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Abstract: Paper-based colorimetric biosensors combine the use of paper with colorimetric signal
detection. However, they usually demonstrate lower sensitivities because a signal amplification
procedure has not been used. Stopping the reaction of colorimetric signal generation is often used in
lab-based assays in order to amplify and stabilize the colorimetric signal for detection. In this study,
the generation of a stopped colorimetric signal was examined for accurate and enhanced signal
detection in paper-based biosensors. The colorimetric reaction in biosensors is usually based on the
interaction between the enzyme horseradish peroxidase (HRP) and a selected chromogenic substrate.
The two most commonly used HRP substrates, 3,3’,5,5’-tetramethylbenzidine (TMB) and 2’-azinobis
(3-ethylbenzothiazoline-6-sulfonic-acid) (ABTS), were compared in terms of their ability to generate
a stopped colorimetric signal on membrane. The stopped colorimetric signal was visible for TMB but
not for ABTS. Moreover, the generation of stopped colorimetric signal was dependent on the presence
of polyvinylidene-difluoride (PVDF) membrane as the separation layer. With PVDF the colorimetric
signal (color intensity) was higher (TMB: 126 ± 6 and ABTS: 121 ± 9) in comparison to without PVDF
(TMB: 110 ± 2 and ABTS: 102 ± 4). The TMB stopped colorimetric signal demonstrated a more stable
signal detection with lower standard deviation values. To conclude, a stopped colorimetric signal can
be generated in paper-based biosensors for enhanced and accurate signal detection.

Keywords: colorimetric signal; paper-based biosensors; point-of-care; enzyme horseradish peroxidase
(HRP); 3,3’,5,5’-tetramethylbenzidine (TMB); 2’-azinobis (3 ethylbenzothiazoline-6-sulfonic acid) (ABTS)

1. Introduction

The three main advantages of biosensors include simplicity, cost-effectiveness and rapid results.
Colorimetric detection puts to best use these important biosensors advantages. The current technologies
that are based on colorimetric detection are mainly focused on point-of-care platforms, miniaturization
of size, reduction of cost and without the incorporation of additional instruments [1–3]. A colorimetric
sensor is based on the detection of analytes via a change in color that can be observed visually.
Colorimetric sensors are categorized according to the different molecular interaction. Chemical
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or biomolecular-based interactions are categorized as chemical-sensors or biosensors respectively.
Biosensors allow the detection of proteins, amino acids, nucleic acids, bacteria and pathogens. Whereas,
chemical-sensors mainly detect organic compounds, heavy-metals, toxic gases and explosives [4–6].
Paper-based colorimetric biosensors combine the use of paper diagnostics with colorimetric signal
detection. They are attractive due to their simple fabrication, accessibility, and low-cost [7]. The use of
paper for biosensor technologies show two main advantages, which are sample capillary flow and
compatibility with biomolecules [8]. Although, they still exhibit lower sensitivity and accuracy [9,10].
Paper-based colorimetric biosensors often exhibit low sensitivities because a signal amplification
procedure was not used. Therefore, the current research is focused on signal amplification procedures
for enzyme-mediated reactions [11].

Colorimetric biosensing main challenge is to transform the biomolecule detection event into
a reaction of a visible change in color. The colorimetric reaction in paper-based biosensors is mainly
based on the interaction between the labelled antibody–protein immunocomplex and a selected
chemical substrate. Most commercially available antibodies are labelled with the enzyme horseradish
peroxidase (HRP), and are used in immunoassay developments [12–14]. The traditional enzyme-linked
immunosorbent assay (ELISA) show the use of an HRP-labelled secondary antibody. The secondary
antibody is used in order to quantify the binding reaction between the target analyte and the specific
primary antibody. This specific binding interaction is then detected by measuring the oxidizing reaction
of HRP enzyme with a chromogenic substrate [15]. The oxidizing reaction occurs in the presence of
hydrogen peroxide that is the natural substrate. The HRP enzyme breaks two hydrogen peroxide
molecules into water and oxygen. However, the specificity of the HRP enzyme for the second molecule
of hydrogen peroxide is low and therefore other electron donors may be considered. This low specificity
increased the development of additional chromogenic substrates for HRP enzyme. The hydrogen donors
substrates are oxidized and form a colored product that can be spectrophotometrically monitored [12].
There are several well studied HRP chromogenic substrates, such as: 3,3’,5,5’-tetramethylbenzidine
(TMB); 2’-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS); o-phenylenediamine (OPD);
5-aminosalicylic acid (5-AS); 3-amino-9-ethylcarbazole (AEC); 3-methyl-2-benzothiazolinone hydrazone
(MBTH); 3,3’-diaminobenzidine (DAB) and 4-chloro-1-naphthol (4-CN) [16–18]. In addition,
the detection of the colorimetric signal can be further enhanced, in order to allow a more accurate
signal measurement using a selected stopping solution [19,20].

In this study, the generation of a stopped colorimetric signal was examined for an accurate and
enhanced signal detection in paper-based biosensors. Stopping the reaction of colorimetric signal
generation not only enhances the signal, it also stabilizes it in order to allow a more accurate signal
detection. The two most commonly used HRP substrates, TMB and ABTS, were compared in terms of
their ability to generate a stopped colorimetric signal on membrane. First, the stopped colorimetric
signals were compared in solution. Three different concentrations of stopping solutions were tested for
each substrate. Later, for a more accurate comparison between unstopped and stopped colorimetric
signals detection in paper-based biosensors, the unstopped colorimetric signal on membrane was also
examined. Subsequently, the stopped colorimetric signals were detected on membranes for paper-based
biosensors, using a ‘Stack-Pad’ sensor layout [21–23], which consists of vertically stacked functional
membranes (Figure 1). The unstopped colorimetric signal was detected with and without the use of
polyvinylidene difluoride (PVDF) [24] as a separation layer between the two functionalized layers of
cellulose absorption pads, containing substrate and stop solution [25].
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Figure 1. Biosensor schematic description. (A) The detection of stopped colorimetric signal on 
membrane was examined using ‘Stack-Pad’ sensor layout [21,22]. (B) The colorimetric signal was 
generated based on the reaction of the enzyme horseradish peroxidase (HRP) with the chromogenic 
substrates 3,3’,5,5’-tetramethylbenzidine (TMB) and 2’-azinobis (3-ethylbenzothiazoline-6-sulfonic 
acid) (ABTS). Sulfuric acid and oxalic acid were used as the stopping solutions for TMB and ABTS 
respectively. 

2. Materials and Methods 

2.1. Materials 

Phosphate buffered saline (PBS) tablets (Cat. No. P4417), polyoxyethylene sorbitan monolaurate 
(Tween20) (Cat. P7949), skim Milk powder (Cat. 70166), TMB liquid substrate for ELISA (Cat. No. 
T0440), sulfuric acid (Cat. No. 84716) and oxalic acid (Cat. No. 241172) were purchased from Sigma-
Aldrich. Glassfiber (GFB-R4), polyester (PT-R5) and cellulose (AP080) were purchased from MDI 
membrane technologies. Nitrocellulose pore size 0.45 µm (1620115) and PVDF pore size 0.2 µm 
(1620177) were purchased from Bio-Rad. HRP Conjugated goat anti human IgG (Cat. ab97175) was 
purchased from Abcam. Recombinant protein G (Cat. 21193) and ABTS single solution ready for use 
(Cat. No. 00-2024) were purchased from Thermo Fisher. Milli-Q ultrafiltered (UF) H2O (with a 
resistivity of 18.2 MΩ cm at 25 °C) were used in the preparation of all solutions. 

2.2. Equipment 

Figure 1. Biosensor schematic description. (A) The detection of stopped colorimetric signal on
membrane was examined using ‘Stack-Pad’ sensor layout [21,22]. (B) The colorimetric signal was
generated based on the reaction of the enzyme horseradish peroxidase (HRP) with the chromogenic
substrates 3,3’,5,5’-tetramethylbenzidine (TMB) and 2’-azinobis (3-ethylbenzothiazoline-6-sulfonic acid)
(ABTS). Sulfuric acid and oxalic acid were used as the stopping solutions for TMB and ABTS respectively.

2. Materials and Methods

2.1. Materials

Phosphate buffered saline (PBS) tablets (Cat. No. P4417), polyoxyethylene sorbitan monolaurate
(Tween20) (Cat. P7949), skim Milk powder (Cat. 70166), TMB liquid substrate for ELISA (Cat. No. T0440),
sulfuric acid (Cat. No. 84716) and oxalic acid (Cat. No. 241172) were purchased from Sigma-Aldrich.
Glassfiber (GFB-R4), polyester (PT-R5) and cellulose (AP080) were purchased from MDI membrane
technologies. Nitrocellulose pore size 0.45 µm (1620115) and PVDF pore size 0.2 µm (1620177) were
purchased from Bio-Rad. HRP Conjugated goat anti human IgG (Cat. ab97175) was purchased from
Abcam. Recombinant protein G (Cat. 21193) and ABTS single solution ready for use (Cat. No. 00-2024)
were purchased from Thermo Fisher. Milli-Q ultrafiltered (UF) H2O (with a resistivity of 18.2 MΩ cm
at 25 ◦C) were used in the preparation of all solutions.
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2.2. Equipment

Weighing balance was purchased from Mettler Toledo. The hotplate (WH220PLUS) and the
Binder oven were purchased from Gaia Science Pte Ltd. Membrane cutter (PAT/RE38, 219 and
D613, 795) was purchased from EK Tools, Vaessen Creative (Vaessen B.V. Thermiekstraat 25 6361HB
Nuth, The Netherlands). Digital Vernier Caliper was purchased from Kincrome. Luminoskan Ascent
Luminometer was purchased from Thermo Fisher Scientific (Waltham, MA, USA). TECAN Infinite
M200 PRO was purchased from Tecan Trading AG, Switzerland (Seestrasse 103, 8708 Männedorf,
Switzerland).

2.3. Stopped Colorimetric Signal in Solution

The stopped colorimetric signal was first tested in solution inside a 96-well plate. The two substrates
were tested, TMB and ABTS, for the stopped colorimetric signal with HRP enzyme (Figure 2).
In both cases, 50 ng/mL of HRP-antibody solution was used. In the case of TMB, three sulfuric acid
concentrations (0.5, 1 and 2 M) were tested as stopping solutions, and the stopped colorimetric signal
was measured at the wavelength of 450 nm. In the case of ABTS, three oxalic acid concentrations
(0.3, 0.6 and 1 M) were tested as stopping solutions, and the stopped colorimetric signal was measured
at 405 nm. Firstly, 100 µL of 50 ng/mL HRP-antibody, diluted in PBS buffer, was added to each well,
together with 100 µL of substrate (either TMB or ABTS). After 8 min of reaction at RT and in dark
conditions, 100 µL of stopping solution was added accordingly. The absorbance signal was then
immediately measured using a TECAN reader. The stopped colorimetric signal was further tested
with a range of HRP-antibody concentrations 0–75 ng/mL (0, 0.5, 1, 2.5, 10, 25, 50 and 75 ng/mL) for
both substrates. In this case, the stopping solutions used for TMB and ABTS were kept at 0.5M sulfuric
acid and 0.6M oxalic acid respectively.
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Figure 2. Colorimetric reaction of HRP with the Chromogenic Substrates TMB and ABTS. The 
colorimetric signal was generated based on the reaction of the enzyme horseradish peroxidase (HRP) 
with the chromogenic substrates (A) 3,3’,5,5’-tetramethylbenzidine (TMB) and (B) 2’-azinobis (3-
ethylbenzothiazoline-6-sulfonic acid) (ABTS). Sulfuric acid and oxalic acid were used as the stopping 
solutions for TMB and ABTS respectively [26]. 
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Figure 2. Colorimetric reaction of HRP with the Chromogenic Substrates TMB and ABTS.
The colorimetric signal was generated based on the reaction of the enzyme horseradish peroxidase
(HRP) with the chromogenic substrates (A) 3,3’,5,5’-tetramethylbenzidine (TMB) and (B) 2’-azinobis
(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS). Sulfuric acid and oxalic acid were used as the stopping
solutions for TMB and ABTS respectively [26].

2.4. Unstopped Colorimetric Signal on Membrane

Colorimetric signal detection was then carried out on membrane in order to compare unstopped
and stopped colorimetric signals detection in paper diagnostics. Firstly, the unstopped colorimetric
signal on membrane was examined for two HRP substrates, TMB and ABTS, and examined over a range
of HRP-antibody dilutions. The 0.5 mg/mL HRP-antibody stock concentration was diluted in 0.05%
(v/v) PBS-Tween20 buffer into the following dilutions: 1:4K; 1:6K; 1:8K; 1:10K; 1:12K; 1:14K; 1:16K and
1:18K. The substrate, TMB or ABTS, was first immobilized on a 6mm Ø cut cellulose absorption pad.
Four different substrate volumes (10, 20, 30 and 40 µL) were then tested for each substrate. After placing
the substrates on the absorption pads, the pads were dried at RT for 2 h. In order to test for unstopped
colorimetric signal reaction on the membrane, the pads were then exposed to a 50 µL drop of diluted
HRP-antibody accordingly. After 8 min of reaction, the pads were visually inspected and a picture was
taken for further examination.

2.5. Stopped Colorimetric Signal on Membrane

Subsequently, stopped colorimetric signal detection on membrane for paper diagnostics was also
examined. The stopped colorimetric signal on membrane was tested for the two substrates, TMB
and ABTS, with 100 ng/mL HRP enzyme, and with or without a PVDF membrane as a separation
layer. The detection of stopped colorimetric signal on membrane was examined using ‘Stack-Pad’
sensor layout, which consists of vertically stacked functional membranes (Figure 1) [21,22]. The
three layers of PVDF membrane serve as a separation layer between the functionalized substrate and
the stopping layers in the ‘Stack-Pad’. The sample is added from the bottom-up and as the layers
are wetted, the sample moves upwards. In the top-most layer, a colorimetric signal was generated
from the reaction between the substrate and the HRP-conjugated antibody. The ‘Stack-Pad’ test was
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constructed as follows: (from bottom up) 0.05% PBS-Tween20 immobilized on ‘sample layer’ (glass
fiber membrane), 50 µL of 100 ng/mL HRP-antibody (diluted in 0.05% PBS-Tween20) immobilized
on the ‘conjugation layer’ (polyester membrane), 1% (w/v) polyvinyl alcohol (PVA) immobilized on
‘buffer layer’ (polyester membrane), 50 µL substrate (TMB or ABTS) immobilized on the ‘substrate
layer’ (polyester membrane), unmodified ‘separation layer’ (PVDF membrane) and 50 µL stopping
solution (0.5M sulfuric acid for TMB and 0.6M oxalic acid for ABTS) immobilized on the ‘stopping
layer’ (cellulose membrane). After the immobilization of the chemicals, all pads were dried for 1–2 h
at RT. After 8 min of reaction, the pads were visually inspected and a picture was taken for further
examination. The experiment was also conducted for the unstopped reaction, as a measure of control
for the generation of an unstopped colorimetric signal with and without the use of the PVDF membrane
as a separation layer. In addition, in order to examine the colorimetric signal stability over time, the
signals were further examined in several time points.

2.6. Color Intensity Analysis

The images of the pads color intensity were firstly recorded in JPEG files. Then, they were
analyzed using Image J software (National Institutes of Health and the Laboratory for Optical and
Computational Instrumentation, University of Wisconsin, Madison, WI, USA). The colored images
were firstly transformed to a 32-bit format and converted into grey contrast. Thereafter, the images were
inverted for further analysis. Lastly, the average color intensities were recorded for each tested pad.

3. Results and Discussion

3.1. Stopped Colorimetric Signal in Solution

Firstly, the stopped colorimetric signal was compared in solution, and the results are presented
in Figure 3. The two substrates, TMB and ABTS, were both exposed to the same HRP-antibody
concentration of 50 ng/mL. For each substrate, three different concentrations of stopping solution
were tested [27]. In the case of TMB, sulfuric acid solution was used as the stopping solution
(0.5, 1 and 2 M) [28,29]. As shown in Figure 3A, in all three tested concentrations of stopping solution,
the stopped signal measured was approximately the same (3.49, 3.55 and 3.50 absorbance). Similarly,
for ABTS, as shown in Figure 3B, the three tested concentrations of oxalic acid stopping solution
(0.3, 0.6 and 1 M) [30,31] showed similar stopped signal values (2.76, 2.81 and 2.82 absorbance) as
well. Therefore, because the absorbance signal was similar for all the three tested concentrations of
the stopping solutions and based on the reported previous studies, 1M sulfuric acid and 0.6M oxalic
acid were selected as stopping solutions for TMB and ABTS accordingly. The stopped colorimetric
signal was further tested with a range of HRP-antibody concentrations from 0–75 ng/mL (0, 0.5, 1,
2.5, 10, 25, 50 and 75 ng/mL) for both substrates (Figure 3C). The stopped signals for TMB and ABTS
were tested with 0.5M sulfuric acid and 0.6M oxalic acid stopping solutions respectively. As observed
in Figure 3C, TMB showed increased sensitivity in the stopped colorimetric signal in all of the
tested HRP-antibody concentrations (0 ng/mL: 0.077 vs. 0.066; 0.5 ng/mL: 0.138 vs. 0.098; 1 ng/mL:
0.229 vs. 0.119; 2.5 ng/mL: 0.519 vs. 0.195; 10 ng/mL: 1.68 vs. 0.540; 25 ng/mL: 3.51 vs. 1.61; 50 ng/mL:
3.56 vs. 3.04 and 75 ng/mL: 3.58 vs. 3.43). The increased TMB sensitivity in the stopped colorimetric
signal was mainly detected between 1–25 ng/mL HRP-antibody concentrations. The color gradient in
the stopped colorimetric signal is also clearly visible for the range of HRP-antibody concentrations
tested, as shown in Figure 3D. To conclude, a stopped colorimetric signal was detected in solution
for both tested substrates, TMB and ABTS, with a clear color gradient observed for the range of
HRP-antibody concentrations. It was also observed that measurements obtained from stopping the
reaction were stable over the next several hours. On the contrary, in the unstopped signal detection,
the reaction continues even during measurement, resulting in a less stable signal obtained. Stopping the
reaction of colorimetric signal generation thus not only enhances the signal detection, but also stabilizes
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the detected signal, allowing a more accurate signal to be detected in comparison to unstopped
colorimetric signal.
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Figure 3. Stopped Colorimetric Signal in Solution. (A) Stopped colorimetric signal for TMB (450nm) with
three sulfuric acid concentrations (0.5, 1 and 2 M) as a stopping solution, using 50 ng/mL HRP-antibody
concentrations. (B) Stopped colorimetric signal measurement for ABTS (405nm) with three oxalic acid
concentrations (0.3, 0.6 and 1 M) as a stopping solution, using 50 ng/mL HRP-antibody concentrations.
(C) Stopped colorimetric signal of TMB (450nm; 0.5M sulfuric acid) vs. ABTS (405nm; 0.6M oxalic
acid) with a range of HRP-antibody concentrations. TMB showed increased sensitivity, with higher
absorbance signals for the same HRP-antibody concentrations. (D) Visual examination of the stopped
colorimetric signal for TMB (450 nm) and ABTS (405 nm) with a range of HRP-antibody concentrations.

3.2. Unstopped Colorimetric Signal on Membrane

Colorimetric signal detection was then carried out on membrane, in order to compare unstopped
and stopped colorimetric signals detection in paper diagnostics (Figures 4 and 5, Table 1). The unstopped
colorimetric signal on membrane was compared for the two HRP substrates, TMB and ABTS, and also
examined with a range of HRP-antibody dilutions in 0.05% (v/v) PBS-Tween20 buffer (1:4K; 1:6K; 1:8K;
1:10K; 1:12K; 1:14K; 1:16K and 1:18K). Four different substrate volumes (10, 20, 30 and 40 µL) were
also tested for each substrate. TMB (Figure 4) showed an overall higher sensitivity for the diluted
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HRP-antibody samples compared to ABTS (Figure 5). In the lowest substrate volume tested of 10 µL,
ABTS did not show any unstopped colorimetric signal generated for the case of 1:18K HRP-antibody
dilution. However, the unstopped colorimetric signal is clearly visible for 10 µL TMB with 1:18K HRP
antibody. In the color intensity analysis (Figures 4B and 5B), the results showed a clear gradient for the
HRP-antibody dilutions (40 µL substrate: TMB: 1:4K (195) vs. 1:18K (153) and ABTS: 1:4K (192) vs.
1:18K (122)). As well as, a clear gradient for the substrate volume (1:4K HRP-antibody: TMB: 10 µL
(146) vs. 40 µL (195) and ABTS: 10 µL (115) vs. 40 µL (192)). In general, a clear gradient is visible for
both substrates tested, over the range of the different tested substrate volumes and HRP-antibody
dilutions. However, as the unstopped colorimetric signal in TMB was generally stronger and produced
more intense coloration in all of the tested HRP-antibody dilutions, the unstopped colorimetric signal
gradient was thus more easily observed in the case of ABTS. To conclude, the unstopped colorimetric
signal on membrane can be clearly observed for both TMB and ABTS, for the tested HRP-antibody
concentrations. A colorimetric signal can be generated on membrane using both TMB and ABTS
substrates with HRP conjugated antibodies.
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Table 1. Color intensity analysis for TMB and ABTS unstopped colorimetric signal on membrane.

Color Intensity

TMB

HRP-Antibody Dilution

1:4K 1:6K 1:8K 1:10K 1:12K 1:14K 1:16K 1:18K

TMB Volume

10 µL 146 ± 17 151 ± 14 145 ± 17 153 ± 10 137 ± 17 129 ± 15 139 ± 11 128 ± 12
20 µL 176 ± 13 175 ± 7 172 ± 11 168 ± 13 168 ± 16 162 ± 7 161 ± 7 146 ± 8
30 µL 190 ± 13 183 ± 19 175 ± 16 178 ± 14 178 ± 8 163 ± 15 161 ± 12 148 ± 12
40 µL 195 ± 10 184 ± 13 184 ± 12 186 ± 19 178 ± 17 173 ± 7 170 ± 19 153 ± 20

ABTS

HRP-Antibody Dilution

1:4K 1:6K 1:8K 1:10K 1:12K 1:14K 1:16K 1:18K

ABTS Volume

10 µL 115 ± 13 95 ± 4 85 ± 6 101 ± 8 92 ± 5 75 ± 14 81 ± 15 62 ± 16
20 µL 169 ± 9 143 ± 6 127 ± 13 129 ± 11 130 ± 13 99 ± 5 119 ± 6 97 ± 13
30 µL 180 ± 5 159 ± 13 149 ± 10 157 ± 17 154 ± 16 127 ± 9 138 ± 15 109 ± 13
40 µL 192 ± 8 172 ± 10 163 ± 9 171 ± 10 166 ± 14 147 ± 9 148 ± 15 122 ± 16

3.3. Stopped Colorimetric Signal on Membrane

Stopped colorimetric signal was detected on membrane, using ‘Stack-Pad’ sensor layout [21,22]
(Figure 1), which consists of vertically stacked functional membranes (Figure 6). The stopped
colorimetric signal on membrane was tested for the two substrates, TMB and ABTS, with 100 ng/mL
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HRP enzyme, and with or without a PVDF separation layer. The comparison between the unstopped
vs. stopped colorimetric signal was also conducted. Firstly, the unstopped colorimetric signal was
detected for both cases of TMB and ABTS, with and without the use of PVDF [24] as a separation layer.
The unstopped reaction was conducted as a measure of control for the generation of an unstopped
colorimetric signal with and without the use of PVDF as a separation layer. The unstopped signals
obtained for both substrates, TMB and ABTS, are visibly similar in the cases of with and without
PVDF membrane (Figure 6). This suggests that the use of PVDF membrane as a separation layer does
not interfere with the generation of a colorimetric signal. For the generation of stopped colorimetric
signal on membrane, a clear, yellow stopped colorimetric signal was visible on the membrane when
TMB substrate was used in the presence of a PVDF layer. However, in the case of ABTS substrate,
the colorimetric signal was less visible. When the stopped colorimetric signals obtained with PVDF
separation layer were compared to the signals obtained without PVDF, it was observed that the
stopped colorimetric signals were not visible without PVDF. These results strengthen the importance
of using PVDF membrane as a separation layer between the substrate and the stopping solution layers,
for the generation of a stopped colorimetric signal. This can be explained by the hydrophobic nature
of the PVDF membrane, which slows the flow of sample between the substrate and the stopping
solution layers, giving rise to a buffer layer for the generation of a colorimetric signal [24]. The results
of the color intensity analysis also support these findings (Figure 6). The blank control with PVDF
showed similar signal level (TMB: 108 and ABTS: 96) as the stopped test without PVDF (TMB: 110 and
ABTS: 102). Meaning, that without PVDF membrane as separation layer, the stopped signal was not
visually and quantitatively detected. Moreover, when comparing the stopped signal with and without
PVDF membrane, the stopped signal detected with PVDF showed an increased value (TMB: 126 and
ABTS: 121). In addition, the unstopped signal for both with (TMB: 176 and ABTS: 161) and without
(TMB: 186 and ABTS: 157) PVDF membrane did show an elevated value, this is expected since the
colorimetric reaction is stopped. However, looking closer at the standard deviation values, the stopped
signal is more accurate with lower standard deviation values compared to the unstopped signal.
These quantitative signal value also provide evidence to support the claim that the addition of PVDF
membrane as separation layer does not interfere to the generation of the colorimetric signal (TMB: with:
176 vs. without: 186 and ABTS: with: 161 vs. without: 157). To conclude, the stopped colorimetric
signal was clearly observed for TMB but less observed for ABTS. Moreover, the generation of stopped
colorimetric signal was dependent on the presence of PVDF membrane as separation layer between
the two functionalized layers of substrate (TMB) and stop solution (sulfuric acid).
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Figure 6. Stopped colorimetric signal on membrane. (A) The stopped colorimetric signal was examined
with and without three layers of polyvinylidene difluoride (PVDF) membrane as a separation layer
between the functionalized substrate and the stopping layers. (B) Two substrates were compared:
3,3’,5,5’-tetramethylbenzidine (TMB) vs. 2’-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS),
for unstopped vs. stopped colorimetric signal comparison on membrane, using 100 ng/mL HRP-antibody.

3.4. Colorimetric Signal Stability Over Time

The colorimetric signal stability was also examined further over several time points (Table 2
and Figure 7). The stability of both stopped and unstopped colorimetric signals on membrane were
compared, with three layers of PVDF membrane as a separation layer between the substrate and the
stopping solution layers. In the case of TMB (Figure 7A), it is clear that the unstopped signal values
(171–192) were higher than the stopped signal values (67–111). However, looking closer at the standard
deviation values, it is possible to determine that the stopped colorimetric signal demonstrated a more
stable and accurate signal detection with lower standard deviation values. On the contrary, in the case
of ABTS (Figure 7C), both unstopped (66–149) and stopped (77–152) signals were in a similar range.
This might indicate that the ABTS colorimetric reaction was not stopped. However, from both the
image (Figure 7B) and color intensity analysis (Figure 7C), it is possible to still determine that there
was a slight difference between the unstopped and stopped colorimetric signal. A difference is already
visible after the 20 min time point (stopped: 81 ± 11 vs. unstopped: 96 ± 12), and can be identified until
the 100 min time point (stopped: 130 ± 20 vs. unstopped: 141 ± 15). The ABTS stopped colorimetric
reaction developed slightly slower than the unstopped reaction. To conclude, the stopped colorimetric
signal was more stable and accurate over time for TMB but less observed for ABTS.



Diagnostics 2020, 10, 28 12 of 15
Diagnostics 2020, 10, x FOR PEER REVIEW 12 of 15 

 

 
(A) 

 
(B) 

 
(C) 

Figure 7. Stopped vs. unstopped colorimetric signal stability over time. Two substrates were 
compared: 3,3’,5,5’-tetramethylbenzidine (TMB) vs. 2’-azinobis (3-ethylbenzothiazoline-6-sulfonic 
acid) (ABTS) for unstopped vs. stopped colorimetric signal comparison on membrane. (A) TMB; (B) 
picture; (C) ABTS. 

 

Figure 7. Stopped vs. unstopped colorimetric signal stability over time. Two substrates were compared:
3,3’,5,5’-tetramethylbenzidine (TMB) vs. 2’-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) for
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Table 2. Color intensity analysis for stopped vs. unstopped colorimetric signal stability over time.

Color Intensity

Time (min) TMB ABTS

Stopped Unstopped Stopped Unstopped

0 38 ± 3 44 ± 6 35 ± 2 36 ± 2
8 67 ± 6 171 ± 14 77 ± 5 66 ± 7

20 79 ± 7 192 ± 18 81 ± 11 96 ± 12
30 80 ± 8 188 ± 22 89 ± 18 109 ± 14
40 77 ± 7 189 ± 18 96 ± 24 121 ± 12
50 77 ± 8 187 ± 17 102 ± 26 117 ± 15
60 81 ± 7 190 ± 15 115 ± 26 129 ± 14
90 83 ± 8 188 ± 13 122 ± 20 131 ± 13
100 86 ± 8 184 ± 20 130 ± 20 141 ± 15
110 88 ± 9 184 ± 18 117 ± 20 136 ± 13
120 92 ± 6 187 ± 14 126 ± 16 143 ± 13
140 89 ± 7 184 ± 16 129 ± 18 146 ± 14
150 92 ± 6 182 ± 17 123 ± 16 137 ± 12
180 96 ± 5 184 ± 15 134 ± 16 148 ± 11
210 103 ± 3 191 ± 12 136 ± 15 149 ± 9
240 99 ± 2 190 ± 10 135 ± 12 142 ± 8
300 111 ± 3 192 ± 11 152 ± 10 147 ± 9

4. Conclusions

Firstly, the stopped colorimetric signal was compared in solution. Two substrates, TMB vs. ABTS,
were exposed to the HRP-antibody. For each substrate, three different concentrations of stopping
solutions were tested. In the case of TMB, sulfuric acid solution was used as the stopping solution
(0.5, 1 and 2 M), and the stopped signal obtained in each case was approximately the same (3.49, 3.55 and
3.50 absorbance). Similarly, in the case of ABTS, oxalic acid (0.3, 0.6 and 1 M) was used as the stopping
solution and the stopped signals obtained were approximately the same (2.76, 2.81 and 2.82 absorbance).
The stopped colorimetric signal was then further tested with a range of HRP-antibody concentrations.
TMB showed increased sensitivity in the stopped colorimetric signal in all the tested HRP-antibody
concentrations. In order to compare unstopped and stopped colorimetric signal detection in paper
diagnostics, the unstopped colorimetric signal on membrane was also examined, with a range of
HRP-antibody dilutions. TMB showed increased sensitivity for the diluted HRP-antibody samples as
compared to ABTS. In general, a clear gradient was visible for both substrates tested. Lastly, stopped
colorimetric signal was detected on membrane, using ‘Stack-Pad’ sensor layout [21,22], which consists
of vertically stacked functional membranes. The unstopped reaction was also conducted, as a measure
of control for the generation of an unstopped colorimetric signal with and without the use of the PVDF
separation layer. In the case of TMB substrate, a clear, yellow stopped colorimetric signal was visible on
the membrane. However, in the case of ABTS substrate, colorimetric signal was not visible. Moreover,
when comparing between the stopped colorimetric signals obtained with PVDF as separation layer
and those without, it was concluded that the stopped colorimetric signal was not visible without
PVDF. To conclude, the stopped colorimetric signal was clearly observed for TMB but not for ABTS.
Moreover, the generation of stopped colorimetric signal was dependent on the presence of PVDF
membrane as a separation layer between the two functionalized layers of substrate (TMB) and stop
solution (sulfuric acid). In addition, the stopped colorimetric signal was more stable and accurate over
time for TMB but less observed for ABTS. This study concludes that stopped colorimetric signals can
be generated in paper-based biosensors for enhanced and accurate signal detection.
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