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The circadian (24 h) clock system adapts physiology and behavior to daily recurring
changes in the environment. Compared to the extensive knowledge assembled over
the last decades on the circadian system in adults, its regulation and function during
development is still largely obscure. It has been shown that environmental factors, such
as stress or alterations in photoperiod, disrupt maternal neuroendocrine homeostasis
and program the offspring’s circadian function. However, the process of circadian
differentiation cannot be fully dependent on maternal rhythms alone, since circadian
rhythms in offspring from mothers lacking a functional clock (due to SCN lesioning or
genetic clock deletion) develop normally. This mini-review focuses on recent findings
suggesting that the embryo/fetal molecular clock machinery is present and functional
in several tissues early during gestation. It is entrained by maternal rhythmic signals
crossing the placenta while itself controlling responsiveness to such external factors to
certain times of the day. The elucidation of the molecular mechanisms through which
maternal, placental and embryo/fetal clocks interact with each other, sense, integrate
and coordinate signals from the early life environment is improving our understanding of
how the circadian system emerges during development and how it affects physiological
resilience against external perturbations during this critical time period.
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INTRODUCTION

The circadian system is required to anticipate and adapt physiology to daily recurring changes in the
environment over 24 h (Dibner et al., 2010). It coordinates complex behaviors such as sleep (Collins
et al., 2020), activity (Moore and Eichler, 1972; Stephan and Zucker, 1972), food intake (Hatori et al.,
2012; Koch et al., 2020), and stress responses (Oster et al., 2006). In mammals, a master circadian
pacemaker is located in the hypothalamic suprachiasmatic nucleus (SCN) and subordinated clocks
are present throughout the brain and the periphery (Ralph et al., 1990). The SCN perceives time of
day via direct photic input from the retina and subsequently relays temporal information through
coordination of the neuroendocrine system. Therefore, several SCN efferent connections are found
within the medial hypothalamus where key cell groups are involved in organizing hormone release
and autonomic nervous system tone (Kalsbeek et al., 2006, 2011). A plethora of humoral and
neuronal signals convey time-of-day information to the periphery to elicit rhythmic regulation of
the local clock gene machinery and, in turn, of a set of tissue-specific downstream clock-controlled
genes (Buhr and Takahashi, 2013).
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During pregnancy, the maternal neuroendocrine system
adapts to support fetal development and growth (Tal et al., 2000;
Russell and Brunton, 2019). Circadian coordination likely plays
a fundamental role in this adaptation during the whole period
of pregnancy, parturition, and lactation (Wharfe et al., 2016a).
However, compared to the extensive knowledge gained over
the last decades on the adult circadian system, its regulation
and function during pregnancy remains largely obscure (Wharfe
et al., 2011, 2016a,b; Papacleovoulou et al., 2017). The placenta is
the only organ that is formed by the interaction of, both, maternal
and fetal/embryonic tissues. It forms the interface between
the two circulatory systems. The circadian clock is strongly
involved in regulating functions such as hormone synthesis and
immunity in the adult, then it might be involved in the diurnal
regulation of these functions also during embryogenesis and in
the placenta. And, last but not least, the fetal/embryo circadian
system develops and gains autonomy toward term (Wharfe et al.,
2011; Landgraf et al., 2015) under the influence of endogenous
and exogenous entrainment signals crossing the placenta (Serón-
Ferré et al., 2012; Čečmanová et al., 2019). However, little is
known about fetal/neonate clock functions that might be relevant
during this period of development.

Understanding circadian coordination during pregnancy
requires an assessment of the interaction of three clocks—
maternal, placental and fetal—plus taking into account that
this interaction undergoes dynamic changes over the course
of pregnancy (Mark et al., 2017). After birth, maternal
behavior, body temperature and signals from breast milk further
affect neonate circadian system development until weaning
(Nozhenko et al., 2015) (Figure 1).

The Maternal Circadian System During
Pregnancy and Early Postnatal Life
The role of the maternal clock during perinatal life has been
studied by SCN lesion experiments in rodents, using clock
deficient models and by exposing the pregnant mother to
environmental conditions such as constant light (LL), chronic
phase shifts or mistimed food availability, at different phases
of gestation (Varcoe et al., 2011, 2013, 2018; Vilches et al.,
2014; Houdek et al., 2015; Mendez et al., 2016; Smarr et al.,
2017; Carmona et al., 2019). In the short term, the impact of
maternal chonodisruption has been assessed using within-litter
synchrony of the fetal/neonate central and peripheral clocks,
metabolic rhythms, and activity as readouts. Interestingly, all
different manipulations seems to have similar effects depending
on the time of gestation when the chonodisruption was induced
(Reppert and Schwartz, 1984; Davis and Gorski, 1988; Jud and
Albrecht, 2006; Mendez et al., 2012, 2016; Varcoe et al., 2016;
Salazar et al., 2018). Maternal chronodisruption also induces
long term effects in the offspring such as memory and learning
deficits (Vilches et al., 2014), increased anxiety, anhedonia, and
depressive-like behavior (Voiculescu et al., 2016; Zhang et al.,
2017) and metabolic effects such as adiposity and impaired
glucose tolerance (Mendez et al., 2016).

Several maternal signals have been proposed as candidates
to cross the placenta and reach the fetal clock. Melatonin

is secreted by the pineal gland at night controlled through
neuronal connections from the SCN (Lehman et al., 1987).
Melatonin levels increase gradually toward the end of pregnancy
returning to non-pregnant levels shortly after birth (Tamura
et al., 2008). Melatonin is also found at considerable amounts
in breast milk (Illnerová et al., 1993; Rowe and Kennaway,
2002). Experiments in rats have demonstrated that some of the
short- and long-term effects of maternal LL exposure (Mendez
et al., 2012; Houdek et al., 2015; Voiculescu et al., 2015, 2016),
pinealectomy (Bellavía et al., 2006; Motta-Teixeira et al., 2018)
or SCN lesions (Davis and Mannion, 1988) can be rescued
by the administration of melatonin (recently reviewed by Hsu
and Tain, 2020). Interestingly, the central and peripheral clocks
of the fetus/newborn seem to respond differently to melatonin
replacement in arrhythmic mothers (Mendez et al., 2012; Houdek
et al., 2015). Despite that melatonin receptors have been found
in several fetal tissues and in different species (Torres-Farfan
et al., 2006) as previously reviewed by Voiculescu et al. (2014),
the melatonin secretion pathway is suppressed in most inbred
mouse strains. Considering that the offspring of these mice shows
robust rhythms, melatonin might be a synchronizing signal for
the fetal/neonate clock, but it is likely not essential for the normal
development of the circadian system.

Dopamine has been proposed as a “light-phase” entrainment
signal—i.e., antiphasic and functionally antagonistic to
melatonin—during the development of the circadian system
(Iuvone and Gan, 1995). Dopamine is able to cross placental
barrier freely and is also found in breast milk (Watanabe et al.,
1990). Moreover, dopamine receptors are widely expressed in the
fetal/neonate brain (Weaver et al., 1992; Rivkees and Lachowicz,
1997). The exposure of neonates to the dopamine receptor 1
(D1R) agonist SKF38393 increases c-fos expression in the SCN
(Weaver and Reppert, 1995). However, there is no substantial
evidence of a direct role of dopamine programing the long-term
function of the circadian system.

Glucocorticoids (GCs) have strong circadian entrainment
functions (Oster et al., 2017). In humans and rodents, maternal
GCs are released rhythmically anticipating the active phase
during whole pregnancy with a gradual increase of baseline levels
toward the end (Wharfe et al., 2016a). GCs are essential for fetal
tissue maturation, especially in the lung, and GR (glucocorticoid
receptor), or CRH (corticotrophin releasing hormone) deficiency
is lethal for the fetus (Goldfeld et al., 1983; Muglia et al.,
1995). Therefore, while low GC concentrations seem to be
necessary for pregnancy success, epidemiological studies and
animal experiments suggest that high GC levels during pregnancy
increase the risk of developing behavioral and metabolic
disorders later in life (Moisiadis and Matthews, 2014a; Coleman
et al., 2016; Marín, 2016; Busada and Cidlowski, 2017; Van den
Bergh et al., 2017; Logan and McClung, 2019). Interestingly,
most rodent prenatal stress paradigms entail some degree of
circadian disruption because the animals are manipulated during
their normal rest phase. We have recently demonstrated that the
offspring from mothers exposed to GCs during the rest phase
show worse circadian and stress-related behavioral phenotypes
than those from mothers exposed to the same GC concentration,
but during the active phase (Astiz et al., 2020).
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FIGURE 1 | View on mechanisms through which maternal, placental and embryo/fetal clocks interact with each other, sense, integrate, and coordinate signals from
the early life environment.

Much less is known about other signals that are also rhythmic
in the mother and are known to cross the placenta or to impact
on fetus development such as leptin. Transplacental transport of
leptin increases during the last week of gestation in rats, together
with an increase in expression of leptin receptor in the placenta,
likely due to increasing energy requirements (Herrid et al., 2014;
Vlahos et al., 2020). Interestingly, transplacental leptin passage
is reduced after maternal GCs exposure, whereas treatment with
metyrapone (an inhibitor of GCs synthesis) has the opposite
effect (Smith and Waddell, 2002, 2003). Other signals such
as placental lactogen, prolactin, progesterone, estradiol, and
insulin are less likely candidates for fetal circadian entrainment.
Serum levels of human chorionic gonadotropin (hCG) and
placental lactogen (hPL) were measured over 24 h, but no clear
rhythms were detected (Houghton et al., 1982). Progesterone,
estradiol, and insulin show rhythmic oscillations in non-pregnant
rodents but there is not enough evidence for such rhythms
during pregnancy.

Circadian rhythms in maternal core body temperature were
also investigated as a possible entrainment signal, however, the
reduced amplitude of these rhythms argues against a significant
role as time-giver (Wharfe et al., 2016b).

Taking together these data suggest that the effect of
maternal signals on the developing circadian system depend on
concentration, circadian phase, the interaction with other signals,
and gestational/postnatal age.

Placental Clocks and the Circadian
Regulation of Feto-Maternal Crosstalk
In order to reach the developing embryonic/fetal clock,
entrainment signals will have to pass through the placenta—as
process, which could be by itself gated by the circadian clock. The
placenta provides the interface between both circulatory systems.
It controls the exchange of nutrients, hormones, xenobiotics,

metabolites, and waste between mother and fetus (Han et al.,
2018; Staud and Karahoda, 2018). Some maternal signals such
as melatonin or dopamine freely cross the placenta and convey
external time to the fetus (Naitoh et al., 1998; Okatani et al., 1998).
Others, such as glucocorticoids, are metabolized by enzymes
expressed in the labyrinth zone (LZ) of the placenta (Okatani
et al., 1998; Krozowski et al., 1999; Mark et al., 2009, 2017;
Christ et al., 2012; Waddell et al., 2012; Houdek et al., 2015).
The LZ of rodents consists of maternal blood spaces separated
from the fetal vasculature by trophoblasts and fetal connective
tissue. It is of fetal origin and analog to the chorionic villi in
humans (Han et al., 2018; Staud and Karahoda, 2018). Enzymes
such as 11-βHSD2 (11-β-hydroxysteroid dehydrogenase 2) and
ABCB1 (ATP-Binding Cassette Subfamily B Member 1) are
highly abundant in the LZ and protect the fetus from excessive
levels of GCs. The expression of these enzymes is rhythmic
in the circadian range in the LZ and other tissues (Waddell
et al., 2012). For instance, ABCB1 has drug-efflux functions in
placenta with a broad substrate specificity, a diurnal regulation
might have implications when considering the optimal treatment
time of pregnant mothers aiming at either maximal or minimal
availability to the fetus. Therefore, it would be interesting to assess
whether the local clock is responsible for the rhythmic regulation
of these or other transporters.

In mice, the junctional zone (JZ) of the placenta secretes
monoamines and steroids with endocrine, paracrine, and
autocrine functions modulating maternal and fetal physiology
throughout pregnancy (Longhi and Kulay, 1974; Napso et al.,
2018). Placental hormones such as hCG (human chorionic
gonadotropin), hPL (placental lactogen) show no significant
diurnal variation in maternal serum (Houghton et al., 1982)
which is probably explained by the absence of a robust rhythmic
expression of the clock gene machinery in the JZ (Wharfe et al.,
2011). The placental decidua mediates the maternal immune
tolerance to the embryo (Arck and Hecher, 2013). Since, several
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immune processes are strongly regulated by the circadian system,
it would be interesting to assess whether either the maternal or
the placental clock influence this aspect of immune adaptation.

Fetal and Neonate Clock Development
and Their Function as Gatekeepers of
Circadian Entrainment Signals
Besides maternal signals and their passage through the placenta,
the entrainment of the fetal circadian system will depend on
a third factor, the reception of those signals at embryonic
target tissues. The expression of receptors for dopamine and
glucocorticoids shows dynamic changes in the developing
SCN with high levels during the prenatal phase followed by
downregulation during postnatal stages (Rosenfeld et al., 1988;
Weaver and Reppert, 1995). The exposure of neonates to the
dopamine receptor 1 (D1R) agonist SKF38393 increases c-fos
expression in the SCN during the first 3 days of postnatal
life, but receptor expression is downregulated by post-natal day
4—and so is the response of the SCN to the D1R agonist
(Weaver and Reppert, 1995). GCs influence the development
of many hypothalamic nuclei including the SCN (Moisiadis
and Matthews, 2014b; Čečmanová et al., 2019) but the GR
is not expressed in the adult nuclei (Rosenfeld et al., 1988).
Consequently, the adult master clock becomes insensitive to
dopamine, GCs and, potentially, other peripheral signals, which
may be an essential condition for the SCN to keep the time under
conditions of conflicting environmental signals.

When exactly and how the circadian clock starts ticking is still
an open question. In mice, neuronal division in the developing
SCN takes place between gestational day (GD) 10–15 peaking at
GD12 (Kabrita and Davis, 2008). Intra-SCN circuits differentiate
during the following days and retinal projections reach the SCN
mediating photic entrainment shortly after birth (Sekaran et al.,
2005). In contrast, the molecular clock machinery in the SCN
and peripheral tissues is already expressed earlier (Landgraf et al.,
2015; Čečmanová et al., 2019) and daily changes in metabolic
activity are detectable in the SCN during late gestation (Reppert
and Schwartz, 1984). Recent data from our lab show that the
circadian phase of GCs that reach fetal tissues determines their
effectiveness in programing the offspring’s circadian behavior.
This temporal gating originates from the embryonic clock
system and may involve rhythmic expression of the negative GR
modulator Reverse erythroblastoma (REV-ERBα/β aka Nr1d1/2)
(Astiz et al., 2020).

Taken together, these results indicate that an intrinsic genetic
programs, at the level of fetal tissues, interact with maternal

signals. The outcome of this interaction not only affects acute
responses of the embryo to external stimuli, but may also
determine the physiological programing of circadian behavior
and energy metabolism.

DISCUSSION

Circadian clocks have a pervasive influence on all aspects of
physiology and behavior and, not surprisingly, they also influence
embryonic development and the interaction between the embryo
and its prenatal environment. Potent players in this context
are timing signals perceived by the mother and transmitted
to the unborn. On the other hand, the fetal circadian system
is gradually evolving toward the end of gestation, thus more
and more impinging on how maternal signals are interpreted
and translated. Placental rhythmic programs have an important
function in this crosstalk by gating which signals actually reach
the embryo and how much of them at a given time.

The downregulation of receptors (such as GR) in the fetal
SCN and the partial loss of rhythmicity of some of the maternal
signals toward term indicate an emancipatory step of the prenatal
pacemaker from maternal zeitgebers. It also highlights dynamics
in the interaction between maternal signals and developmental
programs during pregnancy in general. Metabolomic approaches
may help to further decipher these kinetics allowing more
straightforward strategies to manipulate genes and pathways
during different stages of fetal development. From a clinical
perspective, a better comprehension of these interactions will
allow to improve existing therapeutic paradigms targeting
disorders of the pregnant mother or the developing child with
regard to efficiency or unwanted side effects.
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