertainty about the estimated decision uncertainty (estimate uncertainty), but not

the estimated decision uncertainty per se in mentalizing. Hence, our findings identify neural

signatures to clearly delineate metacognition and mentalizing and further imply distinct neu-

ral computations on internal mental states of decision uncertainty during metacognition and

mentalizing.

Introduction

Humans are social beings. We interact with others not only in the physical world but also in

the mental world. Differing from objects in the physical world, humans are free and
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intentional agents who hold mental states that are not necessarily reflections of reality in the

physical world. If there are a thousand readers, there must be a thousand Hamlets. Even

though the physical world is same, the readers’ mental worlds are different from one another.

The human brain thus needs to concurrently represent different mental states in the mental

worlds of both the self and others during social interactions [1–3]. Failures of normal develop-

ment of such an ability may cause deficits in human cognition and behaviors, e.g., in autism

spectrum disorder (ASD) and schizophrenia [4,5]. Thus, it is a central question in psychology

and neuroscience to understand the mechanisms of human mental state representations.

A principal criterion conventionally used to distinguish nonsocial activities from social

activities is whether the activities are conducted toward the self or others [6–9]. A correspond-

ing distinction is also drawn on mental state attributing processes: Monitoring one’s own cog-

nitive processes is referred to as metacognition [10], but when the target pAU : Pleasenotethatasperstyle; thetermsubject=sshouldnotbeusedforhumanpatient=s:Hence; allinstancesof subject=shavebeenreplacedwithparticipant=sasappropriate:Pleasecheckandcorrectifnecessary:articipant is an

intentional agent other than the self, it is referred to as mentalizing [11–13]. Although both

metacognition and mentalizing involve meta-representations of the mental worlds [1–3], the

representational formats and the sources of the mental states differ. Critically, mentalizing

necessitates others’ perspective taking to infer their mental states [14], while one’s own mental

states are directly accessible by inspection [1,2].

However, the self-other dichotomy on the target agents is insufficient to discern the 2 pro-

cesses. First, similar to attributing mental states to others, the momentary mental states of the

past self (PS) cannot be concurrently experienced by inspection as in metacognition, but are

inferred from the available external cue information (e.g., facial expressions) or from the epi-

sodic memory cued by the external information. It thus becomes ambiguous whether such

mental state representations in attributing to the PS should be classified as metacognition or

mentalizing (Fig 1). Second, one’s own mental states are hierarchically categorized into type 1

Fig 1. The meta-representations in mentalizing under different social contexts. The observer often needs to estimate others’ covert cognitive

states from external cue information during social interactions, e.g., to infer others’ decision uncertainty by observing their task performance.

According to the framework of metacognition, others’ cognitive states can be hierarchically divided into meta-level and object-level states: The

metal-level states reflect internal monitor on their object-level states. Accordingly, the mentalizing processes in monitoring others’ object-level and

meta-level performance might be differential (right side). Occasionally, we may estimate the PS momentary cognitive states (left side). The mental

state representations might be different in attributing different cognitive states to different target participants. PAU : AbbreviationlistshavebeencompiledforthoseusedthroughoutFigs1 � 6:Pleaseverifythatallentriesarecorrect:S, past self.

https://doi.org/10.1371/journal.pbio.3001301.g001
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(object level) and type 2 (meta level) mental states in metacognition [10]. The meta-level men-

tal states about the mental world are the signals generated during monitoring the object-level

mental states in response to the physical world. For example, the belief (meta level) about

whether one’s decision is correct (object level). Accordingly, the mental states attributed to

others in mentalizing could also be hierarchically categorized into 2 levels concerned with

object-level and meta-level performance, respectively (Fig 1). Thereby, the representations of

the 2-level mental states even attributed to the same target in mentalizing might be different.

Third, in attributing the object-level mental states to others or the PS, the meta-level mental

states are actually generated by the observer, rather than the target participants. In this sense,

the meta-level mental state representations appear more similar to those in metacognition

than mentalizing. Hence, the distinctions between metacognition and mentalizing along the

self-other dichotomy remain considerably ambiguous.

We then look to neural signatures to delineate metacognition and mentalizing. Surpris-

ingly, although a number of disparate studies on the neural mechanisms of metacognition and

mentalizing have been conducted in cognitive neuroscience [15–17] and social neuroscience

[18,19], respectively, a direct comparison of the 2 neural processes is so far lacking. This

unusual situation might be primarily due to the lack of an appropriate experimental paradigm

applicable for both processes. The mental state that is mainly concerned in studies of metacog-

nition is decision uncertainty or decision confidence. Decision uncertainty is the opposite of

decision confidence where decision confidence is a belief about that one’s own decision is cor-

rect. Decision uncertainty serves as a control signal to improve one’s decision even with no

external feedback [15,20]. If a higher level of decision uncertainty is retrospectively monitored,

then more cognitive control is consequently evoked. On the other hand, decision uncertainty

also serves as a critical social control signal for efficacious decision improvement in joint deci-

sion-making [21,22]. Hence, it is of great importance to understand mental state representa-

tions of decision uncertainty in metacognition and mentalizing.

Inferences of others’ mental states in mentalizing are often made under social contexts with

external cue information. The mental states attributed to others might be inferred through

object-level associations between external cue information and covert mental states. For exam-

ple, inferring decision uncertainty from others’ hesitations in responses (i.e., reaction times),

rather than on the basis of others’ metacognitive abilities. Associating external cue information

with covert mental states may also lead to predict others’ performance. Thereby, it is difficult

to discern the underlying cognitive processes merely from the observed behaviors [23–26].

Because of this ambiguity, to date, it remains unclear whether or not nonhuman primates can

mentalize, namely creating a mental model simulating others’ mental world and generating

internal mental state representations (i.e., theory of mind, ToM) [23–26]. To demonstrate that

this mentalizing capability exists in humans or animals, one approach is to identify internal

mental state representations that is unassociated with external cue information. Although the

neural correlates of external cue information might not merely comprise the cue associations,

the existence of neural signatures of internal mental state representations should undoubtedly

endorse mentalizing.

In the current study, we aimed to delineate the neural representations of decision uncer-

tainty attributed to different target participants: the current self, the PS, and others. To do so,

we adapted a task paradigm often used in metacognition to apply to mentalizing. By means of

such task alignments, we could compare the 2 mental processes in a similar task context. Fur-

ther, we could compare the different mentalizing processes in the same task context, to specify

whether the mental state representations are shared or segregated in attributing to different

targets. That is, whether it is the target that matters (different neural signatures despite of simi-

lar computations) or the computation that matters (same neural signatures despite of different
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targets). We segregated decision uncertainty into 2 dissociated components—associations

with external cue information and internal mental states unassociated with external cue infor-

mation. We took the residuals after regressing out external cue information from decision

uncertainty reported by the participants as a proxy of internal mental states in each task. We

used functional magnetic resonance imaging (fMRI) to separately characterize the neural cor-

relates of external cue information and residuals in attributing decision uncertainty to others

and the PS in mentalizing and to the current self in metacognition. Our results reveal diverse

representations of internal mental states in the mentalizing tasks, but a general format of inter-

nal mental state representations in metacognition.

Results

Task paradigm

We carried out 3 fMRI experiments to investigate the mental state representations of decision

uncertainty in metacognition and mentalizing (Fig 2A; S1 Fig). A total of 28 healthy partici-

pants took part in all of the 3 experiments (see Methods). In experiment 1, each participant

judged the gross motion direction of random moving dots and rated his/her uncertainty about

the preceding decision (Fig 2B). There were 4 different task difficulty levels randomly mixed in

the task (S2 Fig). Hereafter, this perceptual decision-making task was referred to as the random

dots motion (RDM) task (Fig 2A). The participant reported the current-self decision uncer-

tainty (CS-DU), immediately accompanying perceptual decision-making in each trial.

In experiment 2, the participant inside the scanner observed an anonymous other (AO)

concurrently performing the RDM task outside the scanner and judged the AO’s decision

inaccuracy (AO-DI). Decision inaccuracy is the opposite of decision accuracy where decision

accuracy is the objective probability that the AO’s decision is correct (Fig 2C). Differing from

the metacognition task (CS-DU), the partner’s cognitive states were inaccessible. It thus neces-

sitated the participant to infer the probability that the partner’s decision was correct. To avoid

evoking the participant’s own decision uncertainty, the stimuli presented to the participant

were noiseless: Only coherently moving dots were moving, whereas randomly moving dots

remained stationary. By virtue of this altered stimulus presentation, the participant could per-

ceive the task difficulty without evoking his/her own decision uncertainty (Fig 2C). This is a

necessary condition to dissociate the neural representations of decision uncertainty in menta-

lizing from those in metacognition. Otherwise, the participant might use his/her own decision

uncertainty to estimate the partner’s decision uncertainty. The partner’s response time (RT)

was reported to the participant by a progress color bar, whereas neither the choice nor the

reported decision uncertainty by the partner was presented to the participant. Hence, the par-

ticipant could only use the external cue information of task difficulty and RT to estimate the

partner’s decision inaccuracy. In a parallel task, the participant instead observed task perfor-

mance on the metacognition task done past by himself/herself and judged the past-self deci-

sion inaccuracy (PS-DI). Otherwise, the experimental procedure was identical to the AO-DI

task. Notably, as the past decision-making processes by oneself were also inaccessible and the

past mental states associated with similar stimuli were impossible to explicitly memorize, the

underlying cognitive process might also be mentalizing. We therefore refer to the 2 tasks as the

type 1 mentalizing tasks.

In experiment 3 (Fig 2D), the experimental procedure was identical to experiment 2, but

the participant estimated the target participants’ mental states of decision uncertainty in each

trial, namely the participant estimated the target participants’ believes about whether their

own decisions were correct. The 2 tasks thus also entailed mentalizing to attribute type 2

PLOS BIOLOGY Mental State Representations in Metacognition and Mentalizing
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Fig 2. Task paradigms and behavioral results. (a) The fMRI experimental setup. During the metacognition task, the participant inside the MRI scanner

did the metacognition task alone. During the mentalizing tasks, the participant inside the MRI scanner observed the task performance on the

metacognition task done by the target participant who was outside the scanner. (b) The metacognition task: The participant completed the RDM task and

reported his/her CS-DU. (c) The type 1 mentalizing tasks: The participant observed the RDM task performance by a target participant and reported the

target participant’s decision inaccuracy. The target participant was either an AO-DI or the PS-DI. (d) The type 2 mentalizing task: Instead of judging the

target participants’ decision inaccuracy, the participants estimated decision uncertainty that would be concurrently reported by the AO/PS in the current

trial (AO-DU/PS-DU). (e) The decision inaccuracy changed with task difficulty and RT in the AO-DU task, averaged across participants (n = 28). (f)

Theoretically, decision inaccuracy is a sigmoid function of task difficulty and RT on each trial. Each target participant has unique internal noise (σ1) in

perceptual decision-making that causes different variances in decision inaccuracy. (g) Theoretically, in estimating the target participant’s decision

uncertainty, the unique internal noise (σ2) needs to be further considered in mapping decision inaccuracy to decision uncertainty. (h) Theoretically,

different levels of internal noise (σ2) cause different metacognitive abilities (AUROC). (i) The regression beta values of the normalized (task) difficulty and

RT with the estimates in each task. The weights did not differ across mentalizing tasks (ANOVA, task difficulty: F[3,112] = 0.11, P = 0.95; RT: F[3,112] = 0.16,

P = 0.92), but significantly differ from the metacognition task (2-tailed paired t test, task difficulty: t27 = 6.2; P = 2.5 × 10−8; RT: t27 = 4.1; P = 5.9 × 10−5).

(j) The correlation between the estimated decision inaccuracy/uncertainty in the mentalizing tasks with the target participant’s actual decision uncertainty

reported in the metacognition task, before (original: ANOVA, F[3,112] = 0.28, P = 0.84) and after (residual: Ps> 0.30) the associations with external cue

information were regressed out. (k) The consistency between the estimated decision inaccuracy/uncertainty and the actual decision outcome (true or

false) measured by the AUROC, before (original: ANOVA, F[4,139] = 1.22, P = 0.31) and after (residual: Ps> 0.20) the associations with external cue

information were regressed out. (l) The ratio of estimate residuals to the total estimate variances (2-tailed t test, AO: t27 = 2.5; P = 0.0096 in the contrast

between the type 2 and type 1 mentalizing tasks; PS: t27 = 2.1; P = 0.023 in the contrast between the type 2 and type 1 mentalizing tasks; 2-tailed paired t
test, t27 = 3.5; P = 3.3 × 10−4 in the contrast between the metacognition task and the mentalizing tasks). The error bars represent SEM across participants.
�P< 0.05; ��P< 0.01; ���P< 0.001, after Bonferroni correction. The raw data for Fig 2 can be found in the Supporting information as S1 Data. ANOVA,

analysis of variance; AO-DI, anonymous other decision inaccuracy; AUROC, area under the ROC curve; CS-DU, current-self decision uncertainty; fMRI,

functional magnetic resonance imaging; PS-DI, past-self decision inaccuracy; RDM, random dots motion; RT, reaction time; SEM, standard error of the

mean.

https://doi.org/10.1371/journal.pbio.3001301.g002
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mental states of decision uncertainty to the AO/PS (AO-DU and PS-DU). We therefore refer

to the 2 tasks as the type 2 mentalizing tasks.

Experiment 1 and experiment 3 were conducted in the same session, but experiment 2 was

conducted in another session. To reduce confusion between type 1 and type 2 mentalizing

tasks, the 2 sessions were separated at least over 2 weeks. The tasks in each session were ran-

domly interleaved and were counterbalanced across the participants.

The task sequences of the 4 mentalizing tasks were identical, only the instructions differed.

Thereby, any behavioral and neural differences between them should be caused by different

mentalizing processes. The task sequences of the metacognition task and the mentalizing tasks

were also quite similar. However, the differences between the 2 types of tasks existed in both

the perception phase and the judgment phase. Here, however, we are not so much concerned

with the former but with the latter phase. In particular, the participant currently experienced

decision uncertainty accompanying perceptual decision-making in the metacognition task,

but inferred decision uncertainty that was not concurrently experienced from the cue informa-

tion in the mentalizing tasks. However, because the perception phase and the judgment phase

were temporally close to each other, it might be argued that any difference in neural signatures

is due to the difference in the stimulus presentation as opposed to the difference between the

metacognitive and metalizing processes. To confirm whether the neural correlates between the

2 phases are separable, we made analyses on the simulated fMRI signals generated by the same

task sequence. Our simulation analyses demonstrated that the neural correlates of decision

uncertainty in the perception phase or the judgment phase could be dissociated by conven-

tional general linear models (GLMs) (S3A Fig).

Hierarchical mental state representations of decision inaccuracy and

decision uncertainty in mentalizing

To assess behavioral metrics used for data analyses, we made theoretical analyses on mental

state representations of decision inaccuracy and decision uncertainty in mentalizing. Accord-

ing to the decision-making theory [27], decision inaccuracy is crucially dependent on both

task difficulty and RT. The higher the task difficulty and the longer the RT, the higher the deci-

sion inaccuracy (Fig 2E). For the sake of simplicity, decision inaccuracy is assumed to be a sig-

moid function of task difficulty and RT (Eq 1 in Methods; Fig 2F). Hence, it is plausible to

estimate decision inaccuracy and decision uncertainty in the mentalizing tasks merely from

external information provided by task difficulty and RT. However, one indispensable process

to distinguish social inferences in mentalizing from nonsocial inferences or associations is tak-

ing the target participant’s perspective. For example, in the type 1 mentalizing tasks, the partic-

ipants should consider that the target participant has unique internal noise (σ1) during the

perceptual decision-making process as described by the drift-diffusion model [27], which

affects the target participant’s object-level performance (i.e., decision inaccuracy, Fig 2F). In

the type 2 mentalizing tasks, the participant should further consider that the target participant

has unique internal noise (σ2) in mapping decision inaccuracy to decision uncertainty (Fig

2G), which renders the target participant’s unique metacognitive ability even with the same

object-level performance [28] (i.e., a low variance results in a high metacognitive ability). We

constructed the receiver operating characteristic (ROC) curve by using the level of decision

uncertainty as the criterion to judge the incorrectness of the choice in each trial and measured

the metacognitive ability as the area under the ROC curve (AUROC), indicating the extent to

which the subjective uncertainty ratings matched the actual decision inaccuracy [28] (Fig 2H).

Taken together, the internal mental state representations of decision inaccuracy and decision

uncertainty in mentalizing should be hierarchically organized. However, due to the lack of
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feedback in the mentalizing tasks, each participant did not learn about the target participants’

(even for the PS) object-level and meta-level performance. Therefore, the internal information

generated by mentalizing may not reflect the target participant’s actual internal mental states.

Behavioral results

We analyzed the behavioral data in the experiments to assess how the participants used the

associations with external cue information of task difficulty and RT to estimate the targets’

decision inaccuracy and decision uncertainty. The analyses showed that the weights of normal-

ized task difficulty and RT (Eq 1 in Methods) on the estimates were equivalent [analysis of var-

iance (ANOVA), task difficulty: F[3,112] = 0.11, P = 0.95; RT: F[3,112] = 0.16, P = 0.92; Fig 2I]

and were highly correlated across the mentalizing tasks (S4 Fig). Hence, the participants used

such external cue information to estimate the corresponding mental states equally across the

mentalizing tasks. Notably, the estimates in the mentalizing tasks relied more on task difficulty

than RT (2-tailed paired t test, t27 = 6.2; P = 2.5 × 10−8). On the contrary, the estimates of deci-

sion uncertainty in the metacognition task relied more on RT than task difficulty (2-tailed

paired t test, t27 = 4.1; P = 5.9 × 10−5; Fig 2I). This is likely due to the fact that stimulus coher-

ence (by virtue of the nature of the experimental design) was clearly discerned in the mentaliz-

ing tasks, but it was hard to inversely infer the stimulus coherences in the metacognition task.

Because of the stable associations with external cue information, the decision inaccuracy/

uncertainty estimated by the participants in the mentalizing tasks was correlated with what the

target participants had actually reported themselves at each level of difficulty and RT in the

metacognition task (ANOVA, F[3,112] = 0.28, P = 0.84, Fig 2J).

However, all these correlations in the mentalizing tasks disappeared after regressing out the

associations with external cue information of task difficulty and RT from the estimates of deci-

sion inaccuracy/uncertainty reported by the participants (2-tailed t test, Ps > 0.30; Fig 2J).

That is, estimate residuals in each mentalizing task did not further predict the actual decision

uncertainty reported by the target participants in the metacognition task. Further, as the esti-

mates of decision uncertainty in each task could largely predict the actual decision inaccuracy,

we used the AUROC to characterize this consistency. OAU : PleasecheckwhethertheeditstothesentenceOnaverage; theAUROCs:::arecorrectandamendifnecessary:n average, the AUROCs (mean: 0.67 to

0.71) were larger than the chance level that was calculated by shuffling the orders between the

estimates and actual decision inaccuracy and showed no significant differences across all the

tasks (ANOVA, F[4,139] = 1.22, P = 0.31, Fig 2K). After the associations with external cue infor-

mation were regressed out, the residual AUROCs (measured by estimate residuals) were no

longer significantly different from the chance level in each mentalizing task (2-tailed t test,

Ps> 0.20), but it remained significant in the metacognition task (2-tailed t test, t27 = 11.8;

P = 3.6 × 10−12; Fig 2K). Estimate residuals in the metacognition task should reflect the subjec-

tive difficulty due to the trial-by-trial noises in internal neural processing that task difficulty

(coherence) and RT could not explain [29]. Thereby, the residuals also considerably contrib-

uted to decision uncertainty in the metacognition task. In striking contrast, reliable estimates

of decision inaccuracy/uncertainty in the mentalizing tasks were crucially dependent on exter-

nal information provided by task difficulty and RT.

Nonetheless, estimate residuals accounted for about half of the total variance of the esti-

mates of decision inaccuracy/uncertainty in each mentalizing task (Fig 2L), although each

ratio was much lower than that in the metacognition task (2-tailed paired t test, t27 = 3.5;

P = 3.3 × 10−4; Fig 2L). These estimate residuals might serve as a proxy of internal mental states

that were generated through target participant’s perspective taking and were independent of

external cue information. We thus used estimate residuals as the main behavioral metric to

identify the neural representations of internal mental states. As indirect evidence, the variances
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of estimate residuals were significantly larger in the type 2 mentalizing tasks than the type 1

mentalizing tasks (2-tailed t test, AO: t27 = 2.5; P = 0.0096; PS: t27 = 2.1; P = 0.023). These extra

variances might be generated by the additional process of the target participant’s meta-level

perspective taking in the type 2 mentalizing tasks, as suggested by the hierarchical mental state

representation model described above (Fig 2G and 2H).

Common neural representations of external cue information in

mentalizing

We first examined the neural representations of external cue information in mentalizing by

analyzing the fMRI data acquired during the experiments. As external cue information of task

difficulty and RT contributed to the estimates equally across the mentalizing tasks, we hypoth-

esized that the neural representations of each type of external cue information might be shared

across the mentalizing tasks. To test the hypothesis, we regressed the trial-by-trial fMRI activi-

ties during the judgment phase with external cue information of task difficulty and RT across

the whole brain in each task (see Methods). Across the mentalizing tasks, the fMRI activities in

the primary visual cortex (V1) were negatively correlated with the levels of task difficulty (the

conjunction analysis, z> 2.6, P< 0.05 after cluster-level family-wise error (FWE) correction;

Fig 3A), decreasing as the number of moving dots was reduced (task difficulty increased). On

Fig 3. Common neural representations of external cue information across the mentalizing tasks. (a) The activation maps for the activities

significantly correlated with task difficulty in a conjunction analysis across the mentalizing tasks (z> 2.6, P< 0.05 after cluster-level FWE correction). (b)

The activation maps for the activities significantly correlated with RT in a conjunction analysis across the mentalizing tasks (z> 2.6, P< 0.05 after

cluster-level FWE correction). The activation maps in (a) and (b) were displayed in radiological convention (the left/right side of the image corresponds

to the right/left side of the brain). (c) The parametric regression beta values of task difficulty in each mentalizing task in the right IPL ROI defined by the

conjunction of (a) and (b). (d) The beta values of RT in each mentalizing task in the right IPL ROI defined by the conjunction analysis of (a) and (b). The

error bars represent SEM across participants. ns, not significant; �P< 0.05; ��P< 0.01; ���P< 0.001, uncorrected. The raw data for Fig 3 can be found in

the Supporting information as S1 Data. AO-DI, anonymous other decision inaccuracy; AO-DU, anonymous other decision uncertainty; FWE, family-

wise error; IPL, inferior parietal lobe; PS-DI, past-self decision inaccuracy; PS-DU, past-self decision uncertainty; ROI, region of interest; RT, response

time; SEM, standard error of the mean.

https://doi.org/10.1371/journal.pbio.3001301.g003
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the other hand, the fMRI activities in the right inferior parietal lobe (IPL) were positively cor-

related with the levels of task difficulty (the conjunction analysis, z> 2.6, P< 0.05 after clus-

ter-level FWE correction; Fig 3A). In contrast, the fMRI activities in a wide range of brain

regions were positively correlated with the levels of RTs (the conjunction analysis, z> 2.6,

P< 0.05 after cluster-level FWE correction; Fig 3B). Among these brain regions, the right IPL

region overlapped with the regions associated with task difficulty: The same right IPL region

responded to both task difficulty and RT across the mentalizing tasks (Fig 3C and 3D). Thus,

integration of the 2 pieces of external information together in the right IPL partially contrib-

uted to the estimates of decision inaccuracy/uncertainty in mentalizing.

Distinct neural representations of estimate residuals in mentalizing

We then examined the neural representations of internal mental states that were unassociated

with external cue information in mentalizing. According to our theoretical analyses as described

above, additional unique processes of target participant’s perspective taking should be involved

in each mentalizing task besides the associations with external cue information. To explore the

neural signatures, we regressed estimate residuals with the trial-by-trial fMRI activities during

the judgment phase across the whole-brain voxels in each task. These neural correlates thus

illustrated internal mental state representations that were unassociated with external informa-

tion. The modulation effects were predominately in the judgment phase by comparison to the

alternative GLM accounting for the modulation effects in the perception phase (S3B Fig).

When the participant estimated the AO’s decision uncertainty, estimate residuals were sig-

nificantly correlated with the fMRI activities in the dorsomedial prefrontal cortex (dmPFC;

red in Fig 4A), dorsally and anteriorly neighboring, but separate from, the dorsal anterior cin-

gulate cortex (dACC) region representing the CS-DU in metacognition (blue in Fig 4A; see

below), as well as in the left temporoparietal junction (TPJ) and the left inferior frontal junc-

tion (IFJ) (z> 3.1, P< 0.05 after cluster-level FWE correction, Fig 4A; see also S1 Table).

When the participant estimated the AO’s decision inaccuracy, estimate residuals were also

correlated with the fMRI activities in the left TPJ and the left IFJ (z> 3.1, P< 0.05 after clus-

ter-level FWE correction, Fig 4B and 4E; see also S1 Table), but not in the dmPFC (2-tailed t
test, t27 = 1.1, P = 0.12; Fig 4E).

The dmPFC was selectively involved in type 2 mentalizing (Fig 4E; the post hoc compari-

sons with the other tasks: P< 0.0037 after Bonferroni correction), but the TPJ was involved in

both type 1 and type 2 mentalizing (Fig 4E; 2-tailed paired t test, t27 = 0.67, P = 0.21 between

the 2 mentalizing tasks, the post hoc comparisons with the other tasks: P< 0.042 after Bonfer-

roni correction). To further test the reliability of the dmPFC selectivity in type 2 mentalizing,

we repeated the same GLM analysis on the dmPFC and TPJ regions independently defined by

meta-analytical maps from the NeuroSynth database [30], as well as the conjunction regions

between the meta-analytical regions and those in the current study. In both analyses, the

results consistently support that the dmPFC but not the TPJ showed neural activities selective

to type 2 mentalizing (S5 Fig).

Instead, estimate residuals of the past-self decision uncertainty (PS-DU) were selectively

correlated with the fMRI activities in the left lateral frontopolar cortex (lFPC) (z> 3.1,

P< 0.05 after cluster-level FWE correction, Fig 4C; but not significantly different from the

other tasks, S6F Fig), whereas estimate residuals of the PS-DI were correlated with the fMRI

activities in the precuneus (z> 3.1, P< 0.05 after cluster-level FWE correction, Fig 4D; the

comparisons with the other tasks: P< 0.043 after Bonferroni correction, S6E Fig). Notably,

both the left lFPC and precuneus regions were also shared with the metacognition-associated

areas (S6E and S6F Fig).
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In accordance with our theoretical account, the existence of different neural correlates of

estimate residuals in the mentalizing tasks suggested that there are diverse neural representa-

tions of internal mental states during mentalizing in different social contexts. Notably, the

right IPL that encoded task difficulty and RT did not represent estimate residuals in any of the

mentalizing tasks (S6A Fig). The neural representations of internal mental states suggest that

internal mental state representations do separately coexist with external cue associations dur-

ing mentalizing (attributing covert mental states to the other target participants) at least, in

humans. This was, however, could not have been inferred from behavioral observation alone.

Neural representations of estimate residuals in metacognition

In the metacognition task, estimate residuals were significantly correlated with the fMRI activi-

ties in the dACC and the lFPC (z> 3.1, P< 0.05 after cluster-level FWE correction, blue in

Fig 4A; see also S1 Table), as repeatedly observed in previous studies [15–17,31,32]. Although

the lFPC region was also associated with type 2 mentalizing (S6F Fig), the dACC region selec-

tively represented estimate residuals in the metacognition task, but not in the mentalizing

tasks (S6B Fig; the post hoc comparisons between the 2 types of tasks, P< 0.0031 after

Fig 4. Distinct neural representations of estimate residuals in metacognition and mentalizing. (a) Neural correlates of estimate residuals of decision

uncertainty in the metacognition task (dACC and lFPC, blue) and neural correlates of estimate residuals of decision uncertainty in the AO-DU (type 2)

mentalizing task (dmPFC, left IFJ and left TPJ, red). (b) Neural correlates of estimate residuals of decision inaccuracy in the AO-DI (type 1)

mentalizing task (left IFJ and left TPJ, green). (c) Neural correlates of estimate residuals of decision uncertainty in the PS-DU (type 2) mentalizing task

(left lFPC, magenta). (d) Neural correlates of estimate residuals of decision inaccuracy in the PS-DI (type 1) mentalizing task (right-IFJ and precuneus,

cyan). All the activation maps were displayed in radiological convention. (e) The comparisons of the parametric regression beta values with estimate

residuals across tasks in the ROIs of dACC, dmPFC, left IFJ, and left TPJ (see also S5 Fig). The error bars represent SEM across participants. ns, not

significant; �P< 0.05; ��P< 0.01 after Bonferroni correction. The raw data for Fig 4 can be found in the Supporting information as S1 Data. AO-DI,

anonymous other decision inaccuracy; AO-DU, anonymous other decision uncertainty; CS-DU, current-self decision uncertainty; dACC, dorsal

anterior cingulate cortex; dmPFC, dorsomedial prefrontal cortex; IFJ, inferior frontal junction; lFPC, lateral frontopolar cortex; PS-DI, past-self

decision inaccuracy; PS-DU, past-self decision uncertainty; ROI, region of interest; SEM, standard error of the mean; TPJ, temporoparietal junction.

https://doi.org/10.1371/journal.pbio.3001301.g004
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Bonferroni correction). Notably, the components of decision uncertainty associated with task

difficulty and RT were also represented in the dACC (S6B Fig). Thus, the dACC uniformly

represented all components of decision uncertainty in metacognition.

Common neural representations of estimate uncertainty across the

mentalizing tasks

In the mentalizing tasks, the use of external cue associations cannot provide sufficient informa-

tion to estimate the target participants’ trial-by-trial decision inaccuracy/uncertainty, which

should be also much affected by random neural processes characterized by each target partici-

pant’s unique internal noises (σ1 and σ2, Fig 2F and 2H). Thereby, the estimating processes in

mentalizing are often accompanied by uncertainty about the estimates, namely estimate uncer-

tainty [33,34]. Hence, the estimate theory predicts that estimate uncertainty should be higher

when the estimates are at the middle levels as opposed to the lowest or the highest level

(inverted U-shape). The levels of estimate uncertainty could be appreciated by the RTs used

for reporting the estimates. Longer RTs indicate higher uncertainty in making estimates. The

RTs were longer at the middle levels than at the lowest or highest level (inverted U-shape, qua-

dratic regression, 2-tailed t test, Ps < 0.001; Fig 5A). Further, we divided all trials equally into 8

bins according to the quantities of external information that were calculated by a sigmoid

function of task difficulty and RT after fitting with the estimated decision inaccuracy/uncer-

tainty (Eq 1 in Methods). The RTs in reporting the estimates were also longer at the middle

bins than at the lower and higher bins (inverted U-shape, quadratic regression, 2-tailed t test,

Ps< 0.001; Fig 5B). For the sake of simplicity, we operationally defined the trial-by-trial esti-

mate uncertainty as the negative value of the deviation from the mean of the estimates in each

trial, i.e.,–|estimate-mean(estimates)|. By virtue of this definition, estimate uncertainty was

higher at the middle levels of the estimates (Fig 5C) and the quantities of external information

(Fig 5D). Notably, estimate uncertainty was statistically uncorrelated with the estimates per se

in each task.

We then examined neural correlates of estimate uncertainty in each task. The neural corre-

lates of estimate uncertainty in each mentalizing task were similar to those of decision uncer-

tainty in metacognition (S7 Fig). Commonly across the mentalizing tasks, the fMRI activities

in the dACC were significantly and positively correlated with estimate uncertainty (Fig 5E).

Critically, the dACC region associated with estimate uncertainty across the mentalizing tasks

was largely overlapping with the dACC region associated with decision uncertainty in the

metacognition task (Fig 5F). Notably, this is complementary with prior findings that the fMRI

activities in the ventromedial prefrontal cortex (vmPFC) and the posterior cingulate cortex

(PCC) are responsive to confidence about the estimates of different properties of the presented

stimuli [33].

dACC was involved in monitoring the mentalizing processes

According to the estimation theory [33,34], estimate uncertainty is derived from the variance

of estimate residuals (residual variance), which is larger in the middle range of the quantities

of external information (Fig 2F). Consisting with this prediction, the residual variance in each

bin of the quantities of external information was a negative parabolic function in each task

(inverted U-shape, quadratic regression, 2-tailed t test, Ps < 0.01; Fig 5G). Accordingly, the

dACC activity averaged in each bin of the quantities of external information was also a nega-

tive parabolic function in each mentalizing task (inverted U-shape, quadratic regression,

2-tailed t test, Ps < 0.05; Fig 5H), but not in the metacognition task (quadratic regression,

2-tailed t test, t27 = −1.9; P = 0.07). In each mentalizing task, the dACC activities increased as
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the residual variance increased (linear regression, 2-tailed t test, Ps < 0.05, Fig 5I). Hence, the

dACC activities tracked residual variances, suggesting its potential role in monitoring the

mentalizing processes.

However, larger variances of estimate residuals might be accompanied by larger magni-

tudes of estimate residuals (residual magnitudes). To examine their concurrences, we calcu-

lated the mean residual magnitude averaged in each bin of the quantities of external

information. Residual magnitudes had a similar relationship with the bins of external informa-

tion as residual variances did (quadratic regression, 2-tailed t test, Ps< 0.001; Fig 5J).

Fig 5. Common neural representations of estimate uncertainty across the mentalizing tasks. (a) The inverted U-shape relationships between RTs for

reporting the estimates and the estimates commonly in the mentalizing tasks; (b) The inverted U-shape relationships between RTs for reporting the

estimates and external information calculated by a sigmoid function of task difficulty and RT. (c) estimate uncertainty defined as (–1�|estimate–mean

(estimates)|) had an inverted U-shape relationship with the estimates. (d) Estimate uncertainty had an inverted U-shape relationship with external

information. (e) The neural activities were significantly correlated with estimate uncertainty in each mentalizing task. (f) The dACC was commonly

correlated with estimate uncertainty (the conjunction analysis, yellow), overlapping with those correlated with decision uncertainty in the metacognition

task (blue, see also Fig 4A). All the activation maps were displayed in radiological convention. (g) The inverted U-shape relationships between residual

variances and external information. (h) The dACC activities had an inverted U-shape relationship with external information. (i) The linear regression beta

values of the dACC activities with the residual variances. (j) The residual magnitudes were larger at the middle levels of external information. (k) The dACC

activities were larger when the residual magnitudes were larger. (l) The linear regression beta values of the dACC activities with residual magnitudes. (m)

The trials were divided into 3 subgroups with the same residual variances but different residual magnitudes (HV-HM: high_variance-high_magnitude

versus HV_LM: high_variance-low_magnitude) and the same residual magnitudes but different residual variances (HV-LM versus LV_LM: low_variance-

low_magnitude). (n) The dACC activities were significantly different between different residual variances, but not between different residual magnitudes.

The error bars represent SEM across the participants. ns, not significant; �P< 0.05; ��P< 0.01; ���P< 0.001, uncorrected. The raw data for Fig 5 can be

found in the Supporting information as S1 Data. AO-DI, anonymous other decision inaccuracy; AO-DU, anonymous other decision uncertainty; CS-DU,

current-self decision uncertainty; dACC, dorsal anterior cingulate cortex; PS-DI, past-self decision inaccuracy; PS-DU, past-self decision uncertainty; RT,

response time; SEM, standard error of the mean.

https://doi.org/10.1371/journal.pbio.3001301.g005
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Accordingly, the dACC activity in each bin according to the signed values of estimate residuals

(the mean was zero) had a positive parabolic function in each of the mentalizing tasks, as well

as in the metacognition task (U-shape, quadratic regression, 2-tailed t test, Ps < 0.001; Fig 5K).

Thus, the dACC activities also tracked residual magnitudes (linear regression, 2-tailed t test,

Ps< 0.001, Fig 5L).

As the dACC has been suggested to play a critical role in adaptive control [35–37], it

remains possible for an alternative interpretation that the dACC might play a control role in

adaptively generating estimate residuals. That is, the larger the dACC activities were, the larger

residuals were generated. To distinguish the 2 potentially alternative functional roles of the

dACC involvement in mentalizing, we further conducted partial control analyses. We segre-

gated all trials into 3 categories according to residual variances and residual magnitudes. To do

so, we first median split all trials according to residual variances (Fig 5G, low variances: blue

zone, high variances: red zone). Accordingly, the residual magnitudes should be also low in

the former group (LV_LM: low variances and low magnitudes). Further, the residual magni-

tudes in the latter group were segregated into low (HV_LM: high variances and low magni-

tudes) and high (HV_HM: high variances and high magnitudes) subgroups by another

median split (Fig 5M). Thereby, the residual variances were different between LV_LM and

HV_LM (2-tailed paired t test, Ps< 6.7 × 10−14; Fig 5M), while their magnitudes were not dif-

ferent (2-tailed paired t test, Ps > 0.05; Fig 5M). In contrast, the residual magnitudes were dif-

ferent between HV_LM and HV_HM (2-tailed paired t test, Ps< 7.8 × 10−13; Fig 5M), while

their variances were not different (2-tailed paired t test, Ps> 0.18; Fig 5M). We then could test

the 2 alternative hypotheses by examining whether the dACC activities were selectively respon-

sive to residual variances (involvement in monitoring) or residual magnitudes (involvement in

generating). If the dACC activities were sensitive to residual variances, but not residual magni-

tudes, then the dACC activities should be significantly different between LV_LM and

HV_LM, but not between HV_LM and HV_HM. Otherwise, the dACC activity pattern should

be reverse. Our results support the former prediction (Fig 5N). That is, the dACC should be

involved in monitoring the process of generating internal mental states, rather than directly in

the generating process. Hence, metacognition monitors the mentalizing processes.

Although estimate uncertainty and decision uncertainty have been suggested to be distinct

[34], our results illustrate that the neural representations of decision uncertainty in metacogni-

tion (the inner layer in Fig 6) and estimate uncertainty in mentalizing (the outer layer in Fig 6)

were convergingly registered in the dACC. On the contrary, mentalizing was functionally irrel-

evant to metacognition and was neurally independent of the dACC activities. Instead, different

forms of mentalizing had diverse formats of internal mental state representations in the

human brain (the middle layer in Fig 6). Mental state representations of decision uncertainty

in metacognition and mentalizing form a nested structure (Fig 6).

Discussion

Metacognition and mentalizing embody meta-level representations of mental states attributed

to the observer and the target, respectively (Fig 1). However, the distinctions and relationship

between metacognition and mentalizing are still a matter of debate [38]. In the current study,

we adapted an experimental paradigm from metacognition to mentalizing. We could paramet-

rically distinguish the neural representations of decision uncertainty between metacognition

and mentalizing. Using fMRI to characterize the neural signals correlated with the correspond-

ing mental states, we identified for the first time the different mental state representations

underlying attributions of decision inaccuracy/uncertainty to different targets (the current

self, the PS, and others), separated from the associations with external cue information. These
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separable internal mental state representations of decision uncertainty clearly underlie the dis-

tinctions between mentalizing from metacognition.

Metacognition in the current study was associated with the currently experienced decision

uncertainty. Behaviorally, even after the perceptual information of task difficulty and RT was

regressed out, estimate residuals still stably predicted actual decision inaccuracy, as the internal

information about the neural processing information were accessible by introspection [1–3].

Neurally, the dACC unanimously represented these components to coherently form currently

experienced decision uncertainty. In contrast, mentalizing in the current study was associated

with inferred decision uncertainty. The participant could use external cue information to infer

the covert mental states. Unsurprisingly, after the external cue information was regressed out,

estimate residuals did not further predict the target participants’ actual internal mental states

of decision uncertainty. Nonetheless, stable neural representations of estimate residuals were

reliably observed in each of the mentalizing tasks. Critically, these neural representations of

estimate residuals in attributing different levels (object level and meta level) of mental states to

different targets (others and the PS) were distinct. These empirical results thus support the the-

oretical account: Mentalizing recruits additional mental processes of perspective taking

beyond object-level associations with external cue information. Critically, these internal men-

tal state representations made essential distinctions of mentalizing in different social contexts.

The type 1 mentalizing task in monitoring an AO’s decision inaccuracy was similar to false-

belief tasks (e.g., the “Sally–Anne” task) [4,39,40]. Common to both tasks, the participant

needs to judge the target participant’s object-level performance, i.e., the reversal of choice

probability of the correct option (Sally should always choose the incorrect option in the “Sally–

Anne” task), while the participant actually knows the ground truth. Thus, the participant’s

mental world and the target participant’s mental world are different. To attribute the object-

level cognitive states to the target participant, the participant might parsimoniously make a

counterfactual inference on the basis of cue associations, which is though conflicted with the

ground truth. To take the target participant’s perspective, the participant should merely build

Fig 6. The nested structure of neural representations of decision uncertainty in metacognition and mentalizing. (a) The inner layer illustrates the

neural representations of decision uncertainty in the dACC during monitoring one’s own decision-making by metacognition. (b) The middle layer

illustrates distinct neural representations of decision uncertainty during monitoring the different target participants’ meta-level and object-level

performance (left: the PS; right: others). The TPJ represents others’ decision inaccuracy (mental construct of the object-level performance) and the

dmPFC represents others’ decision uncertainty (mental construct of the metacognitive performance). In contrast, the precuneus represents the PS-DI,

and the lFPC represents the PS-DU. (c) The outer layer illustrates neural representations of estimate uncertainty in the dACC during the different

mentalizing tasks, denoting that metacognition monitors mentalizing. dACC, dorsal anterior cingulate cortex; FPC, frontopolar cortex; dmPFC,

dorsomedial prefrontal cortex; lFPC, lateral frontopolar cortex; PS, past self; PS-DI, past-self decision inaccuracy; PS-DU, past-self decision uncertainty;

TPJ, temporoparietal junction.

https://doi.org/10.1371/journal.pbio.3001301.g006
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up a model describing the target participant’s task performance (type 1) with common knowl-

edge that each person should have a unique capability in task performance (e.g., internal noise

σ1) even under the same stimulus presentation. Our results imply that the TPJ activities might

be associated with this mental process. This notion is consistent with prior evidence that the

TPJ activations are prevalently observed in false-belief tasks [18,35,36], while anatomical and

virtual lesions in the TPJ region selectively cause serious deficits in perspective taking for

object-level performance evaluation [41,42].

The type 2 mentalizing task in monitoring an AO’s decision uncertainty was identical to

the type 1 mentalizing task except that the participant instead estimated the target participant’s

meta-level mental state of decision uncertainty. Hence, beyond the mental processes involved

in the type 1 mentalizing task, the participant needed a mental model for the target partici-

pant’s metacognitive ability (Fig 2H). Our results imply that this mental model might be built

in the dmPFC, which was selectively activated in the type 2 mentalizing task, but not in the

type 1 mentalizing task. Although both the dmPFC and the TPJ have been shown to be

involved in mentalizing [7,19,43], our findings implicate a putative functional distinction. The

dmPFC was specifically involved in constructing the mental model of the target participant’s

meta-level mental states [44,45]. In striking contrast, the TPJ might be involved in representing

the target participant’s object-level mental states. These empirical results support the theoreti-

cal account of hierarchical neural representations of object-level and meta-level mental states

in mentalizing. Intriguingly, when the identical task sequence was used but the target partici-

pant was changed to the PS, the neural loci associated with the internal mental states were

altered. Thereby, these other-oriented neural representations of decision uncertainty in the

dmPFC and TPJ regions support ToM in accounting for mentalizing [7,19,43].

When the participant estimated the PS-DI, the activities in the precuneus was selectively

associated with estimate residuals. On the other hand, when the participant estimated the

PS-DU, the activities in the lFPC were selectively associated with estimate residuals. The lFPC

and precuneus regions are also both associated with the metacognitive process [15,16,32].

Hence, these results suggest that mentalizing for the PS mental states of decision uncertainty

might recruit neural loci shared with metacognition. In other words, these self-oriented neural

representations of decision uncertainty in the lFPC and the precuneus support the simulation

theory accounting for mentalizing [46]. However, the dACC, the crucial brain region repre-

senting currently experienced decision uncertainty in metacognition [15–17,31], was not acti-

vated in the PS-oriented mentalizing tasks (S6B Fig).

When the participant monitored the target participants’ object-level performance in the

type 1 mentalizing task, similar in monitoring the current-self object-level performance in the

metacognition task, the estimates were actually the subjective beliefs of the participant, rather

than the target participants. However, the neural representations of the mental states in the

type 1 mentalizing tasks were entirely different from those in the metacognition task. To this

end, a critical distinction between metacognition and mentalizing should depend on the acces-

sibility of sources to be monitored, rather than the agents by whom the mental states are gener-

ated or the target participant to whom the mental states are attributed. Altogether, our results

illustrate that the human brain diversifies separate neural systems to represent the different

internal mental states of decision uncertainty in monitoring the current self, the PS, and others

in performing the same perceptual decision-making task.

Importantly, the current neuroimaging results illustrate the relationship between metacog-

nition and mentalizing, a longstanding puzzle in psychology and philosophy [38]. First, the

mental state representations in metacognition and mentalizing are clearly dissociated. Meta-

cognition and mentalizing are 2 independent processes with different meta-level mental state

representations. Second, metacognition accompanies and monitors mentalizing, but
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mentalizing is independent of metacognition. Notably, mentalizing is a perception-based

social inference process. Hence, metacognition as a domain-general process also monitors the

high-level cognitive processes of mentalizing [15]. Last, even though the participants did not

explicitly report estimate uncertainty during mentalizing, the dACC could implicitly embody

estimate uncertainty [33].

Mentalizing is a crucial social cognitive function for human behaviors. During interper-

sonal interactions, the primary motivation of mentalizing is to predict and influence others’

beliefs, desires, and intentions, as well as their actions [45]. It is plausibly an effective strategy

to manipulate influences on others when they are uncertain, rather than when they are highly

confident, since the odds of success in changing others’ minds in the former case should be

higher. Even for preverbal infants, when they feel uncertain, they are willing to seek caregiver’s

helps [47]. Therefore, commonly in the mentalizing tasks, the target participants’ decision

inaccuracy/uncertainty, rather than the reversals, decision accuracy/confidence, were predom-

inantly and positively correlated with the brain activities. These positive neural signals might

be used to guide appropriate social control [48,49]. In other words, the dACC involves in mon-

itoring the current self–decision-making in metacognition and the dmPFC involves in moni-

toring others’ decision-making in mentalizing, driving cognitive control and social control,

respectively. The dACC region here is anatomically in the sulcus of anterior cingulate cortex

(AAU : PleasenotethatACChasbeendefinedasanteriorcingulatecortexinthesentenceThedACCregionhereisanatomically::::Pleasecheckandcorrectifnecessary:CC), while the dmPFC region is dorsally neighboring dACC [50]. Prior studies have also

shown that a region in the gyrus of ACC (ACCg) or the perigenual ACC (pgACC), ventrally

neighboring the dACC, is also involved in monitoring and predicting the others’ behaviors

[51], but specifically in tracking the others’ motivational values [52].

Notably, estimates of others’ covert mental states and even those of the PS mental states

were not predictable for their actual internal mental states or performance after the associa-

tions with external cue information were regressed out. These findings implicate that internal

mental states are hard to predict, partially due to the fact that the target participants’ attributes

in both object-level and meta-level performance were unknown to the participants in the cur-

rent study. One potential approach to improve the predictability of mentalizing could be

through social learning from interpersonal interactions [49], to construct more reliable mental

models for a specific target’s mental world from more subtle social information and social

experience [53–55]. Meanwhile, metacognition might facilitate such social learning processes

by monitoring the mentalizing processes.

In conclusion, our findings of distinct mental state representations of decision uncertainty

in mentalizing for different targets provide new insight on neural computations of the internal

mental models in different mentalizing processes.

Methods

Participants

We recruited 28 healthy right-handed participants (22 females, age: 23.5 ± 1.5 years old) to

take part in all 5 tasks across 3 fMRI experiments. Informed consent was obtained from each

participant in accordance with a protocol approved by Beijing Normal University Research

Ethics Committee (ICBIR_A_0091_004).

Experiments

There were 3 fMRI experiments in the current study. In experiment 1, the participants carried

out the metacognition task alone. In experiment 2, the participants inside the scanner observed

the target participants (an AO or the PS) performing the metacognition task outside the scan-

ner and estimated the target participants’ object-level performance, i.e., decision inaccuracy
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(AO-DI and PS-DI). The 2 tasks were then referred to as the type 1 mentalizing tasks. In exper-

iment 3, the participants inside the scanner instead estimated the target participants’ meta-

level performance, i.e., decision uncertainty (AO-DU and PS-DU). The 2 tasks were then

referred to as the type 2 mentalizing tasks. Experiment 1 and experiment 3 were conducted in

the same session, but experiment 2 was conducted in another session. The tasks in each session

were randomly interleaved and were counterbalanced across the participants.

Metacognition task

In an aperture with a radius of 3 degrees of visual angle, 300 white dots (radius: 0.08 degrees,

density: 2.0%) were randomly displayed on a black background (RDM). The dots moved in

different directions at a speed of 8.0 degrees/second. The movement of each dot lasted 3

frames. A subset of dots moved coherently in the same direction (left, up, right, or down),

while the other dots moved in different random directions. The participant was required to

discriminate the net motion direction and rate his/her uncertainty about the decision by press-

ing a corresponding button. The uncertainty ratings were the reversals of confidence ratings.

The participants were instructed to rate decision uncertainty at 4 levels (1 to 4). Level 1 indi-

cated a belief of high probability that the decision was correct. Level 4 indicated a belief of low

probability that the decision was correct (see S1 Fig). That is, the decision was believed close to

the chance level. The task difficulty was determined by the percentage of coherently moving

dots, with 4 levels of task difficulty randomly mixed in the task. The easiest and hardest levels

were fixed at a coherence of 1% and 30%, respectively, while the 2 middle levels were set for

each participant to achieve accuracy of 50% and 80%, determined by a staircase procedure in a

practice session conducted several days prior to the fMRI experiments [15,31].

Mentalizing tasks

A pair of participants who had similar stimulus coherences at the 50% and 80% accuracy level

in the practice session jointly took part in the task (the stimulus coherences at the 2 task diffi-

culty levels used in the mentalizing tasks were the means of their stimulus coherences, respec-

tively). One (the target participant) performed the metacognition task outside the scanner, and

another (the observer participant) observed the target participant’s performance inside the

scanner. The 2 computers separately presented the stimuli but were connected and synchro-

nized by the local network following the TCP/IP protocol. Hence, they simultaneously per-

formed their own tasks with the same sequence (see below) but in response to different stimuli

and task requirements. To avoid eliciting the observer participant’s own decision uncertainty,

the stimulus presented to her/him inside the scanner was noiseless: The randomly moving

dots remained stationary, and only the coherently moving dots moved. While the target partic-

ipant was responding, the observer participant saw a progress bar representing the elapsed

time. However, the observer participant could not see the target participant’s choice and

reported decision uncertainty. The observer participant then reported the estimate of the tar-

get participant’s decision inaccuracy/uncertainty. In the PS-DU and PS-DI mentalizing tasks,

the target participant was replaced by the PS. That is, the observer participant observed RDM

task performance previously done by himself/herself.

Task sequence

The sequences of the metacognition and mentalizing tasks were almost identical. In the meta-

cognition task, each trial started with a green cross cue to indicate that the task stimulus would

be presented 1 second later. The stimulus was then presented for 2 seconds, and 4 options of

the moving directions were presented. The participant made a choice within 2 seconds. After a
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choice was made, 4 ratings from 1 (most certain) to 4 (most uncertain) were presented, and

the participant reported the rating by pressing the corresponding button within 2 seconds.

The intertrial interval (ITI) was jittered uniformly between 2 seconds and 6 seconds. On aver-

age, each trial lasted for 9 seconds. During the mentalizing tasks, although the sequence was

identical to the metacognition task performed outside the scanner, the participant watched the

noiseless stimulus presentation and the progress bar indicating elapsed time for the target par-

ticipant’s responses and then reported the estimate rating of the target participant’s decision

inaccuracy/uncertainty. Each task was conducted for 2 consecutive runs, each consisting of

sixty trials.

Behavioral analyses

The reported ratings of decision inaccuracy/uncertainty in each of the metacognition and

mentalizing tasks were associated with task difficulty and RT. We used a sigmoid function to

characterize the relationship as follows:

ei ¼
1

1þ exp� ðb1Diþb2RTiþb0Þ
þ εi; ð1Þ

where ei represents the estimate of decision inaccuracy/uncertainty at the trial i, Di and RTi

represent the task difficulty and the RT at the trial i, respectively, β1 and β2 represent the corre-

sponding weights, and β0 represents the constant bias, εi represents the estimate residual. Task

difficulties and RT were separately normalized in each task for each participant. Further, for

the mentalizing tasks, we also considered an autoregressive (AR) model to account for the

associations of the estimates between the contiguous trials. However, the autocorrelation of

the estimates between the contiguous trials in each mentalizing task was trivial, indicating that

the estimates were not dependent on the history, but only on the current trial.

fMRI parameters

All fMRI experiments were conducted using a 3-T Siemens Trio MRI system with a 12-chan-

nel head coil (Siemens, Germany). Functional images were acquired with a single-shot gradi-

ent echo T2
� echo-planar imaging (EPI) sequence with volume repetition time of 2 seconds,

echo time of 30 ms, slice thickness of 3.0 mm and in-plane resolution of 3.0 × 3.0 mm2 (field of

view: 192 × 192 mm2; flip angle: 90 degrees). A total of 38 axial slices were taken with inter-

leaved acquisition, parallel to the anterior commissure-posterior commissure line.

fMRI analyses

fMRI analyses were conducted using FMRIB Software Library (FSL) [56]. To correct for rigid

head motion, all EPI images were realigned to the first volume of the first scan. Data sets in

which translation motion was larger than 2.0 mm or rotation motion was larger than 1.0

degree were discarded. No data were discarded in these analyses. Brain matter was separated

from nonbrain using a mesh deformation approach and used to transform the EPI images to

individual high-resolution structural images and then to the Montreal Neurological Institute

(MNI) space by using affine registration with 12 degrees of freedom and resampling the data

with a resolution of 2 × 2 × 2 mm3. Spatial smoothing with a 4-mm Gaussian kernel (full width

at half-maximum) and high-pass temporal filtering with a cutoff of 0.005 Hz were applied to

all fMRI data.

We used GLM to analyze the fMRI data. For the first-level analyses, 2 events were modeled

in each trial. The first event (the perception phase) represented the stimulus presentation, time

locked to the onset of the stimulus presentation, with a duration of the presentation time (2
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seconds). The second event (the judgment phase) represented estimating decision inaccuracy/

uncertainty, time locked to the onset of the rating, with the duration of the reaction time. The

parametric modulation effects of task difficulty and RT, estimate residual, and estimate uncer-

tainty were simultaneously added in the latter event (the judgment phase). Estimate residual

was the residual of the estimate after the components associated with task difficulty and RT

were regressed out. All the regressors were convolved with the canonical hemodynamic

response function with double-gamma kennels. The results when the parametric modulation

effects were added in the perception phase are presented in S3B Fig.

For the group-level analyses, we used FMRIB’s local analysis of mixed effects (FLAME),

which models both “fixed effects” of within-participant variance and “random effects” of

between-participant variance using Gaussian random-field theory in each task. Statistical

parametric maps were generated with a threshold of z> 3.1, P< 0.05 after cluster-level FWE

correction for multiple comparisons for each contrast, unless mentioned otherwise. The acti-

vation maps were displayed in radiological convention.

Conjunction analyses

We conducted conjunction analyses to test the common neural correlates of external informa-

tion (task difficulty and RT) across the 4 mentalizing tasks, as well as the common neural cor-

relates of the estimate uncertainty across the 4 mentalizing tasks. We identified significant

regions in which there was evidence of effects in all contrasts of conditions using the FSL script

easythresh. Statistical parametric maps were generated by the threshold with z> 2.6, P< 0.05

after cluster-level FWE correction for each contrast.

Region of interest (ROI) analyses

The IPL ROI was defined by the conjunction analysis across the 4 mentalizing tasks. The

dACC ROI was defined in the CS-DU task. The dmPFC ROI was defined in the AO-DU task.

The TPJ ROI was defined in the conjunction analysis between the AO-DU and AO-DI tasks.

The FPC ROI was defined in the PS-DU task. The precuneus ROI was defined in the PS-DI

task. To circumvent circular inference, we randomly analyzed the data from three-fourths of

the participants to define each of the ROIs with a significance of z> 2.6, P< 0.05 after cluster-

level FWE correction and then used the data from the held-out participants to obtain the

parametric regression beta value in each ROI. We repeated this analysis one hundred times

and averaged the parametric regression beta values for each ROI. For the dmPFC and TPJ

ROIs, we further assessed meta-analytically derived ROIs associated with from Neurosynth

(search term: “mentalizing”) [27], as well as the overlapping regions between our results and

the Neurosynth ROIs. For the dACC region used for analyses in Fig 5, we used the overlap

between the metacognition task and the mentalizing tasks obtained by conjunction analysis.

To identify whether the dACC activities in mentalizing tasks were associated with residual

variances (i.e., in monitoring the mentalizing process) or residual magnitudes (i.e., in control

of the mentalizing process), we sequentially divided the trials in each of the metacognition and

mentalizing tasks into 3 subgroups according to the residual variances and the residual magni-

tudes. First, we divided all the trials equally into 8 bins according to the quantities of external

information that were calculated by a sigmoid function of task difficulty and RT. We then split

the bins of trials into 2 subgroups with low and high residual variances according to whether

the residual variance in each bin was above the median and further split the trials with high

residual variances into 2 subgroups with low and high residual magnitudes according to

whether the residual magnitude of each trial was above the median (Fig 5J). We then calculated

and compared the mean dACC activities among the 3 subgroups of trials (Fig 5K).

PLOS BIOLOGY Mental State Representations in Metacognition and Mentalizing

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001301 May 13, 2022 19 / 25

https://doi.org/10.1371/journal.pbio.3001301


To test for the possibility of U-shaped relationships between dACC activity and estimate

uncertainty, RT, or external information (Fig 5), we used a quadratic regression model

y ¼ ax2 þ bxþ c ð2Þ

to fit with the data in each participant (polyfit in matlab) and tested the quadratic regression

beta value (a) across the participants in comparison to zero using 2-tailed t test.

Simulations and parameter recovery

Because the stimulus presentation and uncertainty rating events were temporally close to each

other, the GLM estimates for the 2 events should be highly collinear. To examine whether the

GLM analyses could separate the underlying neural activity specifically associated with each of

the 2 events, we generated fMRI data using the different parameters of the GLM as follows and

validated the parameter recovery [29].

yfMRI ¼ ðb1 þ b2 � DUÞ � Xsti � hrf þ ðb3 þ b4 � DUÞ � Xrating � hrf þ ε; ð3Þ

where Xsti and Xrating represent the design matrix for the perception phase and the judgment

phase, respectively. β1 and β3 are the mean activities of the 2 events, and β2 and β4 are the esti-

mate uncertainty modulation effects on the 2 events, respectively. hrf is the canonical hemody-

namic response function with 2-gamma kennels, and ε is an additional Gaussian noise. TAU : PleasecheckwhethertheeditstothesentenceThevaluesofb1and:::arecorrectandamendifnecessary:he

values of β1 and β3, as well as β2 or β4, were independently and randomly drawn from a uni-

form distribution in the range of 0.2 to 0.8, while the alternative β2 or β4 was set to zero. That

is, the modulation effect appeared only in either of the 2 phases, but not simultaneously in

both phases. TAU : PleasecheckwhethertheeditstothesentenceThesignal � to � noiseratioðSNRÞofthe:::arecorrectandamendifnecessary:he signal-to-noise ratio (SNR) of the fMRI data were set uniformly in the range

of 0.01 to 1 (the event-evoked fMRI signals are usually in the range of 0.1 to 10 of the noises).

We then used the GLM with the mean activity and the parametric modulation effects in both

phases to reconstruct the mean activity and the parametric modulation effects in the 2 events

from the generated fMRI data with the sampling rate of 0.5 Hz (TR = 2 seconds). For each set

of the parameters, 1,000 times of procedures were repeated, and the estimated values were

averaged at each SNR level (S3 Fig).

SAU : AbbreviationlistshavebeencompiledforthoseusedthroughoutSupportinginformationcaptions:Pleaseverifythatallentriesarecorrect:upporting information

S1 Fig. The description of the instructions of tasks.

(EPS)

S2 Fig. Performance accuracy, decision uncertainty, and RT changed with task difficulty in

the RDM task. (a) Performance accuracy and RT changed with task difficulty. (b) Decision

uncertainty changed with task difficulty in the correct and incorrect trials, respectively. (c) RT

changed with task difficulty in the correct and incorrect trials. The 4 task difficulty levels for

each individual participant were set at 1% coherence, 50% accuracy (actually 55% inside the

scanner), 80% accuracy, and 30% coherence, respectively (chance accuracy level: 25%). The

error bars represent SEM across participants. The raw data for S2 Fig can be found in the Sup-

porting information as S1 Data. RDM, random dots motion; RT, response time; SEM, stan-

dard error of the mean.

(EPS)

S3 Fig. Reliable separation of neural activity during the perception phase and the judg-

ment phase. The fMRI signals were simulated by the GLM that took into account of the sepa-

rate contributions from the 2 phases, where DU represents the modulation effect of decision

uncertainty, ε represents the Gaussian noise, and hrf represents the canonical hemodynamic
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response function. The fMRI signals were obtained by the GLM with different mean values

(0.2 to 0.8) simultaneously at both phases and the decision uncertainty modulation component

(0.2 to 0.8) was added into the perception phase or the judgment phase. However, the recov-

ered parameters were fitted by the GLM with the parametric modulation effects in both phases.

For each set of parameters, procedures were repeated 1,000 times, and the estimated values

were averaged at each SNR level. (a) The correlation between the components of generated

fMRI time series in the perception phase and in the judgment phase in each participant (the

event sequence was identical to the AO-DU task). (b) The ratio of the recovered mean activity

(β1 and β3) to the original mean activity in each corresponding phase under the different SNR

levels. (c) The recovered parametric modulation effects (β2 in the perception phase and β4 in

the judgment phase) under the different SNR levels. The original mean activities were in both

phases but the parametric modulation effect was in the stimulation phase in (b) and (c). (d)

The ratio of the recovered mean activity (β1 and β3) to the original mean activity in each corre-

sponding phase under the different SNR levels. (e) The recovered parametric modulation

effects (β2 in the perception n phase and β4 in the judgment phase) under the different SNR

levels. The original mean activities were in both phases but the parametric modulation effect

was in the judgment phase in (d) and (e). (f–i) The parametric regression beta values in the

GLM for the modulation effects at the perception phase for the empirical data. Except for the

dACC in the CS-DU task, the modulation effects were not significant in the other tasks or in

the other ROIs. The error bars represent SEM across participants. ��P< 0.01, after Bonferroni

correction. The raw data for S3 Fig can be found in the Supporting information as S1 Data.

AO-DU, anonymous other decision uncertainty; CS-DU, current-self decision uncertainty;

dACC, dorsal anterior cingulate cortex; fMRI, functional magnetic resonance imaging; GLM,

general linear model; ROI, region of interest; SEM, standard error of the mean; SNR, signal-

to-noise ratio.

(EPS)

S4 Fig. Relationships between the weights of task difficulty and RT in accounting for the

estimates of decision inaccuracy/uncertainty across tasks. The weights of task difficulty and

RT were highly correlated and equivalent (falling along the diagonal) across the mentalizing

tasks. However, the weights of task difficulty were larger in the mentalizing tasks than in the

metacognition task, but the weights of the RTs were reversed. The raw data for S4 Fig can be

found in the Supporting information as S1 Data. RT, response time.

(EPS)

S5 Fig. The parametric regression beta values of fMRI activity with estimate residuals in

each task in the meta-analytically derived ROIs. (a) The meta-analytically derived ROIs asso-

ciated with “mentalizing” from Neurosynth. (b) The overlapped regions between our results

and the meta-analytically derived ROIs. The activation maps were displayed in radiological

convention. The convention of the colors is the same as in Fig 4. The error bars represent SEM

across participants. ns, not significant; �P< 0.05; ��P< 0.01; ���P< 0.001, uncorrected. The

raw data for S5 Fig can be found in the Supporting information as S1 Data. fMRI, functional

magnetic resonance imaging; ROI, region of interest; SEM, standard error of the mean.

(EPS)

S6 Fig. The parametric beta values of fMRI activity regressed with task difficulty, RT, and

estimate residuals in each task in the ROIs. (a) IPL. (b) dACC. (c) TPJ. (d) dmPFC. (e) pre-

cuneus. (f) FPC. The convention of the colors is the same as in Fig 4. The error bars represent

SEM across participants. �P< 0.05; ��P< 0.01; ���P< 0.001, uncorrected. The raw data for S6

Fig can be found in the Supporting information as S1 Data. dACC, dorsal anterior cingulate

PLOS BIOLOGY Mental State Representations in Metacognition and Mentalizing

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001301 May 13, 2022 21 / 25

http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3001301.s004
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3001301.s005
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3001301.s006
https://doi.org/10.1371/journal.pbio.3001301


cortex; dmPFC, dorsomedial prefrontal cortex; fMRI, functional magnetic resonance imaging;

FPC, frontopolar cortex; IPL, inferior parietal lobe; ROI, region of interest; RT, response time;

SEM, standard error of the mean; TPJ, temporoparietal junction.

(EPS)

S7 Fig. Activation maps showing significantly correlated with estimate uncertainty in each

task. (a) CS-DU. (b) AO-DU. (c) PS-DU. (d) AO-DI. (e) PS-DI. z> 3.1, P< 0.05, after clus-

ter-level FWE correction. AO-DI, anonymous other decision inaccuracy; AO-DU, anonymous

other decision uncertainty; CS-DU, current-self decision uncertainty; FWE, family-wise error;

PS-DI, past-self decision inaccuracy; PS-DU, past-self decision uncertainty.

(EPS)

S1 Table. Summary of brain activations.

(DOCX)

S1 Data. Raw data for all figures.

(XLSX)
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