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One of the major challenges in cancer research is finding models that

closely resemble tumors within patients. Human tissue slice cultures are a

promising approach to provide a model of the patient’s tumor biology

ex vivo. Recently, it was shown that these slices can be successfully ana-

lyzed by whole transcriptome sequencing as well as automated histochemis-

try, increasing their usability as preclinical model. Glioblastoma

multiforme (GBM) is a highly malignant brain tumor with poor prognosis

and little is known about its genetic background and heterogeneity regard-

ing therapy success. In this study, tissue from the tumors of 25 patients

with primary GBM was processed into slice cultures and treated with stan-

dard therapy (irradiation and temozolomide). Total RNA sequencing and

automated histochemistry were performed to enable analysis of treatment

effects at a transcriptional and histological level. Slice cultures from long-

term survivors (overall survival [OS] > 24 months) exhibited more apopto-

sis than cultures from patients with shorter OS. Proliferation within these

slices was slightly increased in contrast to other groups, but not signifi-

cantly. Among all samples, 58 protein-coding genes were upregulated and

32 downregulated in treated vs. untreated slice cultures. In general, an

upregulation of DNA damage-related and cell cycle checkpoint genes as

well as enrichment of genotoxicity pathways and p53-dependent signaling

was found after treatment. Overall, the current study reproduces knowl-

edge from former studies regarding the feasibility of transcriptomic ana-

lyses and automated histology in tissue slice cultures. We further

demonstrate that the experimental data merge with the clinical follow-up

of the patients, which improves the applicability of our model system.

Glioblastoma multiforme (GBM) is the most frequent

malignant brain tumor in adults [1]. As astrocytoma of

grade IV, it is characterized by infiltrative growth, high

mitotic activity, microvascular proliferation, and necro-

sis [2,3]. Despite aggressive standard combination ther-

apy of surgical resection, irradiation, and chemotherapy
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with temozolomide (TMZ), the median overall survival

(OS) of patients with primary GBM still is only about

15 months [4,5]. Primary GBM is defined as de novo

development of the tumor without any evidence of a less

malignant precursor tumor, whereas secondary GBMs

evolve from the progression of lower grade astrocyto-

mas [6]. Both classes differ significantly regarding their

molecular evolution and genetic pathways [7], RNA

expression patterns [8,9], and the patients’ prognosis

and therapy response [10]. In the present study, we

focused on the analysis of primary GBM.

One of the major challenges in GBM therapy is its

high intra- and intertumoral heterogeneity and the

related difficulty of predicting a patients’ response to

therapy [11,12]. Many trials are aiming at the identifi-

cation of predictive biomarkers, but the clinical rele-

vance is often limited and the development of targeted

drugs is still challenging [12–15], not least due to the

impermeability of the blood–brain barrier [16,17].

Even the methylation status of the O-6-Methylguanin-

DNA-Methyltransferase (MGMT) promotor, which is

well-established and has been shown to be related to

the therapy response and prognosis, leads to heteroge-

neous responses in patients [18]. In 2010, four molecu-

larly defined subgroups of GBM were established—
classical, mesenchymal, proneural, and neural subtype

—including characteristic gene expression patterns

[19]. Despite this increase in knowledge about genetic

and transcriptomic features of GBM since the imple-

mentation of TMZ-based radiochemotherapy, the

standard of care is not considerably influenced [20].

Further, even within each subtype, there still is a high

intratumoral heterogeneity on the expression level [21]

which underlines the strong need to develop an indi-

vidualized approach for each single GBM patient.

Generally, cancer research requires model systems as

realistic and as close to the original patient as possible.

In recent studies, slice cultures from tumor tissue, for

example, head and neck squamous cell carcinoma [22],

colorectal carcinoma [23], gastric and esophagogastric

junction cancer [24], and GBM [25,26], have been

shown to be a promising alternative to conventional

cell culture or animal models. Slice cultures overcome

interspecies differences, which often limit the transla-

tion of animal models into a clinical setting. Further,

they offer a higher complexity and are closer to the

in vivo situation than cell culture models. For GBM,

the usability of such models could be enhanced by

total RNA sequencing and the quantification of treat-

ment effects within this method has been improved by

the automation of histological staining analysis [26]. In

the study presented here, the model system was further

investigated regarding the reproducibility of the

achieved results among a larger cohort of GBM

patients, thereby also addressing the intra- and intertu-

moral heterogeneity. Samples from 25 patients with

primary GBM were processed into slice cultures, sub-

jected to standard radiochemotherapy, and the total

RNA was sequenced in treated versus untreated slices.

Concomitantly, histological analyses were performed

to correlate the results from distinct methods and to

evaluate the preservation of the tissue throughout the

cultivation and treatment period.

Material and methods

Patients and samples

Glioblastoma tissue samples were obtained by surgery of 16

male and 9 female patients diagnosed with primary glioblas-

toma (GBM, WHO grade IV). The patient data including

PFS and OS are summarized in Table S1. Surgery and diag-

nosis were performed at the Department of Neurosurgery

and the Department of Neuropathology, University Hospital

Leipzig, Germany, and at the Department of Neurosurgery,

City Hospital, Dessau, Germany, according to the EANO

guideline for the diagnosis and treatment of anaplastic glio-

mas and glioblastoma [27]. All tissue samples were subjected

to organotypic tissue slice cultures and replicate number ran-

ged from 1 to 3 depending on the amount of tissue available

for the cultivation. Tissue acquisition and experimental pro-

cedure were approved by the institutional research ethics

board (Ethical Review Committee of the Medical Faculty of

the University of Leipzig, #144/08-ek; registration numbers:

IORG0001320, IRB00001750) and the ethic board of the
€Arztekammer Sachsen-Anhalt, Halle (Saale) in accordance

with the Helsinki Declaration (https://www.wma.net/

policies-post/wma-declaration-of-helsinki-ethical-principles-

for-medical-research-involving-human-subjects/). The patients

provided written informed consent for experimental usage of

their tissue samples and retrospective analysis of the data

according to the General Data Protection Regulation of the

European Community (https://gdpr-info.eu/).

Tissue slice preparation

Tissue slices were prepared according to a previously

described protocol [25,26]. The slices were cultivated on a

liquid/air interface in a humidified incubator at 37 °C and

5% CO2 for 6–15 days in total and provided with fresh

medium every 2–3 days.

Treatment of tissue slices

After 3–12 days in culture, slices were treated with temozo-

lomide (TMZ, 200 µM) and X-irradiation (4 Gy) according

to a previously described protocol [26]. In brief, 24 h after
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the initial treatment with TMZ, x-irradiation was per-

formed with a 200 kV irradiation machine (Gulmay Medi-

cal D3000, Gulmay, Surrey, UK) with a copper filter. The

dose rate was 1.156 Gy�min�1 and each sample was irradi-

ated 3.46 min to reach the target dose of 4 Gy. Control

samples were sham-irradiated.

Histology

Histological staining of Ki67 and TUNEL assays were

done according to a previously described protocol [26].

Imaging and image analysis

Imaging of immunofluorescently stained microscope slides

and image analysis of respective images was performed using

previously described methods [26]. In brief, microscope slides

were fully digitized at 209 magnification using a digital slide

scanner (Pannoramic Scan II, 3D HISTECH Ltd., Budapest,

Hungary) equipped with a quad band (DAPI/FITC/TRITC/

Cy5) filter set and PNG images were exported from slide scan-

ner data sets (PANNORAMIC VIEWER, version 1.15.4, 3D HIS-

TECH Ltd., Budapest, Hungary) with pixel dimensions of

0.325 µm.Manual correction of artifacts (i.e., tissue overlaps,

air bubbles, unspecific staining, dirt/fluorescent particles, and

blooming) was carried out (Adobe Photoshop CS6, Adobe

Systems Inc., San Jose, CA, USA) and spectral bleedthrough

between different color channels was corrected using the

‘Spectral Unmixing’ plugin for IMAGEJ (version 1.51n, http://

imagej.nih.gov/ij/). Image analysis was performed with MATH-

EMATICA (version 11.1, Wolfram Research, Inc., Champaign,

IL, USA). Corrected fluorescence images were imported, split

into separate color channels, and tissue masks as well as DAPI

(blue channel) and proliferation marker (Ki67; green channel)

masks were obtained using appropriate thresholding methods

[28,29]. The resulting masks were further cleared of very small

segments to eliminate specks of fluorescent particles within

nuclei. Finally, the areas of total tissue, DAPI andKi67masks

were determined and ratios were computed. Tissue slices with

apoptosis staining underwent the same procedures. Apoptosis

was captured using the TRITC filter (red channel) of the digi-

tal slide scanner. Image export, manual artifact correction,

spectral unmixing, image analysis, and parameter calculation

were performed as described above. Numbers of analyzed

images are summarized in Table S2.

Statistical analysis of image quantification data

Statistical analysis was performed using IBM SPSS STATIS-

TICS (version 22; IBM Corp.; Armonk, New York, USA).

Descriptive statistics were calculated and boxplots were

generated using MATHEMATICA. Data were tested for normal

distribution using the Shapiro–Wilk test and expressed as

median and interquartile range. Group comparisons were

performed using Kruskal–Wallis test. Significance for all

tests was set at P < 0.05. To adjust the P-values for multi-

ple comparisons, Dunn’s post hoc tests were performed.

RNA-sequencing

Total RNA from cultivated GBM tissue slices was isolated

using the miRNeasy mini Kit (Qiagen, Hilden, Germany)

following the provided manufacturer’s protocol. RNA yield

was measured with the Qubit 2.0 instrument (Life Technolo-

gies, Darmstadt, Germany) using the RNA Broad Range

Assay. The extracted RNA was collected and stored at

�80 °C until further processing. To remove genomic DNA,

it was subjected to double DNAse digestion (TURBO DNA

free Kit, Ambion, Thermo Fisher Scientific, Dreieich, Ger-

many) before library preparation. RNA was quantified using

a Qubit RNA-Kit and the DeNovix instrument (Biozym,

Hessisch Oldendorf, Germany). RNA quality was analyzed

on a Bioanalyzer 2100 instrument (Agilent Technologies,

Waldbronn, Germany). For subsequent RNA-sequencing

analyses, 200 ng of total RNA per sample was used. Library

preparation was conducted using Truseq-Stranded total

RNA Sample Prep kit (Illumina, Inc, San Diego, CA, USA)

according to the manufacturers’ protocol. Molarity of each

library was calculated and equal amounts were pooled and

used for sequencing (12 pM). Sequencing was performed with

2 9 126-bp paired-end reads using HiSeq SBS Kit v4 chem-

istry on a HiSeq 2500 instrument (Illumina). 23-26 pooled

libraries (in total 98) were sequenced on 4 flow cells.

Pre-processing of RNA sequencing data

To facilitate the multistep analysis of the RNA sequencing

datasets, we applied the workflow-manager uap [30].

Primary and secondary data analysis

Demultiplexing of Illumina raw files was performed with

the ILLUMINA BCL2FASTQ software, v.2.17.1 [31]. The paired-

end FASTQ reads were trimmed and filtered using ADAP-

TORREMOVAL v.2.3.1 [32] with additional parameters to trim

ambiguous bases (N) at 50/30 termini (--trimns), remove

low-quality bases (--trimqualities, --minquality 20) and keep

reads with a minimum read length of 20bp (--minlength

20). Transcript abundancy estimation of each sample was

conducted using KALLISTO v.0.46.0 [33] by specifying

a reverse stranded library. Human transcriptome FASTA

file was downloaded from GENCODE (release 31

GRCh38.p12) and used to create a Kallisto index. Gene

level quantifications were generated from the KALLISTO esti-

mated counts per transcript using TXIMPORT v.1.18.0 [34].

Quality control

Sample QC was reported using FASTQC v.0.11.5 [35] to

assess base call accuracy, PRESEQ v.2.0.3 [36] to evaluate the
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library complexity. For each sample, a subsample of 1 mil-

lion trimmed paired-end reads was randomly chosen by

FASTQ-SAMPLE v.0.8 [37] using default parameters. Subsam-

ples were aligned to human reference genome GRCh38/hg38

using HISAT2 v2.10 [38]. Duplication metrics were collected

using PICARD TOOLS v2.3.0 (http://broadinstitute.github.io/

picard/) function MarkDuplicates using BAM files generated

by HISAT2. Picard’s CollectRnaSeqMetrics was used to col-

lect mapping percentages on intergenic, intronic, coding and

UTR regions as well as gene body coverage. RSEQC v.3.0.0

[39], was used to determine, read GC content, junction satu-

ration, read pair inner distance, and strandness of reads.

Aggregated data visualization for the secondary analysis and

quality control were generated using the MultiQC [40]

framework. FASTQ SCREEN v.0.14 [41] in conjunction with

bowtie2 [42] was conducted to assess RNA library composi-

tion (Table S3). For 13 samples, a noteworthy fraction from

30% to 75% of the subsampled reads mapped against

human rRNA transcripts (Fig. S1c,d). The number of

aligned reads using the Kallisto pseudoaligner ranged from

2.8 to 63.2 million (Fig. S1e). For principal component anal-

ysis (PCA), the gene counts were normalized using a

variance-stabilizing transformation as implemented in

DESEQ2 v1.30.1 [43]. This was run with the option ‘blind =
TRUE’ in order to compare samples in an unbiased manner.

PCA of samples was based on the 5000 most variable genes.

The variation in the first component is partly explained by

samples in which an increased percentage of reads mapped

against the human rRNA reference (Fig. S1f). A pairwise

correlation analysis was performed between the replicates (if

available) of each sample group (treated and untreated

GBM tissue slices). A weaker correlation was observed in

sample groups whose replicates were enriched in human

rRNA (Fig. S2).

Sample filtering

Samples in which the subsampled reads mapped with at

least 30% against the human rRNA reference or with a

library size (sum of all raw counts) less than 10 million

were removed from further analyses (82 out of 98 samples

remained). Furthermore, only matched pairs of treated and

untreated samples were analyzed. A total of 80 samples

from each of 23 treated and untreated GBM tissue slices

were analyzed. For each GBM tissue slice, 1–3 replicates

were available.

Differential gene expression analysis

Differential expression between treated and untreated sam-

ples was assessed with negative binomial models by using

the R/Bioconductor library DESEQ2 v.1.30.1 [43]. An

unspecific expression filter was applied to the gene count

matrix. This means that at least 5 counts had to be present

in at least 25% of all samples. For each gene that passed

the expression filter, a generalized linear model was fitted

using the formula: ~block + contrast, where block encoded

the patient (to account for patient-specific differences in

gene expression) and contrast was a factor containing

information on both untreated and treated for each sample.

Empirical estimation of the null distribution was performed

with the FDRTOOL R PACKAGE v.1.2.16 [44] using the Wald

statistic from DESeq2 as input. The estimated P-values

were adjusted for multiple testing with the Benjamini–
Hochberg correction [45]. A gene was considered signifi-

cantly differentially expressed if the FDR-adjusted P-value

was < 0.05. Regularized log2-fold-changes (lfc) were calcu-

lated using the lfcShrink() function from the DESeq2 pack-

age to account for the variance of lfcs estimates for genes

with low read counts.

For hierarchical clustering (Fig. S3) of the significantly

differentially expressed genes (DEGs), variance-stabilized

gene counts were adjusted for the factor patient using the

removeBatchEffect() function in the R/BIOCONDUCTOR

LIMMA v.3.46.0 package [46].

Immune microenvironment analyses

Deconvolution of gene expression data was performed by

TIMER [47] implemented in immunedeconv R package [48].

We filtered out those samples where the treatment strategy

of the patients was not comparable to that of the GBM tis-

sue slices. A total of 56 samples from each of 16 treated and

untreated GBM tissue slices with 1–3 replicates were ana-

lyzed. Transcripts per million (TPM)-normalized gene

expression data in non-log space were used as input for esti-

mation of immune cell infiltrates. For all further analyses,

the median of the relative abundance of immune cell types

(relative infiltration scores) estimated by TIMER was calcu-

lated from GBM slice samples with more than one replicate.

A Wilcoxon rank sum test for paired samples was performed

to calculate the statistical significance of the estimated rela-

tive infiltration scores of immune cell types between treated

and untreated GBM tissue slices. The association between

standardized relative infiltration scores and the OS for

untreated samples was assessed using the univariate Cox

proportional hazards regression analysis. The P-values and

95% Cis for Cox proportional hazard model were computed

by the R function coxph() in survival v.3.2.7 R package [28].

Pathway analysis

Gene enrichment analysis for significantly DEGs was per-

formed using the R package clusterProfiler [29] on the

WikiPathways database [49]. Significance of enrichment

was assessed by a hypergeometric test and adjusted

P-values for multiple testing were calculated based on the

Benjamini–Hochberg method (adjusted P-value < 0.05).

Furthermore, at least 5 significantly DEGs must be signifi-

cantly enriched in the pathways.
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Results

Tissue slices from long-term survivors show

increased apoptosis but no difference in

proliferation rate after treatment

To monitor treatment-mediated effects in cultivated

GBM tissue slices from human patients, immunofluo-

rescence staining for proliferation and apoptosis was

done in treated and untreated paraffin-embedded slices

(Fig. 1). Apoptosis was detected by TUNEL staining

(Fig. 1A–D). Untreated slices are shown as examples

(Fig. 1A,B,E,F). Fig. 1C,D Shows the quantification

of apoptosis in samples sorted by the patient’s OS

and progression-free survival (PFS) in months. The fol-

lowing groups were defined: OS ≤ 10 months, OS > 10

months, OS > 15 months, OS > 24 months (=defined as

long-term survivors); PFS ≤ 7 months, PFS > 7 months,

PFS > 12 months. Significantly increased apoptosis was

(A) (E)(B) (F)

(G)

(H)

(C)

(D)

Fig. 1. TUNEL (A–D) and Ki67 (E–H) staining in treated (light gray) or untreated (dark gray) GBM tissue slices. Treated (light gray,

‘TMZ+4 Gy’) or untreated slices (dark gray, ‘untreated’) were stained with TUNEL assay (red, A–D) or with an antibody against Ki67 (green,

E-H). Fluorescence (A, E) and bright-field images (B, F) were recorded by a digital slidescanner. Representative images of untreated

sectional samples are presented (A-B, E-F). For quantification, the total tissue area, DAPI-positive nuclei area, and the Ki67-positive or

TUNEL-positive area were determined. Samples were assorted in groups concerning OS (months) and PFS (months). Numbers of biological

replicates are as follows: OS ≤ 10: n = 10, OS > 10: n = 2, OS > 15: n = 7, OS > 24: n = 3, PFS ≤ 7: n = 9, PFS > 7: n = 5, PFS > 12:

n = 4. Outliers are marked with small circles (O) and extreme values are marked with small asterisks (*). Scale bars: 500, 100 µm in the

caption. P-values were adjusted by Kruskal–Wallis test with Dunn’s post hoc test for multiple comparisons. Large asterisks centered above

the brackets indicate significant differences: ***P ≤ 0.001, **P ≤ 0.01, *P ≤ 0.05.
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found in long-term survivors in comparison to patients

with OS ≤ 10 months, both in untreated (median 9.52%

vs. 2.55%, P = 0.014) and treated slices (8.00% vs.

1.58%, P = 0.008; Fig. 1C). Further, significantly higher

apoptosis (9.52%) was detected in untreated samples of

long-term survivors compared to patients with OS of

10–15 months (0.62%, P = 0.001) and 15–24 months

(1.63%, P = 0.001). No significant difference in apopto-

sis was found between treatment and control, but there

was a tendency of treatment-mediated apoptosis in slices

from patients with OS longer than 10 months (Fig. 1C).

Samples from patients with PFS > 7 months

showed significantly higher median apoptosis in

treated samples (5.96%) compared to patients with

lower PFS (1.68%, P = 0.003; Fig. 1D). Samples

from patients with PFS > 12 months showed even

higher apoptotic rates in treated slices (6.16%), but

without statistical significance due to the high vari-

ation within this group (P = 0.058; Fig. 1D). The

apoptotic rate was significantly lower in untreated

samples of patients with PFS ≤ 7 months (1.12%)

compared to patients with PFS > 7 months (4.81%,

P = 0.019) and patients with PFS > 12 months (6.99%,

P = 4 9 10�6; Fig. 1D).

Proliferation within GBM slices was detected by anti-

body staining of Ki67 (Fig. 1E–H). Quantification of

Ki67 in groups with different OS did not reveal any sig-

nificant difference between these groups or between

untreated and treated samples, but there was a slight

tendency that samples from long-term survivors had

more Ki67-positive area than the others (Fig. 1G). In

general, the proliferation rate was low, treated samples

from patients with PFS ≤ 7 months exhibited even lower

proliferation rate (0.05%) compared to samples with PFS

over 7 months (0.27%, P = 1.3 9 10�5 ) and samples

with PFS > 12 months (0.39%, P = 0.007; Fig. 1H).

Immune constitution in treated and untreated

GBM tissue slices

For the following analysis, only the samples from

patients (n = 15) that have been clinically treated by

radiochemotherapy with TMZ were used to ensure the

highest reliability of the results. Using the RNA

sequencing data and analyzing it by the TIMER

deconvolution method, the estimated relative abun-

dance of tumor-infiltrating immune cells in treated and

untreated GBM tissue slices was quantified (Fig. 2A).

TIMER has been developed to systematically evaluate

the clinical impact of certain immune cells in cancer

samples [47]. Each dot represents one tissue slice or, in

case of technical/biological replicates, the median rela-

tive abundance. Treated and untreated samples of one

patient are linked by lines (Fig. 2A). The relative

abundance of B cells was significantly reduced in trea-

ted samples (P = 0.039), whereas CD8+ T cells, CD4+

T cells, neutrophils, macrophages, and dendritic cells

did not exhibit any significant differences between trea-

ted and untreated slices (Fig. 2A). The relative abun-

dance of tumor-infiltrating immune cells was further

correlated with clinical data of the patients, such as

MGMT methylation state, PFS, or OS (Spearman’s

correlation, Fig. 2B). Samples from long-term survi-

vors exhibited an increased relative abundance of

CD8+ T cells and myeloid dendritic cells, whereas the

relative abundance of CD4+ T cells was reduced in

comparison to samples from patients with lower OS

(Fig. 2C). The complete results of the immune micro-

environment analyses are given in Fig. S4. The hazard

ratios (HR) of CD8+ T cells (P = 0.017) and macro-

phages (P = 0.081) were 0.47 and 0.57, respectively.

The HR of myeloid dendritic cells (P = 0.082) was

0.38 (Fig. 2D). The HR of CD4+ T cells was 1.51

(P = 0.073), and those of neutrophils (P = 0.456) and

B cells (P = 0.527) were 1.20 and 0.84, respectively

(Fig. 2D).

Differential gene expression between treated and

untreated GBM

The analysis of DEGs between treated and untreated

GBM tissue slices revealed that the majority of DEGs

(total: 125, up: 85, down: 40) belonged to the fraction

of protein-coding genes (up: 58, down: 32, Fig. 3A).

31 DEGs (up: 23, down: 8) could be identified as long

noncoding RNA and four as pseudogenes (Fig. 3A).

The top 20 up- and downregulated DEGs are shown

in Fig. 3B in descending order of the respective lfc

(Fig. 3B). A list of all DEGs is given in Table S4.

Fig. 3C shows an excerpt of the significant DEGs in

treated (yes, right) and untreated (no, left) GBM tis-

sue slices for each individual patient (each dot repre-

sents one single patient). CDKN1A was the DEG

with the highest lfc and was upregulated in nearly all

treated samples compared to the untreated controls

(median lfc = 0.89; Fig. 3C, Table S4). The same was

true for DDB2 (lfc = 0.601) and AEN (lfc = 0.668),

and GZMA was found to be downregulated

(lfc = �0.336) in the majority of GBM samples

(Fig. 3C, Table S4).

Treatment effects on biological processes and

signaling pathways

The significant DEGs between treated and untreated

GBM tissue slices were further subjected to pathway
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enrichment analyses (Fig. 4). The analysis of enriched

signaling pathways by WikiPathways [50] demon-

strated the highest enrichment of the TP53 network,

the genotoxicity pathway, and the miRNA regulation

of p53 pathway in prostate cancer (rich factors above

0.2, Fig. 4A). The highest number of DEGs (15) was

found to be represented in the genotoxicity pathway,

and 8–12 DEGs are part of DNA damage response

and cancer pathways (melanoma, colorectal cancer,

Fig. 4A). Figure 4B shows the top 3 most enriched

pathways as a color-coded network of the correspond-

ing DEGs (red: upregulated, lfc > 0; blue: downregu-

lated, lfc < 0). The network further shows the

interaction of different pathways, for example, by

MDM2 (mouse double minute 2 homolog) which is

involved in genotoxicity pathway, TP53 network as

well as miRNA regulation of p53 pathway in prostate

cancer. DDB2, GADD45A, and CDKN1A play roles

in genotoxicity pathway and TP53 network, and BBC3

and BAX are important players in the TP53 network

as well as the miRNA regulation of p53 pathway in

prostate cancer (Fig. 4b). The complete results of the

WikiPathways analysis are given in Table S5.

Discussion

Slices from patients with OS > 10 months showed

increased apoptosis after treatment with radio-

chemotherapy (Fig. 1C), indicating a better response

to the treatment and explaining longer OS. Patients

with an OS ≤ 10 months exhibited lower or no apo-

ptotic response to treatment. Slices from patients with

a PFS > 12 months showed the highest apoptosis rate

after treatment, indicating the highest susceptibility to

cell death (Fig. 1D). Further, we did not find any sig-

nificant difference in apoptosis between treated and

untreated tissue slices, assuming that the detection of

cell death might not be suitable for the monitoring

of treatment effects. This could be due to limitations

of the TUNEL assay in tumor tissue, for example, the

Fig. 2. Immune microenvironment analyses. (A) Estimated relative abundance of tumor-infiltrating immune cells using the TIMER

deconvolution method in treated and untreated GBM tissue samples. Lines between dots indicate paired samples from the same patient.

For patients with more than one replicate, the median relative abundance was calculated. The P-values indicate the statistical significance

from the Wilcoxon test for paired samples. (B) The heatmap presents Spearman’s correlation of clinical parameters and the relative

abundance of tumor-infiltrating immune cells in untreated samples. (C) Examples from correlation analysis (B) between relative abundance

of immune cell types and OS. (D) Association of relative abundance of tumor-infiltrating immune cells with overall patient survival.

A univariate Cox regression was performed for untreated samples. The forest plot represents the HR and corresponding 95% confidence

intervals (95%CI). The colors and the numbers above the HRs depict the statistical significance (Wald test).
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occurrence of false-positive signals in highly prolifera-

tive cells or the emergence of necrosis which also pro-

duces DNA single strands leading to TUNEL-positive

signals even in untreated samples [51]. The prolifera-

tion rates were significantly higher in slices from

patients with a PFS > 7 and > 12 months than in the

low PFS group. Proliferating tissue is more susceptible

to radiation [52] and it could be shown for other

tumor entities, for example, prostate cancer or oral

squamous cell carcinoma, that a higher proliferation

index is associated with an increased radiosensitivity of

the tumor [53,54]. This could be an explanation for

the higher Ki67-positive area in slices from patients

with longer PFS, indicating a beneficial effect of the

radiation. In addition, the slices from patients with an

OS > 24 months exhibited higher proliferation rates.

Although the difference was not statistically significant

and the proliferation rates were extremely low across

all samples, this observation should be handled with

caution. An analysis of a larger patient cohort would

be required to strengthen this finding and to validate

whether Ki67 expression in tumor slices could serve as

a predictive marker for radiosensitivity in GBM.

For the implementation of the TIMER deconvolu-

tion method, only samples from patients clinically

treated with radiation therapy and TMZ have been

used to increase the reliability of the correlation with

patient survival data. The analysis of tumor-infiltrating

immune cells revealed a slight reduction of B cells after

treatment. The populations of CD4+ and CD8+ T cells,

neutrophils, macrophages, and dendritic cells were not

affected by treatment indicating no effect of the rela-

tive abundancies of these cell types on the OS of

patients (Fig. 2A). B cells have been shown to play a

crucial role in the development of an inflammatory

environment which promotes carcinogenesis [55].

Therefore, a reduction of B cells after treatment could

provide a hint of reduced tumor-promoting inflamma-

tion within these samples. It was further shown that

the relative abundance of CD8+ T cells was increased

Fig. 3. Differential gene expression analysis between treated and untreated GBM tissue samples. (A) The MA-plot represents the

relationship between normalized mean expression values and lfcs for all analyzed genes. Each dot represents a gene. Significantly DEGs

(FDR < 0.05) are colored according to their gene biotype. The legend shows the number of significantly upregulated (up) and downregulated

(down) genes for each gene biotype. (B) Top 20 down- and up-regulated significantly regulated genes (treated compared to untreated

samples). Genes are ranked by their shrunken lfcs and colored according to their adjusted P-values. The vertical lines represent their

estimates of standard error. (C) Examples of DEGs between treated and untreated GBM samples. Each dot represents one patient, the line

links treated and untreated samples. For patients with more than one replicate, the average variance stabilized expression values were

calculated.
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in samples from patients with OS > 24 months

(Fig. 2C). Cytotoxic T lymphocytes have been demon-

strated to form immunological synapses with tumori-

genic cells in GBM thereby suggesting a role in

antitumor immune responses and tumor clearance [56].

This could also explain the higher apoptosis in slices

from long-term survivors, in both treated and

untreated tissue (Fig. 1C). Further, it was shown for

various cancers that a local infiltration of CD8+ T cells

into the tumor area was correlated with a favorable

prognosis [57,58]. Dendritic cells are well-established

antigen-presenting cells and are crucial for the activa-

tion of T lymphocytes [59]. In the context of cancer,

dendritic cells prime cytotoxic T cells via antigen pre-

sentation on MHC-I molecules and thereby enable

them to specifically target tumor cells [60,61]. A higher

proportion of dendritic cells within samples from

patients with OS > 24 months is in line with the higher

proportion of CD8+ T cells (Fig. 2C).

The DEG with the highest median lfc in treated

GBM slices was CDKN1A (p21). p21 is known to reg-

ulate the cell cycle and inhibit tumor growth. In accor-

dance with that, expression of p21 leads to induction

of apoptosis in GBM cells [62]. In GBM-derived cell

lines, it was found that a lack of p53 resulted in the

failure of apoptosis induction, suggesting a key mecha-

nism to radioresistance which is often observed in

GBM [62]. p53 mutations are very common among

GBM and approximately 85% of all GBMs exhibit a

deregulation in p53 signaling [11]. In the study pre-

sented here, an enrichment of genes associated with

miRNA regulation of p53 pathway in prostate cancer

and the TP53 network in general was observed (Fig. 4)

which gives a hint that p53 signaling has been affected

by radiochemotherapy. We further found a significant

upregulation of TP53I3 (tumor protein p53 inducible

protein 3; lfc = 0.352, Table S4), the gene encoding for

tumor protein p53 inducible protein 3 (PIG3). PIG3

expression is suppressed in GBM tissue compared to

normal tissue and a higher expression is associated

with a better prognosis as well as longer OS in GBM

patients [63]. An increased expression in GBM slices

after treatment indicates a response to the therapy.

GZMA, the gene encoding granzyme A, is mainly

expressed upon activation of cytotoxic T cells and

leads to apoptosis through activation of caspases [64].

CD8+ T cells and natural killer (NK) cells have the

ability to kill cancer cells by overexpressing GZMA

and perforin 1 [65]. Further, it was found for various

cancer types that the presence of effector T cells within

tumors is strongly associated with a better prognosis

of the patient [66–68]. In GBM, a study revealed a bet-

ter outcome for patients with lower expression levels

of GZMA [69]. In our dataset of GBM patient tissues,

the expression of GZMA was decreased upon treating

the tissue slices with radiochemotherapy, indicating a

Fig. 4. Pathway enrichment analysis of DEGs between treated and untreated GBM samples. (A) The top 10 significantly enriched pathways

(FDR < 0.05) form the WikiPathways database identified by over-representation analysis. The x-axis indicates the rich factor which is the

number of DEGs in the pathway divided by the number of background genes in the pathway. The size of the bubble indicates the number

of involved DEGs in the pathway. The colors indicate adjusted P-values of the significantly enriched pathways. (B) The linkages of genes

and pathways as a network are shown. Significantly downregulated genes are shown in blue, upregulated genes in red. Shown are the

identified DEGs of the three most enriched pathways.
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beneficial effect of the therapy (Fig. 3C). However, an

alteration in the NK or CD8+ T cell population after

treatment could not be detected (Fig. 2). This could be

due to the restricted time point of the analysis when

mRNA expression changes are already detectable, but

an adjustment of cell populations would take some

more time after the initiation of treatment.

AEN (apoptosis-enhancing nuclease) is induced by

p53 and is regulated by its phosphorylation status

upon DNA damage [70], for example, caused by irra-

diation. AEN, as a proapoptotic p53-dependent target

gene, was further shown to be induced by irradiation

in U251 MG GBM cells [71]. The upregulation of

AEN in radiochemotherapy-treated GBM slices there-

fore is in line with the upregulation of CDKN1A as

well as the treatment-mediated enrichment of the p53

network.

DDB2 (DNA damage binding protein 2) is one of

the key DNA repair proteins which is assumed to have

tumor-suppressing features and contribute to better

treatment responses in tumors [72]. In GBM, an asso-

ciation of higher DDB2 expression with a better prog-

nosis could be demonstrated. Concomitantly, patients

with worse prognosis exhibited lower DDB2 expres-

sion [73]. In the GBM tissue slices, an increase of

DDB2 expression was detected after treatment, being

in line with the studies mentioned before.

One of the major problems of working with GBM

tissue freshly resected from patients is the highly vary-

ing tissue quality, the limited amount of tissue and

thus the lack or low number of biological replicates

per experiment. Furthermore, high intra- as well as

inter-tumoral heterogeneity can be observed. Another

drawback is the missing opportunity to compare brain

tumor tissue with healthy tissue from the same patient.

Despite these limiting factors, we could show that the

culture model combined with RNA sequencing is a

suitable model to monitor treatment-mediated effects

in GBM tissue slices on a transcriptional level. Inter-

estingly, it was more difficult to reproduce these effects

on a histological level by immunofluorescent staining.

This could be due to the restricted time frame of the

experimental setting where transcriptional changes can

be seen early after onset of treatment, while changes at

the protein or cellular level would take longer to

manifest.

In conclusion, the study presented here, reproduces

former studies, showing that GBM tissue slice cultures

are suitable for RNA sequencing and automated his-

tology, at a larger scale. The model system is now fur-

ther improved by the correlation of the collected

experimental data with the clinical course of each indi-

vidual patient. At this point, it should be mentioned

that, in order to merge experimental with clinical data

regarding OS and PFS, the cultures had been treated

and analyzed several months (years) before clinical

data were available. The rational for this approach

was to identify molecular and physiological character-

istics of the primary tumor and its response to therapy

that could be used as valuable markers to predict out-

come. To investigate potential therapeutic targets, pre-

dictive biomarkers, reasons for resistance to therapy,

or genetic predispositions to develop GBM, a larger

patient cohort should be analyzed as the general

expression patterns in these samples seem to be unique

for every single patient.
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Fig. S1. Quality Control of samples with respect to

sequencing library composition, read alignment and

sample variance. Following adapter trimming, each

FASTQ file was assessed for average per base (a) and

per sequence (b) quality as measured by Phred score.

Samples with sequencing depth < 50000 were removed

and are not shown in (c–f). (c) To assess the sequenc-

ing library composition, each sample was subsampled

to randomly 1 million trimmed paired-end reads.

FastQ Screen in conjunction with bowtie2 was con-

ducted to detect possible contamination like for exam-

ple bacteria and overrepresented fractions of RNA

species like human rRNA. The y-axis depicts the per-

centage of first reads for each sample that aligned

against the references from Table S3. Reads are classi-

fied into four distinct types indicating reads uniquely

mapping in one sequence reference (one hit in in one

reference), reads with multiple mappings in one

sequence reference (multiple hits in one reference),

reads uniquely mapping in distinct sequence references

(one hit in multiple references) and reads with multiple

mappings in distinct sequence databases (multiple hits

in multiple references). (d) Subsampled reads were

mapped iteratively against the RNAmmer database

v1.2, human rRNA and the human genome assembly

GRCh38/hg38. Human rRNA reads are divided into

sense, which resembles endogenous rRNA and anti-

sense RNA which indicate rRNA antisense probes

from the rRNA depletion step. Samples mapped with

at least 30% against the human rRNA reference

depicted with asterisks. (e) Quality assessment of read

alignment. Number of fragments aligned or not

aligned to the human hg38 reference transcriptome

using the Kallisto pseudoaligner. Samples mapped

with at least 30% against the human rRNA reference

depicted with asterisks. (f) Principal component

analysis (PCA) of variance-stabilized counts based on

the 5000 most variable genes. The upper plot depicts

first and second principal components, the bottom plot

the second and third principal component. The upper

PCA is colored by library size (sum of all raw count

for each sample) and shaped by treatment. The bottom

PCA is colored by binned percentages of reads

mapped against the human rRNA reference.

Fig. S2. Correlation analysis between replicates of each

sample. For each sample group (treat and untreated

GBM tissue slices), normalized expression levels were

correlated between replicates (if available). The color of

each hexagonal bin in the scatter plot represents the

number of genes overlapping at that position. The

Coefficient of Determination (R2) and estimated regres-

sion model are shown. Axis labels are colored by

binned percentages of reads mapped against the human

rRNA reference. The last integer in the axis labels indi-

cate the replicate. Treated samples are labeled by ‘T’.

Fig. S3. Hierarchical clustering of treated and

untreated GBM tissue samples based on significantly

DEGs. Euclidean distance clustering and complete

linkage was applied to visualize similarity between

samples. Each column represents a sample, and each

row represents a gene. Variance stabilized expression

values for each gene were z-score standardized.

Fig. S4. Relationship between relative abundance of

immune cell types estimated using the TIMER decon-

volution method and clinical parameters. Relationship

between relative abundance of immune cell types esti-

mated using the TIMER deconvolution method and

clinical parameters.

Table S1. Summarized data of the patient cohort.

Table S2. Numbers of analyzed images per condition

and experiment.

Table S3. References used for FastQ Screen.

Table S4. Complete list of significantly DEGs

(FDR < 0.05) between treated and untreated samples.

Table S5. Complete over-representation analysis

(ORA) by WikiPathways.
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