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Abstract

We previously proposed that changes in the efficiency of protein translation are associated with autism spectrum

disorders (ASDs). This hypothesis connects environmental factors and genetic factors because each can alter translation

efficiency. For genetic factors, we previously tested our hypothesis using a small set of ASD-associated genes, a small set

of ASD-associated variants, and a statistic to quantify by how much a single nucleotide variant (SNV) in a protein coding

region changes translation speed. In this study, we confirm and extend our hypothesis using a published set of 1,800

autism quartets (parents, one affected child and one unaffected child) and genome-wide variants. Then, we extend the

test statistic to combine translation efficiency with other possibly relevant variables: ribosome profiling data, presence/

absence of CpG dinucleotides, and phylogenetic conservation. The inclusion of ribosome profiling abundances strength-

ens our results for male–male sibling pairs. The inclusion of CpG information strengthens our results for female–female

pairs, giving an insight into the significant gender differences in autism incidence. By combining the single-variant test

statistic for all variants in a gene, we obtain a single gene score to evaluate how well a gene distinguishes between

affected and unaffected siblings. Using statistical methods, we compute gene sets that have some power to distinguish

between affected and unaffected siblings by translation efficiency of gene variants. Pathway and enrichment analysis of

those gene sets suggest the importance of Wnt signaling pathways, some other pathways related to cancer, ATP binding,

and ATP-ase pathways in the etiology of ASDs.

Key words: autism spectrum disorder, ribosome profiling, codon usage, expression, CpG dinucleotides, single nucleotide

variant.

Introduction

Autism spectrum disorders (ASDs) are characterized by diffi-

culties in social interaction, difficulties in communication, and

repetitive behaviors (Geschwind and State 2015). There is a

statistically significant comorbidity of ASDs with intellectual

disability (ID), including in monogenic forms of ID such as

fragile X syndrome (Darnell et al. 2011). Since the 1980s,

the United States (Wingate et al. 2012; Wingate et al.

2014) and some other Western countries (Atladottir et al.

2015) have seen substantial increases in the prevalence of

autism. Partly due to the increase in prevalence, research

efforts to identify factors contributing to ASD have intensified.

These efforts include the collection and sequencing of DNA

samples from hundreds of families (Krumm et al. 2015).

Recent ASD research efforts also include epidemiological

studies of environmental toxins and immunological factors,

and cohort studies on the effect of changes in diagnostic cri-

teria (Ornoy et al. 2015).

This study is focused on reanalysis of the data set in

(Krumm et al. 2015) to test possible hypotheses about

genome-wide genetic mechanisms in ASD etiology. We un-

dertake this reanalysis while acknolwedging that many non-

genetic factors are relevant, and we next summarize some of

these factors.

The classification of ASDs changed fundamentally between

the DSM-IV guidelines and the DSM-V guidelines, which were

published in 2013 (Ornoy et al. 2015). Furthermore, various

states within the USA have in recent decades changed the
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rules according to which ASD subjects receive assistance in

schools. Multi-site studies across the USA show differences by

a factor of at least 4 between the lowest incidence site and

the highest incidence site (Wingate et al. 2012; Wingate et al.

2014). In contrast, ASD incidence in Italy did not increase in

recent decades as much as in the USA (Ferrante et al. 2015).

The large variations in incidence and prevalence suggest that

local regulations (Rzhetsky et al. 2014) and/or local environ-

mental factors (Volk et al. 2011) are associated with ASD

incidence. Some studies have concluded that changes in di-

agnostic criteria in the 1990s and 2000s contribute as much

as 1/3 to increased incidence of ASDs, at least in California

(Grether et al. 2009; Hertz-Picciotto and Delwiche 2009;

Herbert 2010), but this conclusion is controversial (King and

Bearman 2009).

Exposure to air pollutants include: fine particulates (Becerra

et al. 2013; Raz et al. 2015; Talbott et al. 2015), coarse par-

ticulates (Kalkbrenner et al. 2015) and ozone, nitric oxide and

nitrogen dioxide (Becerra et al. 2013) have been repeatedly

associated with autism. Environmental liquids and solids asso-

ciated with autism include arsenic (Dickerson et al. 2015), lead

(Dickerson et al. 2015; Hill et al. 2015), mercury (Dickerson

et al. 2015) and pesticides (Rossignol et al. 2014; Ornoy et al.

2015). Lead and manganese were also associated with

autistic-like behavior in a mouse model (Hill et al. 2015).

Other risk factors include maternal uses of pharmaceuticals

such as selective serotonin reuptake inhibitors for depression,

(Croen et al. 2011; Boukhris et al. 2016) and valproic acid for

epilepsy (Roullet et al. 2013; Hill et al. 2015). The risk of

valproic acid was highlighted by a genetic study showing

that valproic acid disproportionately reduces the expression

of genes implicated in ASD because of likely deleterious muta-

tions (Takata et al. 2018).

Other environmental studies have considered the role of

prenatal and perinatal factors. These are of interest since ge-

netic studies have identified an enrichment for mutations in

genes that play a role in fetal brain development (Sanders

et al. 2015; de la Torre-Ubieta et al. 2016; Yuen et al.

2017). One possible prenatal factor is the usage of prenatal

ultrasound (Webb et al. 2017), but the association of ultra-

sound with ASD has not be replicated, to our knowledge.

Pregnant mothers having flu, being hospitalized for an infec-

tion, or being treated with some classes of antibiotics (e.g.,

penicillin) were all associated with an increased risk of ASD in

the child (Atladottir et al. 2012). The association of ASD with

maternal hospitalization for infection has been replicated (Lee

et al. 2015). Mothers of autistic children have, on average,

above normal levels of some important cytokines, such as

interferon c (Goines et al. 2011).

A possible role for maternal cytokine levels in the etiology

of autism, suggests considering other immune system com-

ponents. Autistic children show patterns immune dysregula-

tion, such as reduced frequency of naı̈ve CD4þ T cells

(Ashwood et al. 2006) and higher density of microglia-

neuron pairs in close proximity (Morgan et al. 2012). The

possible roles of genetic and immune factors are intertwined

since various studies have shown statistically significant non-

random inheritance patterns in ASD families of alleles or hap-

lotypes variants in the human leukocyte antigen (HLA) region

on chromosome 6 (Johnson et al. 2009; Guerini et al. 2011).

Furthermore, a study of gene expression in post mortem

brains of autistic and control subjects found differential ex-

pression in a module of immune-related genes including

markers for microglia (Voineagu et al. 2011).

Now, we return to genetic studies, since this is our focus.

Large-scale DNA sequencing studies seeking genes contribut-

ing to ASDs have been partly justified by the discovery of

monogenic forms of ASDs. In addition, heritability studies in

twins that show a higher incidence of ASDs in monozygotic

twins compared with dizygotic twins of the same gender

(Hallmayer et al. 2011; Frazier et al. 2014; Nordenbæk et al.

2014; Sandin et al. 2014; Colvert et al. 2015) although there

is considerable variation in the estimates due to variations in

methods (Tick et al. 2016).

Genome-wide sequencing studies have identified dozens

of genes with recurrent deleterious mutations in ASD. Some

of the proteins encoded by these genes cluster either in sig-

naling pathways or in protein–protein interaction networks

more than would be expected by a chance (Ben-David and

Shifman 2012; Li et al. 2014; Chang et al. 2015; Wen et al.

2016). However, it is hard to conceive of a primarily genetic

mechanism by which inherited mutations could contribute

substantially to the rapid rise of ASD incidence. Therefore,

several sequencing studies have searched for de novo muta-

tions in the subjects’ germline, but not in the parents’ germ-

line (Iossifov et al. 2012; Neale et al. 2012; O’Roak et al. 2012;

Sanders et al. 2012; Krumm et al. 2015). De novo mutations

from earlier generations can manifest as inherited mutations

in new ASD patients if the de novo mutations arose in

females, who have a lower penetrance as compared with

males (Ronemus et al. 2014). De novo mutations could con-

tribute to increased incidence for at least two reasons. First,

the median parental age in the USA and other countries has

been increasing, and the frequency of de novo mutations

increases with parental age (Iossifov et al. 2012). Second,

environmental toxins may exert their effects partly by increas-

ing the mutation rate of gametes. The studies of de novo

mutations found a statistically significant, increase in the

rate of de novo likely deleterious mutations in ASD subjects

compared with controls. Estimates of the contribution of de

novo mutations to autism etiology range from a few percent

(Gaugler et al. 2014) to over 40% (Ronemus et al. 2014). To

put our work in context, consider that many mutations ob-

served de novo in ASD subjects also occur in unaffected con-

trols (Robinson et al. 2016). Combinations of rare and

common variants can contribute to ASD susceptibility in the

same individual via an additive oligogenic model (Chaste et al.

2017; Turner et al. 2017; Weiner et al. 2017).
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An important contribution of the sequencing studies is that

some of the data sets are available to other researchers who

wish to explore alternative hypotheses about the etiology of

ASDs. We do that here using part of the data set of (Krumm

et al. 2015) that contains annotated exome sequencing data

on 1,800 quartets (two parents, one affected child, and one

unaffected child) and 592 trios (two parents and one affected

child).

We previously proposed the hypothesis that perturbations

that affect the efficiency of translation of mRNAs to proteins

contribute to the etiology of ASDs (Poliakov et al. 2014).

Henceforth, we use the term “protein translation” as short-

hand for this fundamental biological process. We validated

the genetic part of our hypothesis in a pilot study of 87 syn-

onymous variants in 19 genes previously identified by other

groups as ASD susceptibility genes (Poliakov et al. 2014). The

hypothesis that protein translation is affected in ASD is

reviewed in (de la Torre-Ubieta et al. 2016). It is supported

by observations of likely deleterious mutations in genes such

as PTEN, TSC1, and TSC2, as well as the long-established

monogenic fragile X syndrome, which combines ASD and

ID. In a mechanistic top-down approach, Darnell and col-

leagues (Darnell et al. 2011) showed that genes that encode

mRNA targets of FMRP are significantly more frequently im-

plicated in ASD than would be expected by chance.

In the current study, we test our hypothesis genome-wide

using a much larger cohort (Krumm et al. 2015). In our prin-

cipal analyses, we do not preselect the genes of interest in this

study, but rather seek to identify by statistical methods those

genes in which the pattern of translation-affecting synony-

mous variants differs between affected and unaffected sib-

lings. In recognition that other groups have identified gene

subsets of interest in ASDs, we repeated our principal analysis

using those subsets of genes. We also analyze variants accord-

ing to ribosome profiling occupancy, evolutionary conserva-

tion, and CpG context to evaluate whether single nucleotide

variants (SNVs) present in affected individuals and absent in

siblings (or vice versa) differ statistically by any of these char-

acteristics pertinent to gene translation.

Materials and Methods

Ethics Statement

All the human subjects data in this study come from the

National Database for Autism Research (NDAR) with approval

by NDAR staff following their standard procedures. All data

provided via NDAR are coded. More details are in the follow-

ing subsections.

Genotype Data

We obtained genotype data on 2,392 nuclear families with

autism via NDAR. The primary data were associated with the

study of (Krumm et al. 2015). These nuclear families consist of

1,800 families with two parents, one affected child, and one

unaffected sibling, called “quartets” and 592 families with

two parents and one affected child only, called “trios.” We

used only the quartets. The primary data include the gender

of the subjects. Due to the significantly higher incidence of

ASDs in males compared with females, we partitioned the

1,800 quartets into four subsets, according to the gender of

the affected sibling and the gender of the unaffected sibling.

Reannotation and Filtering of Variants

The data provided by NDAR had been annotated with a mid-

2014 version of snpEff (Cingolani et al. 2012) with respect to

a May 2010 release of the human genome (Tychele Turner,

personal communication to confirm the snpEff and genome

versions). To get the data up to date, we used the newer

SnpEff version 4.0 to reannotate all variants with respect to

the build of the human genome known both as GRCh37.p13

and annotation release 105.

We initially considered all variants labeled by snpEff in the

revised input as either “synonymous_variant” or

“stop_retained_variant”, which are synonymous single-

nucleotide variants (SNV) in the coding region of a gene.

We integrated allele frequencies for European American

and African American populations from the NHLBI Exome

Sequencing Project (evs.gs.washington.edu/EVS). Most var-

iants are annotated by SnpEff with a conservation score

from PhyloP (Pollard et al. 2010). We performed the following

filtering steps:

1. We removed variants whose snpEff annotation is inconsis-

tent with GRCh37.p15 because of gene/transcript, the

strand, or the codon.

2. We removed variants that could not be assigned to both a

RefSeq Transcript starting with “NM” and an Ensembl

transcript starting with “ENST.”

3. We removed all (variant, family) pairs for which the variant

genotypes were missing in either sibling. Missing geno-

types in the parents were allowed.

4. (recommended by the data suppliers) We removed all var-

iants in segmental duplications (SegDup) and all variants

with a high tandem repeats finder [TRF, (Benson 1999)]

score above 50. These variants may not have been

mapped reliably in the NDAR data.

For most of the analyses, we used SNVs such that the

minimum recorded allele frequency is �10% or the maxi-

mum recorded frequency is �90%. We also included SNVs

for which the allele frequencies are unknown because the

SNVs with unknown frequencies are expected to have a

rare minor allele. The second threshold is needed for the cases

in which GRCh37.p13 has the minor allele as the reference.

To test the robustness of our results, we redid some analyses

using instead the threshold pairs (�5%,�95%) and (�15%,

�85%). When AA, Aa, and aa genotypes, where a is a less
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common allele, were reported for the hemizygous parts of X

and Y chromosomes in male subjects, we used A, a, and a

genotypes, respectively.

Targeted Gene Lists

We did the principal analyses genome-wide. Some analyses

were repeated on lists of genes suggested by other groups to

be implicated in autism. The SFARI Gene list is an evolving

online database designed to permit quick entr�ee into the ge-

netics of autism, and to help researchers track the ever-

expanding genetic risk factors that emerge in the literature

(https://gene.sfari.org/; last accessed March 14, 2017). A re-

cent paper (Ji et al. 2016), presented lists of essential (EGenes)

and nonessential (NEGenes) genes, based on the known roles

of orthologs to these genes in mouse development combined

with several other sources of information. Approximately half

of all human protein coding genes were classified as either

EGenes or NEGenes; we refer to all other human protein

coding genes as “Unclassified.” For the SFARI, EGenes, and

NEGenes lists, we used the gene symbols at www.hgnc.org to

update the gene symbols in the published gene list to be

consistent with the gene symbols in the NDAR data.

Codon Usage

We obtained codon usage frequencies for brain-specific

genes from (Semon et al. 2006), although the authors

oppose the idea that natural selection shapes codon usage

frequencies, as in (Poliakov et al. 2014) (supplementary table

S1, Supplementary Material online). We also used codon

usage frequencies for brain-specific genes from (Plotkin

et al. 2004), codon frequencies averaged over all human

genes (Warrington et al. 2000) and codon frequencies aver-

aged over high confidence SFARI genes (https://www.sfari.

org/resource/sfari-gene/) to test the robustness of our results.

Let FðxÞ denote the frequency among human genes (possibly

restricted to brain-specific genes) of codon x ¼ “NNN”,

where “N” denotes a nucleotide. F xð Þ is an average, not de-

pendent on a specific gene or a specific position within a

gene.

Translation Shift Score

For each individual p and variant vi at position i within the

coding region of each gene g, a shift was calculated,

S p; við Þ ¼ F wið Þ � FðviÞ
F wið Þ

:

When a variant is in the homozygous state, it is counted

twice. The term for a single variant is the translation shift score

for that variant. Similarly, for each gene, we calculated a shift

score

S p;gð Þ ¼
X

i2Vðp;gÞ
S p; við Þ;

where Vðp; gÞ are the variants observed in individual p in

gene g, vi is the codon induced by variant allele at i, and

wi is the wild type codon at position of variant i in the

gene, this measure was used for a gene selection procedure

(the section “Regression and gene selection using LASSO”).

The shifts are not weighted by any characteristics of the gene

such as the length of the gene or whether the gene is

expressed in the brain. The value of the function F depends

solely on the nucleotides forming the codon, not on the

codon’s position within the gene. It so happens that no indi-

vidual in these data sets had two variants that affected the

same codon. In principle, we would handle such a situation

for genes by representing the variant codon once in the sum,

rather than once per SNV. If the patient and the paired unaf-

fected sibling have the same genotype, such cases were not

included in the analysis.

We used the median value of Sðp; viÞ (among all the SNVs,

not grouped by genes) observed in individual p as a summary

statistic for individual p, when comparing affected individuals

to unaffected individuals. A simplified version of the transla-

tion shift score was also used instead of the median value: we

analyzed sums of signs of the translation shift scores (POS and

NEG) for each pair of affected and unaffected sibling, aggre-

gated over all SNVs in either individual. We used this sum

value as a measure of the overall shift in each individual for

pairwise comparisons of affected siblings versus unaffected

siblings.

We analyzed synonymous SNVs separately in addition to

analyses of all SNVs because synonymous SNVs were the fo-

cus in our analysis study of 19 genes previously identified by

other groups as ASD susceptibility genes (Poliakov et al.

2014). It should be noted that Poliakov et al. found that syn-

onymous SNVs with large values of the translation shift score

tend to be associated with ASD, the mean absolute value for

the studied synonymous SNVs was 0.53 (Poliakov et al. 2014).

Therefore, for all but the first set of analyses we ignored in-

dividual SNVs for which the absolute value of that specific

SNVs translation shift score was <0.5. We did similar calcu-

lations for codon frequencies derived from brain-specific

genes from (Plotkin et al. 2004) (mean absolute value 0.44),

codon frequencies averaged over all human genes

(Warrington et al. 2000) (mean absolute value 0.32), codon

frequencies averaged over high confidence SFARI genes

(mean absolute value 0.24) and codon frequencies averaged

over the list of 19 ASD susceptibility genes studied in (Poliakov

et al. 2014) (mean absolute value 0.49). When we changed

codon frequencies, the lower/upper thresholds for the synon-

ymous SNVs were adjusted to be 0.4/�0.4, 0.3/�0.3,

0.2/�0.2, and 0.5/�0.5, respectively.

A paired parametric Student t-test (two-sided) and a non-

parametric Wilcoxon matched pair test (two-sided) (the
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STATISTICA 4.5 program) were used to analyze differences

between affected and unaffected individuals.

Analysis of Ribosome Profiling Data

Five data sets of ribosome profiling in various human tis-

sues were downloaded from the GWIPS-viz browser at

http://gwips.ucc.ie/; last accessed February 12, 2016

(Michel et al. 2014, 2015). The ribosome profiling data

provide information on ribosome locations at all mRNAs

in the cell and the density of ribosome footprints depends

on both the frequency with which a corresponding open

reading frame is translated and the time that the ribosome

dwells at a given codon. These data sets are described in

the supplementary table S2, Supplementary Material on-

line. Each ribosome footprint was represented at a single

coordinate corresponding to the ribosome A-site which

was inferred with a fixed offset of 15 nucleotides from

its 50 end as in the GWIPS-viz browser. The densities of

footprints at the A-site codons were averaged in a window

of 61 nucleotides around each SNV position in the tran-

scribed and spliced mRNA (630 bases surrounding each

SNV). The signed ribosome score for a variant is the foot-

print density multiplied by þ1/�1, depending on the sign

of the translation shift score for that variant. For example,

at position 9020509 of human chromosome 12 a synony-

mous SNV was detected (AAC>AAG); the averaged den-

sity of footprints is 19.0 and the codon usage frequencies

for AAC and AAG are 0.019 and 0.031, thus the sign is�1.

For the above example, the signed ribosome score is �19.

The SNV positions were used to define windows on which

to collect data, but the actual genotypes at the SNV of the

individuals sampled for ribosome profiling were not

treated as a variable. We also analyzed ribosome profiling

scores for SNV affected codons only (without taking into

account the 630 bases surrounding each SNV), in addition

we used this codon-specific ribosome profiling scores mul-

tiplied by translation shift scores instead of þ1/�1.

Analysis of Conservation Scores

We used PhyloP sequence conservation values (Cooper

et al. 2005) provided in the revised snpEff annotation of

the NDAR data. The signed PhyloP score for a variant is its

nominal PhyloP score multiplied by þ1/�1 depending on

the sign of the translation shift score. For example, at posi-

tion 9020509 of human chromosome 12 a synonymous

SNV was detected (AAC>AAG); the PhyloP value is 0.157

and the codon usage frequencies for AAC and AAG are

0.019 and 0.031, thus the sign is �1. For the above exam-

ple, the signed ribosome score is �0.157. For each individ-

ual, P, we computed the median of the PhyloP scores for the

SNVs in that individual. We used the mean of the median

PhyloP values distribution in the same way as for the trans-

lation shift score.

Shuffling Procedure for Ribosome Profiling and
Conservation Scores

The signed ribosome and PhyloP scores for a variant are its

nominal ribosome profiling/PhyloP scores, respectively, multi-

plied by þ1/�1 depending on the sign of the translation shift

score. This creates methodological problems because any ex-

cess of scores for ASD patients can be explained by the excess

of SNVs with positive translation shift signs observed in ASD

patients (table 1). To test potential effects of the sign of trans-

lation shift scores, 100 random permutations of ribosome

profiling and conservation scores across analyzed sets of

SNVs was performed. The fraction of permuted sets with

one of two probabilities values (parametric or nonparametric

test) smaller or equal to the observed probability values was

recorded.

Analysis of CpG Dinucleotides and Methylation Status

We analyzed the fraction of SNVs in CpG dinucleotides (fCpG)

in affected and unaffected individuals. We used mean of the

medians of fCpG scores in the same way as we used the

mean of the median translation shift score.

For analysis of methylation, two data sets for brain cells

(Meissner et al. 2008) were downloaded from the University

of California Santa Cruz site (Brain BC H11058N, http://

genome.ucsc.edu/cgi-bin/hgFileUi? db¼hg19&g¼wgEncode

HaibMethylRrbs; last accessed May 17, 2018). Most CpG

dinucleotides in the hg19 reference genome are character-

ized by the methylated/unmethylated read count and the

methylation ratio (the number of methylated reads divided

by the total number of reads overlapping this position and

multiplied by 100). If either the C or G is variable, it could be

either the major allele or the minor allele, as determined

earlier in Materials and Methods. To obtain a methylation

ratio Mi for each position, we averaged the methylation ra-

tios from the two data sets. The role of methylated CpG

dinucleotides in exons is not well understood (Neri et al.

2017). Thus, we used a simple measure of the potential im-

pact of methylation. A methylation shift score Ms is com-

puted for each SNV that creates or removes a CpG

dinucleotide. For each SNV in a CpG dinucleotide that

changes a minor allele in the reference to a major allele

not in the reference at dinucleotide i, Ms ¼ Mi. For each

SNV in a CpG dinucleotide that changes a major allele in

the reference to a minor allele not in the reference, Ms ¼
100 � Mi. We used the mean of the median Ms values dis-

tribution in the same way as for the translation shift score

and the PhyloP scores.

Regression and Gene Selection Using LASSO

We used the software package “glmnet” (Friedman et al.

2010), developed in the GNU R programming system

(R2013), to analyze the shift data. The glmnet package applies
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a regression method related to LASSO [least absolute shrinkage

and selection operator (Tibshirani 1996), but applied to a gen-

eralized linear model]. Input into the glmnet package is a sparse

matrix of shift scores, with individuals represented as rows and

genes represented as columns, and a response vector contain-

inganentry for each sibling, withavalueof1 indicating that the

individual is affected, and �1 indicating the individual is unaf-

fected. Among the output of glmnet is a vector of coefficients,

one for each gene column. A nonzero coefficient indicates that

glmnet choose to use that gene in the generated regression

function. LASSO, by design, attempts to return a vector of coef-

ficients that contains many zero elements, and thus identify the

features (here, genes) that have nonzero coefficient to be the

most relevant features.

The glmnet algorithm computes LASSO-type regression

coefficients using a generalized linear model (GLM) subject

to two penalty parameters: a and k. The continuous param-

eter k coarsely controls the number of genes that are included

in the model; larger values of k generally produce models

using fewer genes. The parameter a controls the use of

ridge-regression regularization in the model. A value of

a ¼ 1 represents no ridge regression, whereas a ¼ 0 causes

glmnet to use ridge regression exclusively, whereas values of

a between 0 and 1 reflect different relative weighting of lin-

ear and quadratic penalty terms.

For a linear model, glmnet is formally described as follows.

If ðxi; yiÞ are N observations, where the components of xiare

the ptranslations shifts for the individual i and yi is the re-

sponse, then one must find a scalar b0and p-vector b that

solve

min
ðb0;bÞ

1

2N

XN

i¼1

yi � b0 � xT
i b

� �2 þ kPaðbÞ
" #

;

where

Pa bð Þ ¼ 1

2
1� að ÞbTbþ a

Xp

j¼1
bj

�� ��:
Glmnet extends the linear model to a generalized linear

model, using techniques described in (Friedman et al. 2010).

Glmnet may be run in a mode that, for fixed a, finds a value of

k that minimizes misclassification error that is observed in

cross-validation. We cross-validated the 744 male matched

pairs by creating 744 training sets that omit a single pair.

Table 1

The Number of Rare and Moderately Common SNVs (10% MAF threshold) that Have Positive (POS) and Negative (NEG) Values of the Translation Shift Score

Data Set #Families Affected Unaffected PFisher

POS NEG POS NEG

All SNVs

All 1800 1030212 806181 1030158 810095 0.0099

Ma–Mu 744 417012 322569 415560 324143 0.0059

Ma–Fu 828 476502 378133 477754 379383 0.4136

Fa–Mu 105 66226 50280 65581 50743 0.0118

Fa–Fu 123 70472 55199 71263 55826 0.4949

All synonymous SNVs

All 1800 529118 306455 528653 308594 0.0073

Ma–Mu 744 214452 124876 213574 124709 0.2934

Ma–Fu 828 244620 141475 245292 143146 0.0283

Fa–Mu 105 34065 19332 33543 19382 0.0798

Fa–Fu 123 35981 20772 36244 21357 0.047

Synonymous SNVs with absolute values of codon shift score � 0.5

All 1800 281599 227668 280328 229926 1.5 3 1024

Ma–Mu 744 114246 92353 113122 92696 0.0151

Ma–Fu 828 129876 105398 130293 106821 0.0408

Fa–Mu 105 18310 14456 17840 14421 0.0687

Fa–Fu 123 19167 15461 19073 15988 0.0059

Synonymous SNVs with absolute values of codon shift score � 0.5 and all non-synonymous SNVs

All 1800 794391 726998 791949 731629 2.5 3 1025

Ma–Mu 744 321804 295470 319811 296927 0.0010

Ma–Fu 828 368458 336237 368168 338563 0.0114

Fa–Mu 105 50471 45403 49878 45681 0.0254

Fa–Fu 123 53658 49888 54092 50458 0.3548

NOTE.—One-tail Fisher exact tests (http://www.langsrud.com/fisher.htm) were used to test whether SNVs in affected individuals tend to have relatively more SNVs with a
positive shift than unaffected individuals. Ma–Mu is affected male-unaffected male siblings, Ma–Fu is affected male—unaffected female siblings, Fa–Mu is affected female—
unaffected male siblings, Fa–Fu is affected female—unaffected female siblings. Significant deviations according to the Fisher exact test from the homogeneous 2� 2 tables are
bold and underlined.
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For each of these training sets, glmnet generated a classifier

and tested its ability to correctly classify the two omitted indi-

viduals. We use glment to perform similar cross-validation for

the 123 female–female pairs.

The overall scheme used to generate the candidate gene

set G is shown in the left-hand column of supplementary

figure S1, Supplementary Material online. Before applying

glmnet, we scaled the columns of shifts, each of which rep-

resents the values of a given gene, to have a standard devia-

tion of one. We did not center the values. Scaling and

centering affects the magnitude of the optimal coefficients,

and so is often applied before calling a LASSO-type algorithm;

it is done by default in glmnet. However, while we wish to

suppress differences in the magnitude of the shifts between

genes, as it is not clear that these magnitudes are comparable,

we expect that the sign of the change is important. Thus, we

do not center, as centering may change the sign of some

elements.

For the 11 fixed values a ¼ 0:0; . . . ; 0:9; 1, we had

glmnet use cross-validation to generate optimal binomial gen-

eralized linear models. For each tested a, we recorded the

optimal k ¼ kminðaÞ, and the coefficients of the linear model,

one for each gene, produced for that value of a and kminðaÞ.
The full set of candidate genes, G, is the set of genes at the

optimal parameter pair ða; kÞ.
To test the sensitivity of the genes results to changes in the

input parameters, we generated three additional gene sets—

G50%, G0.005 and Gfilterdd—as shown in the right-hand col-

umn of supplementary figure S1, Supplementary Material on-

line. First, for each gene in G, we recorded how many times

that gene was chosen by one of the classifiers generated by

cross-validation. For the male–male set, this number was be-

tween 0 and 744, for the female set it was between 0 and

123. The set G50% was defined to be the subset of G that was

chosen in at least half of the cross-validation tests. Finally, for

the 11 tested values of a, found the subset G0.005 of G con-

sisting of genes that had a coefficient with magnitude at least

0.005 in the classifier generated by at least one of the tested

a. For the most cautious lists of genes, we took the intersec-

tion of G50% and G0.005 to arrive at Gfiltered.

Functional Annotation of Generated Gene Lists

We used STRING (Szklarczyk et al. 2017) to annotate the gene

lists generated by LASSO analysis and to discover clusters of

functionally connected genes using the Markov Cluster

Algorithm (MCL). For such clusters, STRING reports a

Protein–Protein Interaction (PPI) enrichment P value, indicating

whether the generated network has significantly more inter-

actions that expected. The MCL algorithm was run with the

inflation parameter 4.5.

We used a second tool, GeneCodis (Carmona-Saez et al.

2007), to probe gene list enrichment for GO ontology, KEGG

Pathways and Panther Pathways.

Because the LASSO-derived list for male pairs was large

(1,224 genes), we also examined its intersection with the

union of downregulated (M12 and MOD1) or upregulated

genes in ASD patients (M16 and MOD5) from gene expres-

sion studies (Voineagu et al. 2011; Gupta et al. 2014).

Voineagu et al. derived expression data from microarray

experiments (Voineagu et al. 2011), and Gupta et al. applied

RNA-seq technology (Gupta et al. 2014). Because of the dis-

tinct characteristics of these two gene expression technolo-

gies, we used the union of the gene lists from the two studies.

Results

We analyzed a data set of 1,800 quartets comprising a father,

mother, and two siblings (one affected and one unaffected

individual) obtained from NDAR (see Materials and Methods,

subsection Genotype data). For each individual p and variant

vi in a coding region we computed a shift score Sðp; viÞ that is

based on the relative frequency of the codon induced by the

variant to the wild-type codon (see Materials and Methods,

subsection Translation shift score).

We checked our hypothesis that the codon usage shift

(translation shift score) of rare and moderately common

SNVs is associated with autism (Poliakov et al. 2014) in the

simplest way. SNV minor allele frequencies (MAF) were

obtained from the NHLBI Exome Sequencing Project (evs.gs.-

washington.edu/EVS; see Materials and Methods, subsection

Reannotation of variants). The total number of rare and mod-

erately common SNVs (MAF � 10%) that are different be-

tween affected and unaffected sibling was counted. We also

counted the total number of SNVs with positive values of

translation shift score (more frequent codon changed to less

frequent codon) (POS shift, table 1). We compared these

numbers with the number of SNVs (MAF � 10%) with the

translation shift score� 0 (NEG Shift, table 1) using the Fisher

2x2 exact test. We find that affected individuals have a sig-

nificantly higher proportion of SNVs with a positive shift score

(table 1). As in a previous study of ASD families (Ji et al. 2016),

we split the 1,800 families into four subsets: affected male-

unaffected male pairs (Ma–Mu), affected male—unaffected

female (Ma–Fu), affected female—unaffected male (Fa–Mu),

affected female—unaffected female (Fa–Fu). We found that

the Ma–Mu subset and the Fa–Mu subsets have significant

differences between affected and unaffected individuals

(P¼ 0.0059 and 0.0118, respectively, table 1).

We tested the robustness of this observation by using the

alternative thresholds of 5% and 15% for moderately com-

mon SNVs instead of the baseline threshold of 10%. The

same trend was observed for both thresholds (supplementary

table S3, Supplementary Material online). The 15% threshold

produced significant results for All (all families together) and

for Ma–Mu and Fa–Mu categories (supplementary table S3,

Supplementary Material online) because the number of var-

iants included is larger than for the 5% or 10% thresholds. All
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these results suggested that although the difference between

affected and unaffected individuals generally was not sub-

stantial, the statistical significance (table 1 and supplementary

table S3, Supplementary Material online) warrants further in-

vestigation. The tests in the table 1 and the supplementary

table S3, Supplementary Material online are one-tail tests be-

cause they are attempting to confirm our previous results; in

contrast, tests of new hypotheses below are done as two-tail

tests.

Next, we repeated the comparison, omitting any synony-

mous SNVs with translation shift score <0.5 (see Materials

and Methods). The use of this threshold substantially im-

proved the results of statistical analysis, the difference be-

tween affected and unaffected siblings became highly

statistically significant (P¼ 0.00015, table 1) for synonymous

SNVs and the whole data set of SNVs after exclusions of syn-

onymous SNVs with small changes of the translation shift

score (P¼ 0.000025, table 1). Thus, in all further analysis,

we ignore synonymous SNVs with translation shift score

<0.5, except for one test in which we changed the source

of the codon frequencies (see Materials and Methods, sub-

section Codon usage) and in the analysis of CpG

dinucleotides.

Analysis of Translation Shift Scores

For each individual, we used the median value of the transla-

tion shift score Sðp; viÞ as a measure of the overall shift in each

individual for pairwise comparisons of affected siblings versus

unaffected siblings (see Materials and Methods). We found

highly significant differences for the whole data set: the me-

dian for affected siblings was on average significantly larger

than the median for unaffected siblings (fig. 1a and table 2).

This difference is largely explained by a significant difference

detected for the Ma–Mu data set (fig. 1b) although Ma–Fu

and Fa–Mu sets also produced significant results (table 2). We

also tested two thresholds for synonymous SNVs (0.25 and

0.75 instead of 0.5, supplementary table S4, Supplementary

Material online). The results suggested that our analysis is

robust with respect to the choice of the threshold

(supplementary table S4, Supplementary Material online).

Our analysis also appeared to be robust with respect to var-

ious codon usage tables (supplementary table S5,

Supplementary Material online).

We analyzed sums of signs of the translation shift scores

(POS and NEG) for each pair of affected and unaffected sib-

ling, aggregated over all SNVs in either individual, again ig-

noring SNVs with shift scores having magnitude <0.5. We

used this sum value as a measure of the overall shift in each

individual for pairwise comparisons of affected siblings versus

unaffected siblings (see Materials and Methods for details).

We found highly significant differences for the whole data

set: the sum for affected siblings was significantly larger than

the sum for unaffected siblings (fig. 2a and table 3). This sig-

nificant difference is largely explained by significant differen-

ces detected for the Ma–Mu and Ma–Fu data sets (table 3).

This observation cannot be explained by substantial differen-

ces in the number of SNVs for affected and unaffected sib-

lings (at least the for the whole data set, Ma–Mu and Fa–Fu

comparisons, supplementary table S6, Supplementary

Material online).

We also did the test of translation shift scores on a subset

of human genes known to be associated with autism, the

FIG. 1.—Differences between affected and unaffected siblings using

median translation shift scores. Scores were calculated in each individual

for (a) all siblings and (b) affected male-unaffected male siblings.

Table 2

Differences between Affected and Unaffected Siblings Using Median Translation Shift Scores Calculated in Each Individual

Data Set Affected Unaffected Paired t-test (P value) Paired Wilcoxon Z (P value)

Mean SD Mean SD

All 0.012 0.041 0.006 0.042 4.3 (0.00002) 4.3 (0.00002)

Ma–Mu 0.011 0.042 0.004 0.042 3.1 (0.00214) 3.1 (0.00175)

Ma–Fu 0.014 0.039 0.009 0.041 2.9 (0.00435) 2.7 (0.00635)

Fa–Mu 0.021 0.043 0.009 0.037 2.4 (0.01834) 2.3 (0.02119)

Fa–Fu �0.002 0.046 0.001 0.046 �0.6 (0.52963) 0.4 (0.69766)

Two-tailed paired tests were used to compare median values of translation shift scores calculated in each individual. Ma–Mu is affected male-unaffected male siblings, Ma–Fu
is affected male—unaffected female siblings, Fa–Mu is affected female—unaffected male siblings, Fa–Fu is affected female—unaffected female siblings. Codon usage frequencies
were taken from (Semon et al. 2006), as used in (Poliakov et al. 2014). Results for other codon usage sets (supplementary table S5, Supplementary Material online) are similar to the
(Semon et al. 2006) codon usage data.
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SFARI (https://gene.sfari.org/) list (Materials and Methods, sub-

section Targeted gene lists). We analyzed translation shift

scores for each pair “affected sibling versus unaffected sib-

ling” for the SFARI list. Our analysis revealed marginally sig-

nificant differences for the Ma–Mu subset: the median for

affected males was significantly larger than the median for

unaffected males for pairwise comparisons (supplementary

table S7, Supplementary Material online). No significant dif-

ferences were detected for other three subsets of families, or

for all families combined.

A recent paper (Ji et al. 2016), which also reanalyzes pub-

lished autism variant data, presented lists of essential and

nonessential genes (EGenes and NEGenes, see Materials

and Methods). The authors detected a significant excess of

deleterious variants in EGenes in ASDs. We redid our main

analysis specialized to the lists of EGenes and NEGenes, in-

stead of all protein-coding genes. For the whole data set,

significant differences were found when we analyzed trans-

lation shift scores for each pair “affected sibling versus unaf-

fected sibling” (supplementary table S8, Supplementary

Material online). Our analysis revealed highly significant differ-

ences for the All and Ma–Mu subsets for both EGenes and

NEGenes and the two sets combined (supplementary table

S8, Supplementary Material online). For the Ma–Fu subset, a

marginally significant difference was found for nonessential

genes whereas no significant difference was found for essen-

tial genes (supplementary table S8, Supplementary Material

online). We also compared sets of merged EGenes and

NEGenes versus all other human genes; a substantial differ-

ence was found between these two sets of genes (supple-

mentary table S8, Supplementary Material online). This is

consistent with the previous study of these two sets (Ji et al.

2016).

Analysis of Ribosome Profiling

We also analyzed scores created by multiplying the sign of the

translation shift score (þ1 or�1) by the densities of footprints

at A-site codon obtained from GWIPS (see Materials and

Methods, subsection Analysis of ribosome profiling data).

This ribosome profiling score was computed for each SNV

(see Materials and Methods) for each pair “affected sibling

versus unaffected sibling.” The intent of this analysis is to

assign a weight to theþ1/�1 scores in a manner that reflects

a direct quantitative measurement of translation, thereby get-

ting towards a possible mechanism. We used the median

value of the ribosome profiling score for normal brain samples

(Gonzalez et al. 2014) (supplementary table S9,

FIG. 2.—Differences in scores between affected and unaffected siblings. Scores were computed using (a) sum of þ1 and �1 indicating a positive or

negative sign of translation shift scores calculated in each individual for all siblings, (b) median signed ribosome profiling scores for normal brain samples for

all siblings (G14n, supplementary table S2, Supplementary Material online) calculated in each individual, (c) median conservation scores calculated in each

individual for all siblings, (d) the fraction of SNVs in the CpG context calculated in each individual for all siblings.
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Supplementary Material online) as a measure of the overall

shift in each individual for pairwise comparisons of affected

siblings versus unaffected siblings (see Materials and Methods

for details). We observe a significant difference for the whole

data set, for Ma–Mu subset and Ma–Fu subset: the median

for affected siblings was significantly larger than the median

for unaffected siblings (fig. 2b and table 4). No significant

differences were detected for other two data sets. Results

for other ribosome profiling data sets (supplementary table

S9, Supplementary Material online) are like the normal brain

samples (table 4).

We used a permutation procedure (see Materials and

Methods), to test whether the magnitude of the ribosome

profiling score, rather than just the sign of the translation shift

score, significantly distinguished autistic individuals from un-

affected individuals. We found a significant and substantial

impact of ribosome profiling scores on the outcome of the

analysis, we did not observe any randomly shuffled sets with

the probability values smaller or equal to the observed values

for the “All” sets from brain tissues (normal G14n and tumor

G14t, table 4 and supplementary table S9, Supplementary

Material online). This suggests that the ribosome profiling

score is a biologically important variable that allows a robust

distinction of affected and unaffected individuals as large sets.

We also analyzed ribosome profiling scores for SNV affected

codons (without taking into account 630 bases surrounding

each SNV) and these codon-specific ribosome profiling scores

multiplied by translation shift scores instead of þ1/�1 (sup-

plementary table S10, Supplementary Material online). Data

sets of codon-specific ribosome profiling scores were much

smaller compared with data sets of ribosome profiling scores

used for the analysis above (averaged in a window of 61

nucleotides around each SNV position), however significant

differences were observed for the whole data set, for Ma–Mu

subset, Ma–Fu and Fa–Mu subsets (supplementary table S10,

Supplementary Material online). The permutation procedure

(see Materials and Methods) suggested that the observed sig-

nificant differences are reliable at least for the “All” sets from

the normal brain tissue (G14n).

Analysis of Evolutionary Conservation

Most variants in the NDAR data were annotated with a con-

servation score from PhyloP (Pollard et al. 2010). We analyzed

the PhyloP measure multiplied by the sign of the translation

shift score (þ1 or �1) for each SNV (see the Materials and

Methods, subsection Analysis of conservation scores) for each

pair “affected sibling versus unaffected sibling.” Our reason-

ing is that the 61 score treats all variants above the 0.5 mag-

nitude equally ignoring any evolutionary considerations; using

Table 3

Differences between Affected and Unaffected Siblings Using Sum ofþ1 and�1 Indicating a Positive or Negative Sign of Translation Shift Scores Aggregated

Over Each Individual

Data Set Affected Unaffected Paired t-test (P value) Paired Wilcoxon Z (P value)

Mean SD Mean SD

All 40.87 33.51 35.63 33.64 5.2 (<1026) 5.0 (1026)

Ma–Mu 37.84 33.37 33.01 33.63 3.0 (0.0025) 2.8 (0.0047)

Ma–Fu 43.78 32.95 37.7 33.59 4.2 (0.00004) 4.1 (0.00004)

Fa–Mu 50.19 38.72 44.3 34.8 1.6 (0.1209) 1.6 (0.1201)

Fa–Fu 31.37 29.33 30.2 30.99 0.4 (0.6967) 0.3 (0.7968)

NOTE.—Two-tailed paired tests were used to compare the sum of the sign of the translation shift scores calculated in each individual. Ma–Mu is affected male-unaffected male
siblings, Ma–Fu is affected male—unaffected female siblings, Fa–Mu is affected female—unaffected male siblings, Fa–Fu is affected female—unaffected female siblings. Codon
usage frequencies were taken from (Semon et al. 2006).

Table 4

Differences between Affected and Unaffected Siblings Using Median Signed Ribosome Profiling Scores for Normal Brain Samples (G14n, supplementary

table S2, Supplementary Material online) Calculated in Each Individual

Data Set Affected Unaffected Paired t-test (P value) Paired Wilcoxon Z (P value)

Mean SD Mean SD

All 1.21 1.42 1.00 1.45 4.5 (0.00001) 4.3 (0.00002)

Ma–Mu 1.33 1.18 1.18 1.27 2.7 (0.00714) 2.7 (0.00597)

Ma–Fu 1.31 1.4 1.06 1.42 3.8 (0.00011) 3.6 (0.00282)

Fa–Mu 1.34 1.42 1.09 1.28 1.5 (0.14894) 1.4 (0.16684)

Fa–Fu 0.92 1.57 0.88 1.52 0.2 (0.84266) 0.3 (0.77661)

NOTE.—Two-tail tests were used to compare values of ribosome profiling scores calculated in each individual. Ma–Mu is affected male-unaffected male siblings, Ma–Fu is
affected male—unaffected female siblings, Fa–Mu is affected female—unaffected male siblings, Fa–Fu is affected female—unaffected female siblings.
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the PhyloP score gives greater weight to variants at positions

that are more conserved, where one might expect that a dif-

ference in translation efficiency could be more disruptive. We

used the median value of the conservation score as a measure

of the overall shift in each individual for pairwise comparisons

of affected siblings versus unaffected siblings. We observed a

significant difference for the whole data set and the Ma–Fu

data set: the median for affected siblings was significantly

larger than the median for unaffected siblings (fig. 2c and

table 5). For the Ma–Mu data set, a marginally significant

difference was found (table 5). No significant differences

were detected for other two subsets.

As with the ribosome profiling scores, we used a permu-

tation procedure (see Materials and Methods) to evaluate

whether the magnitudes of the conservation scores distin-

guish autistic individuals from nonautistic individuals. We

did not find any significant impact of conservation scores on

the outcome: for the “All” set the fraction of randomly shuf-

fled sets with the probability values smaller or equal to the

observed values (table 5) was 0.17. We conclude that the

conservation scores do not allow any meaningful discrimina-

tion between affected and unaffected individuals. The ob-

served significant differences between affected and

unaffected siblings (table 5) are likely to be due indirectly to

effects of the sign of translation shift scores (table 3).

Analysis of SNVs in CG Dinucleotides and Potential Impact
of Methylation

In our pilot study, we noticed that the frequency of variants in

the CpG context is higher in the set of moderately common

SNVs (MAF � 10%) associated with ASD (Poliakov et al.

2014). The excess of mutations in CpG sites might reflect

subtle differences in methylation, although that study

(Poliakov et al. 2014) was certainly underpowered to detect

genome-wide differences at CpG sites. The large-scale anno-

tated nature of the NDAR data eliminates this potential

problem.

We analyzed the fraction of SNVs in the CpG context for

each pair “affected sibling versus unaffected sibling.” We

observed a significant difference for the Fa–Fu data set: the

fraction of SNVs in the CpG context for affected siblings was

significantly larger than the corresponding fraction for unaf-

fected siblings (table 6). No significant differences were

detected for the other four subsets of families.

We also studied a potential impact of methylation. The

methylation shift score Ms (see Materials and Methods) for

each pair “affected sibling versus unaffected sibling” was

compared. A marginally significant difference for the all

data set was observed: the Ms score for affected siblings

was significantly larger than the corresponding score for un-

affected siblings (table 6). We also observed a significant dif-

ference for the Fa–Fu data set: the Ms score for affected

siblings was significantly larger than the corresponding score

for unaffected siblings (table 6). No significant differences

were detected for the other three subsets of families (table 6).

The fraction of SNVs in the CpG context and the methylation

shift score can be considered largely independent measures

and thus we can combine the P values using Fisher’s method

[as a formula, Pcombined¼ P1P2(1� ln(P1P2)), which can also be

derived via a Chi-squared test with four degrees of freedom].

For the t-test, the two individual P values of 0.047 and 0.009

yield a combined P¼ 0.004; for the Wilcoxon test, the two

individual P values of 0.048 and 0.015 yield a combined

P¼ 0.006. These results strongly support biological impor-

tance of methylation in ASD although they should be inter-

preted with a caution taking into account potential issues

with independence of variables.

Lists of Genes Potentially Associated with ASD

We tried to identify dozens to hundreds of genes that con-

tribute to the genome-wide differences presented above

(e.g., tables 1, 2, and 3). This can be viewed as a feature

selection problem in machine learning, for which we applied

LASSO algorithm, as implemented by glmnet (Materials and

Methods, subsection Regression and gene selection using

LASSO). A key virtue of LASSO is that it tries to limit the

number of features (here, genes) selected. Reasoning that

mRNA abundance is a weak proxy for protein abundance,

we also combined the LASSO selections with prior knowledge

on differential gene expression in ASDs (Materials and

Table 5

Differences between Affected and Unaffected Siblings Using Median Conservation Scores Calculated in Each Individual

Data Set Affected Unaffected Paired t-test (P value) Paired Wilcoxon Z (P value)

Mean SD Mean SD

All 0.052 0.061 0.045 0.062 3.7 (0.00027) 3.7 (0.00019)

Ma–Mu 0.048 0.061 0.04 0.063 2.5 (0.01299) 2.2 (0.03082)

Ma–Fu 0.058 0.061 0.048 0.061 3.6 (0.00032) 3.9 (0.00009)

Fa–Mu 0.057 0.06 0.053 0.06 0.5 (0.60275) 0.1 (0.88814)

Fa–Fu 0.03 0.058 0.044 0.064 �1.7 (0.09702) 1.4 (0.16052)

NOTE.—Two-tail tests were used to compare values of signed PhyloP conservation scores calculated in each individual. Ma–Mu is affected male-unaffected male siblings,
Ma–Fu is affected male—unaffected female siblings, Fa–Mu is affected female—unaffected male siblings, Fa–Fu is affected female—unaffected female siblings.
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Methods, subsection entitled Functional annotation of gener-

ated gene lists).

Because the results in tables 1, 2, and 3 differ by gender,

we decided to study genes in the male–male and female–

female patient-sibling pairs separately. For pairs studied, indi-

viduals were divided into two classes, affected (class¼ 1) and

unaffected (class ¼ �1). We ran LASSO using the sum of the

signs of the translation shift score, for all SNVs having trans-

lation shift score �0.5, as the independent variable for each

gene. The 1,224 genes selected by LASSO for the Ma–Mu

pairs, along with the LASSO coefficients, are shown in sup-

plementary table S11, Supplementary Material online.

Similarly, the 113 genes chosen for the Fa–Fu pairs are shown

in supplementary table S12, Supplementary Material online.

We repeated the LASSO analysis using CpG scores (each

CpG-containing SNV was assigned a value of 1, all other

SNVs are 0’s). The 183 genes chosen using CpG scores with

Fa–Fu pairs is show in supplementary table S13,

Supplementary Material online. Consistent with the lack of

association shown between CpG scores and Ma–Mu pairs

(table 6), LASSO using CpG scores separated the Ma–Mu pairs

poorly. Thus, Ma–Mu LASSO analysis using CpG scores is not

shown.

Enrichment analysis of the male–male gene list showed

numerous KEGG (33) and Panther (14) pathways enriched

with SNVs per GeneCodis (supplementary table S14,

Supplementary Material online). These pathways included

the Wnt signaling (Kegg: 04310, 12 genes, P¼ 0.046) and

Panther: P00057, 23 genes, P¼ 0.0041), Neuroactive ligand-

receptor interaction (KEGG: 04080, 26 genes, P¼ 0.00044),

pathways in cancer (KEGG: 05200, 30 genes, P¼ 0.00044),

and small cell lung cancer (KEGG: 05222, 13 genes,

P¼ 0.00057). Reported P values from GeneCodis are

corrected for multiple testing, by GeneCodis, using the

method of false discovery rate (FDR). STRING enrichment

analysis (supplementary table S15, Supplementary Material

online) identified enrichment of various GO Molecular func-

tions: catalytic (355, P¼ 0.00835), hydrolase (180,

P¼ 0.0027) and ATP-ase activity (32, P¼ 0.0356). At a higher

level of GO Biological process, several processes were also

significantly enriched: metabolic, primary metabolic, organic

substance metabolic, and cellular metabolic processes.

The Wnt signaling pathway is a prevalent theme in our

enrichment analysis. Recently, it was proposed to be central

for proper development of neurons and mutations in these

genes were shown to be high confidence or likely causative

for autism (Caracci et al. 2016; Kwan et al. 2016). Analysis of

male–male translation shift scores using GeneCodis and GO

ontologies demonstrates highly significant enrichment in ATP-

binding proteins (120, P¼ 1.26� 10�14) and nucleotide bind-

ing proteins (155, P¼ 2.51 � 10�15) (supplementary table

S14, Supplementary Material online). This theme is also con-

sistent with another recent hypothesis about autism etiology,

which implicates ATP as central stress signaling molecule in

cell danger response (CDR) response (Naviaux 2014; Naviaux

et al. 2013, 2017).

We did not expect relevant pathways to show up in en-

richment analysis of the female–female list derived from trans-

lation shift scores because no statistical significance was

shown in that analysis (tables 2 and 3). In fact, the enrichment

analysis with GeneCodis identified three KEGG pathways

(supplementary table S16, Supplementary Material online).

Those pathways were: Ribosome biogenesis in eukaryotes,

KEGG: 03008 (three genes, P¼ 0.035), Mineral absorption,

KEGG: 04978, (three genes, P¼ 0.037); and p53 signaling

pathway, KEGG: 04115, (three genes, P¼ 0.0041).

Table 6

Differences between Affected and Unaffected Siblings Using the Fraction of SNVs in the CpG Context and the Methylation Shift Score (Ms) Calculated in

Each Individual

Data Set Affected Unaffected Paired t-test (P value) Paired Wilcoxon Z (P value)

Mean SD Mean SD

Fraction of SNVs in the CpG context

All 0.447 0.020 0.447 0.021 �0.2 (0.816) 0.6 (0.529)

Ma–Mu 0.448 0.02 0.448 0.022 �0.4 (0.718) 0.5 (0.618)

Ma–Fu 0.447 0.019 0.447 0.020 �0.7 (0.489) 1.1 (0.277)

Fa–Mu 0.448 0.019 0.449 0.018 �0.5 (0.621) 0.5 (0.644)

Fa–Fu 0.447 0.021 0.442 0.028 2.0 (0.047) 2.0 (0.048)

Methylation shift score

All 83.6 24.7 81.7 24.6 2.4 (0.015) 2.2 (0.026)

Ma–Mu 82.6 26.4 80.2 27.0 1.9 (0.062) 1.7 (0.081)

Ma–Fu 84.5 21.3 83.6 21.5 1.0 (0.312) 0.9 (0.352)

Fa–Mu 76.5 26.6 79.9 24.6 �1.0 (0.297) 0.9 (0.364)

Fa–Fu 88.7 31.3 80.0 27.3 2.7 (0.009) 2.4 (0.015)

NOTE.—Two-tail tests were used to compare fractions/methylation shift scores calculated in each individual. Ma–Mu is affected male-unaffected male siblings, Ma–Fu is
affected male—unaffected female siblings, Fa–Mu is affected female—unaffected male siblings, Fa–Fu is affected female—unaffected female siblings.
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Modular enrichment analysis with GeneCodis of the

LASSO-derived CpG female–female list (supplementary table

S17, Supplementary Material online) demonstrated that the

Wnt signaling pathway is enriched in SNVs associated with

ASD patients [KEGG: 04310 (P¼ 0.014) and Panther: P00057

(P¼ 0.021)]. It was also shown that the basal cell carcinoma

pathway KEGG: 05217 (four genes, P¼ 0.017)] as well as

Neuroactive ligand-receptor interaction (KEGG: 04080, seven

genes, P¼ 0.025) may be important for ASDs.

We also examined the intersection of the LASSO male–

male list (1,224 genes) and downregulated modules (M12

and MOD1) or upregulated genes modules in ASD patients

(M16 and MOD5) (Voineagu et al. 2011; Gupta et al. 2014).

Eighty-nine (89) of the 1224 reported by LASSO were in the

downregulated modules, M12 and MOD1. There were signif-

icantly more interactions among these 89 genes in STRING

analysis (supplementary table S18, Supplementary Material

online) than expected (number of edges is 39, expected num-

ber is 26; PPI enrichment P value: 0.011). Two GO functional

ontologies in STRING were also enriched with P< 0.01 [GO:

0045202 synapse (13 genes) P¼ 0.0031 (fig. 3); GO:

0044456 synapse part (11 genes) P¼ 0.0071] (supplementary

table S15, Supplementary Material online). The intersection of

the LASSO male–male list with the set of upregulated genes in

ASDs did not show any functional enrichment in STRING. As

an example, the SNVs for seven genes from the figure 3,

GABRD, SH2D5, GRM8, KCNC3, SYT6, RIMS3, and CAP2,

are shown in the supplementary table S19, Supplementary

Material online. Some SNVs are overrepresented in ASD

patients, but this excess is not overwhelming and significant

(supplementary table S19, Supplementary Material online).

This tendency seems to create major problems for GWAS-

type analyses.

For the LASSO models reported above, table 7 shows the

count of the sign of coefficients for the best model produced

by glmnet, restricted to those genes that also passed the

quality filters described in Materials and Methods. The num-

bers of genes with positive weights and with negative weights

in our LASSO models is roughly balanced (table 7). Thus, at

the level of genes, it may be that more efficient translation is

preferable for some genes and less efficient translation is pref-

erable for other genes. This balanced result is in contrast to

genetic studies seeking rare variants, which have predomi-

nantly found likely gene disruptive variants in the heterozy-

gous state. However, it is known that interplay between

optimal and suboptimal synonymous codons is extremely

complex in eukaryotic and prokaryotic proteins. Although

highly expressed genes tend to have an excess of optimal

codons, suboptimal codons are functionally important for cor-

rect folding of many proteins (Chaney et al. 2017). The im-

portance of both optimal and suboptimal codons for different

groups of genes is consistent with a significantly higher frac-

tion of large shifts from optimal codons to suboptimal codons

(absolute values of codon shift score �0.5) in affected male

individuals compared with unaffected male individuals.

Moreover, the complementary trend that unaffected male

siblings have more large shifts from suboptimal codons to

optimal codons than do affected siblings also holds (supple-

mentary table S20, Supplementary Material online).

Discussion

We previously proposed the hypothesis that perturbations

that affect the efficiency of protein translation contribute to

the etiology of ASDs (Poliakov et al. 2014). In this study, we

confirmed and refined our hypothesis. This hypothesis fits the

environmentþgenetics paradigm because both exposure to

toxins and synonymous genetic variations may affect protein

translation. Others have previously hypothesized that aberrant

translation at synapses is pertinent to the etiology of ASDs

(Kelleher and Bear 2008). Translation at synapses is different

from translation in other cells, because at synapses, the phe-

nomenon of pausing translation (Buchan and Stansfield 2007;

Richter and Coller 2015) is essential to synaptic plasticity

(Graber et al. 2013). Darnell and colleagues (Darnell et al.

2011) showed that for hundreds of genes polyribosome stall-

ing is affected by FMRP, the protein that is defective in fragile

X syndrome, connecting stalling in translation at synapses ex-

plicitly to ASDs and ID. Synonymous substitutions can affect

the efficiency of translation and the stability of mRNAs and

proteins (Drummond and Wilke 2008; Shabalina et al. 2013;

Presnyak et al. 2015). It is generally accepted that translation

efficiency is affected by codon usage bias (CUB) via tuning the

rate of elongation (Quax et al. 2015). A validated model of

codon-tRNA balance for translation efficiency describes how

CUB affects translation rates genome-wide, for synonymous

mutations (Qian et al. 2012). Furthermore, there are docu-

mented cases of different protein structures for the same

amino acid sequence translated from two distinct, synony-

mous nucleotide sequences (Tsai et al. 2008).

We considered the possible interactions with ribosomal

profiling scores (significant, at least in male–male pairs) and

phylogenetic conservation (not significant). Our pairwise anal-

ysis of translation shift scores and ribosome profiling scores for

affected and unaffected siblings (tables 2 and 4) suggested

that protein dosage effects are likely to be a widespread phe-

nomenon for ASD patients. These effects were most pro-

nounced for male–male comparisons. These results are

consistent with the overall trends of translation shift scores

(table 1). The t test (parametric test) and Wilcoxon matched

pairs test (nonparametric test) produced comparable results

on most of the tests where we tried both methods. This

suggests that results are also consistent from the statistical

point of view. We did not apply any corrections for multiple

tests, except within the GeneCodis analyses, which do the

correction by default.

Recent genomic studies on ASD have focused on whole

genome and whole exome sequencing to identify rare
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variants in genes seen more frequently in ASD subjects than

controls (Sanders et al. 2015; Turner et al. 2016; Yuen et al.

2017; Takata et al. 2018). In those studies, pathways of in-

terest are identified in a bottom-up fashion by looking for

enrichment of small networks of protein–protein interactions

among the proteins encoded by the mutated genes. This ap-

proach of looking for rare variants in ASD has been much

more successful than genome-wide association studies

(GWAS) have been at finding common variants associated

with ASD (Wang et al. 2009; Geschwind and State 2015).

Yet, multiple modeling studies of ASD inheritance conclude

that common variants do contribute significantly to ASD her-

itability (Gaugler et al. 2014; Robinson et al. 2016). A recent

review that tried to compare the different types of evidence

suggested that rare variants might explain 21% of ASD

(Chaste et al. 2017). Even if one accepts much larger esti-

mates of 40% or more (Ronemus et al. 2014), single rare

variants that are associated with ASD do not necessarily

FIG. 3.—Network of functionally connected genes. The network was reconstructed using the STRING program obtained by intersection of LASSO male–

male list and downregulated modules in ASD patients as the input (Gupta et al. 2014; Voineagu et al. 2011). GO: 0045202 synapse-classified genes are

shown in red.

Table 7

Count of the Sign of the Coefficients in the Best Model Generated by Glmnet, for Those Genes that Also Passed Quality Filters

Data Set Score Used Positive Negative Close to Zero Total Tested

Ma–Mu Sum of signs of translation shift scores 597 569 58 16,942

Fa–Fu Sum of signs of translation shift scores 48 60 5 15,045

Fa–Fu Count of CpG 84 85 15 12,491

NOTE.—Models were produced separately for the Ma–Mu and Fa–Fu data sets, using either the sum of signs of the translation shift scores or the count of SNVs in CpG
dinucleotides, as indicated in the second column. The “Positive” and “Negative” columns show the count of positive and negative coefficients with absolute value of at least
0.005. The “Close to Zero” column shows the count of coefficients with nonzero, but smaller, absolute value. The “Total Tested” column counts the number of genes considered
by glmnet when producing the corresponding model, namely those genes for which at least one individual in the respective data set had a nonzero score.
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cosegregate with disease in multiplex families (Leppa et al.

2016). Moreover, many high-risk rare copy-number variants

and other rarer variants are found at measurable frequencies

in healthy individuals (Robinson et al. 2016). Some studies of

rare variants have found that ASD subjects are more likely

than controls to carry multiple rare variants in ASD-

associated genes, so that the rare variants confer an additive

risk (Buja et al. 2018; Turner et al. 2017). In this view, it is

possible that known rare variants and unknown common

variants combine additively to confer ASD risk in the same

subjects (Weiner et al. 2017).

We suggest that this discrepancy between predictions

about the role of common variants and the paucity of

GWAS findings can be addressed by looking for large sets

of common variants that hint at a mechanism (less translation

for males and differential methylation for females). Our meth-

ods are fundamentally different from GWAS, which searches

for single variants that are statistically associated. One other

study tried to look for evidence that de novo synonymous

variants with suboptimal codons are associated with ASD

(Takata et al. 2016), but was underpowered because of the

restriction to de novo variants. We combined the purely math-

ematical prediction of translation efficiency score with pub-

lished experimental data on ribosome profiling to validate our

mechanistic hypothesis.

Our analysis of ribosome profiling produced better results

from the statistical point of view when using brain tumor

samples (G14t, supplementary table S9, Supplementary

Material online) compared with normal brain samples

(G14n, table 4). This may be a result of disturbed translation

in both tumor cells (Gonzalez et al. 2014) and ASD patients

(Kelleher and Bear 2008). An alternative explanation is that

there may have been better sampling of reads from tumor

cells. The disturbed translation was suggested to be an im-

portant hallmark of ASD (Kelleher and Bear 2008).

We also did an analysis of SNVs at CpG dinucleotides,

which suggested that female ASD patients have a significantly

higher frequency of SNVs in these dinucleotides, whereas no

similar tendencies were found for male–male pairs. CpG dinu-

cleotides can be methylated to form 5-methylcytosine. In

mammals, methylating the cytosine within a gene can sub-

stantially change its expression. Monogenic, syndromic forms

of autism that involve methylation defects, including Rett syn-

drome, Prader–Willi and Angelman syndromes, and others,

suggested that differential methylation of genes may underlie

one aspect of ASD pathogenesis (Vogel Ciernia and LaSalle

2016). Moreover, several studies of likely deleterious muta-

tions and pathway enrichment have observed that genes con-

trolling chromatin accessibility or remodeling (and hence gene

expression) are enriched for genes with recurrent mutations

(Geschwind and State 2015; Sanders et al. 2015; Geisheker

et al. 2017). The observed tendencies may reflect such effects

in gene expression triggered by environmental factors. The

combination of our results using ribosome profiling and

CpG dinucleotides confirms that gender-specific properties

of ASD are important (Frazier et al. 2014; Duvekot et al.

2017), and suggests some differences in genetic mechanisms

for ASD susceptibility in the two genders.

We found dramatic differences between the lists of the

merged essentialþnonessential gene set and all other unclas-

sified human genes (supplementary table S8, Supplementary

Material online). We conjecture that this distinction reflects a

protein dosage effect in the classification itself, namely that

genes with moderate to high expression in the brain are sub-

stantially enriched in the merged essentialþnonessential gene

set, whereas genes with low or no expression are mostly

unclassified.

Delineation of specific genes associated with ASD is a fre-

quent approach to studying this complex disease (Sanders

et al. 2015; Yuen et al. 2017). One of the most widely used

lists is the SFARI list (https://gene.sfari.org/). Our lists of genes

associated with ASD were generated using LASSO analysis for

translation shift score for male–male and female–female

patient-sibling pairs and for CpG containing SNVs for fe-

male–female patient-sibling pairs. We found several promis-

ing candidate pathways. The Wnt signaling pathway has been

implicated in ASD by several studies (Caracci et al. 2016; de la

Torre-Ubieta et al. 2016; Kwan et al. 2016; Takata et al.

2016). This pathway seems central for synapse formation/

plasticity as well as for cancer initiation/progression (Anastas

and Moon 2013; Caracci et al. 2016). We also found that

SNVs in downregulated coexpressed of proteins from ASD

patients are enriched in synaptic proteins. We also found

that predicted lists of genes are highly enriched in ATP-

binding and nucleotide binding proteins per GO ontologies.

One recent hypothesis of autism etiology implicates ATP as a

central stress signaling molecule in the cell danger response

(CDR) response, (Naviaux 2014; Naviaux et al. 2013, 2017).

Thus, enrichment of ATP binding and ATPase activity in male–

male pairs is in an agreement with this hypothesis All these

findings confirm that ASD etiology is extremely complex and

likely to require larger sets of affected families for more de-

tailed studies of ASD.

Towards this objective, public availability of large data sets

via repositories such as NDAR and MSSNG is essential to

allowing more researchers to participate in the search for

factors that contribute to ASDs. Our findings support the

work of other researchers who have suggested that Wnt sig-

naling and ATP/ATP-ase activities may play mechanistic roles

in the causes of autism. Our significant findings about trans-

lation shift scores support the general theory that environ-

mental toxins may combine with genetic variation to impact

the translation efficiency of hundreds of brain-expressed

genes, thereby affecting disease propensity. In light of the

accumulating evidence both genetic and environmental fac-

tors in ASD susceptibility, it is essential to search for gene-

environment interactions, but designing such studies is very

difficult (Kim and Leventhal 2015). It is an interesting
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challenge, not just for autism, to develop new methods to

study the efficiency of protein translation genome-wide.

Whether allele frequencies in ASD-related SNVs have

changed in conjunction with the increase in ASD prevalence

is an open question (Polimanti and Gelernter 2017). It has

been suggested that at least two different evolutionary mech-

anisms appear to be present in relation to ASD genetics:

1) rare disruptive alleles eliminated by purifying selection

and 2) common alleles selected for their beneficial effects

on cognitive skills (Polimanti and Gelernter 2017). This com-

bination of mechanisms would explain part of the increase in

ASD prevalence, which is quite unexpected for a trait being

selected against. At least the forms of autism that include ID

would be expected to be selected against. From this evolu-

tionary perspective, the changes in allele frequencies and in-

crease in ASD prevalence could be evolutionary costs of

polygenic adaptation related to cognitive ability (Polimanti

and Gelernter 2017).

Our results are consistent with the hypothesis that allele

frequency changes are subtle. Hence, the statistical signals

can be detected more effectively by analyzing many variants

at once rather than analyzing one variant at a time in the

GWAS paradigm. Human adaptation in response to the se-

lection of polygenic phenotypes due to short-term environ-

mental factors may occur via subtle allele frequency shifts at

many loci (Chaste et al. 2017; Turner et al. 2017; Weiner et al.

2017).

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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