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Significance of Natural Scene 
Statistics in Understanding the 
Anisotropies of Perceptual Filling-in 
at the Blind Spot
Rajani Raman    & Sandip Sarkar

Psychophysical experiments reveal our horizontal preference in perceptual filling-in at the blind spot. 
On the other hand, tolerance in filling-in exhibit vertical preference. What causes this anisotropy in 
our perception? Building upon the general notion that the functional properties of the early visual 
system are shaped by the innate specification as well as the statistics of the environment, we reasoned 
that the anisotropy in filling-in could be understood in terms of anisotropy in orientation distribution 
inherent in natural scene statistics. We examined this proposition by investigating filling-in of bar 
stimuli in a Hierarchical Predictive Coding model network. The model network, trained with natural 
images, exhibited anisotropic filling-in performance at the blind spot, which is similar to the findings 
of psychophysical experiments. We suggest that the over-representation of horizontal contours 
in the natural scene contributes to the observed horizontal superiority in filling-in and the broader 
distribution of vertical contours contributes to the observed vertical superiority of tolerance in filling-in. 
These results indicate that natural scene statistics plays a significant role in determining the filling-in 
performance at the blind spot and shaping the associated anisotropies.

When two aligned bars are presented on opposite sides of the blind spot such that the gap fully falls inside the 
blind spot, the bars are usually perceived as a continuous one. Even though we do not receive any signal related 
to the bar from the blind spot region, our brain by some means fills the information, which results in a percep-
tion of a long continuous bar1, 2. This phenomenon is generally referred to as perceptual completion or filling-in. 
Psychophysical investigations have revealed that the nature of bar filling-in depends on various stimulus attrib-
utes (e.g. length, alignment and orientation difference).

In studies related to filling-in at the blind spot3, it has been demonstrated that a certain minimum length 
(extended beyond the blind spot) of bar stimuli is required for filling-in to occur. Moreover, results of investiga-
tions show that the minimum length is orientation dependent; and additionally, for the horizontal configuration, 
relatively shorter length is required for filling-in to occur. Results also revealed that for the identical length, 
horizontal configuration produced better filling-in over vertical configuration. This phenomenon is referred to 
as anisotropy in filling-in.

Other related studies4, 5 also demonstrated the presence of anisotropy of tolerance in filling-in. However, con-
trary to the conventional horizontal dominance in filling-in, in this case, vertical dominance was observed; vertical 
configuration exhibited greater tolerance to the difference in alignment or orientations for perceptual filling-in to 
occur. This phenomenon is known as anisotropy of tolerance in filling-in. These psychophysical investigations3–5  
suggest that the perceptual filling-in depends upon stimulus orientation configuration along with the stimulus 
attributes.

Other than blind spot filling-in, anisotropy has also been observed in other visual phenomena related to 
orientation perception. Studies with grating stimuli show that visual system is biased toward cardinal (horizon-
tal and vertical) orientation compared to oblique6. This effect is known as ‘oblique effect.’ On the other hand, 
studies involving natural broadband stimuli reveal the opposite where oblique orientations have upper hand 
over cardinal ones7–9. This phenomenon is known as ‘horizontal effect.’ These studies brought out the differences 
in bias between horizontal and vertical orientation and demonstrated that our visual system favors horizontal 
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configuration over vertical. It has been suggested6, 8, 10–12 that the statistics of natural scenes is primarily responsi-
ble for the emergence of anisotropy in the orientation perception. Image analysis8, 10, 13–15 also supported the fact 
that the orientation content in natural scenes is biased more towards horizontal over vertical, and the least bias 
is towards the oblique. This asymmetry raises a logical question whether the orientation-selective neurons in the 
cortex are influenced by the prevalence of horizontal orientation in the environment. Indeed, it has been demon-
strated experimentally16–19 that larger cortical area in adult ferret and cat V1 is allocated to processing horizontal 
information than that allocated to processing vertical information. It implies that comparatively more neurons 
are devoted to processing information oriented towards horizontal than vertical, i.e., the cortical area contains an 
over-representation of neurons coding horizontal orientations. Studies using fMRI also show11, 12 the anisotropic 
preference of the human visual cortex to orientation selectivity.

The knowledge of environmental statistics and the related over-representation of neurons in V1 throw some 
light on the possible causes of anisotropies observed in the perceptual judgments in orientation perception. 
However, it does not address the phenomenon of perceptual filling-in at the blind spot and the associated aniso-
tropy related to filling-in. In a different context4, the role of vernier acuity and elliptical shape of receptive fields 
of neurons was speculated in the anisotropy of perpetual filling-in. In studies5 related to linear and curvilinear 
filling-in, it was suggested that different processes might be responsible for the anisotropy observed in linear and 
curvilinear case. Moreover, these studies also speculated different processes for anisotropy observed in different 
types of tolerances in filling-in. However, these speculations neither explain different processes nor fit with a 
general computational mechanism of visual processing.

Very recently20 it has been shown that bar (shifting and misaligned bar) filling-in phenomena at the blind 
spot could be explained by considering the inherent prediction correction mechanism of Hierarchical Predictive 
Coding (HPC)21 (as the computational principle of the cortex). It was argued that in the absence of any feedfor-
ward information (due to the absence of sensory input corresponding to the blind spot region), top-down predic-
tion dominates the filling-in of the discontinuity. The nature of filling-in, on the other hand, was in accordance 
with the learned internal model. For proper prediction of the input bar stimuli, it is necessary for the top-down 
mechanism to predict two separate bars (aligned or misaligned). Instead, in both the cases, top-down mechanism 
favored the presence of a single continuous bar (resulting in the filling-in at the blind spot), which was the domi-
nant feature of the internal model learned via training with natural images.

These results suggested two very important aspects of filling-in. Firstly, filling-in at the blind spot is the out-
come of the prediction-correction mechanism of the cortex, and secondly, the abundance of features present in 
the natural scene determines the nature of filling-in. These findings are based on investigations involving shift-
ing and misaligned bar stimuli oriented in the horizontal configuration. Therefore, these results cannot address 
the orientation-specific anisotropies of filling-in at the blind spot, where human observers reported horizontal 
superiority in filling-in and vertical superiority in the tolerance in filling-in. In a different context, studies with 
cortical neurons demonstrated its orientation dependent stability in response to selective perturbation induced 
by adaptation13. This behaviour was attributed to the anisotropic distribution of local inputs to the orientation 
selective neurons, i.e., a narrower distribution of local inputs to the neurons makes it more stable compared to the 
neurons having a broader distribution of local inputs. It is an important finding that relates the anisotropic distri-
bution of local inputs (to the orientation selective cortical neurons) to its orientation selective stability. However, 
the significance of these findings concerning anisotropy in the context of filling-in at the blind spot is not clear.

We reasoned that the inherent anisotropy of natural scene could be responsible for the emergence of ani-
sotropy in perceptual filling-in including anisotropy of tolerance in filling-in. We hypothesized that the 
over-representation of orientation preference in the natural scene contributes to the observed anisotropy of 
filling-in and the nature of orientation preference distribution determines the observed anisotropy of tolerance 
in filling-in.

To test these propositions, we have investigated three cases of bar filling-in at the blind spot via simulation 
studies in a model network20 in the light of Hierarchical Predictive Coding scheme. We used expanding, mis-
aligned, and rotating bar as the input stimuli in horizontal and vertical configuration. In response to these input 
stimuli, the model network exhibited anisotropy of filling-in as well as anisotropy of tolerance in filling-in, which 
corroborated the findings of psychophysical experiments with human observers.

Results
The objective of this study is to test the hypothesis that the prevalence of certain features in natural scenes is capa-
ble of providing a mechanistic explanation of anisotropy related to the perceptual filling-in reported by human 
observers. Our objective is summarised in Fig. 1, where we have schematically depicted the proposition that there 
is a link between the anisotropy present in the natural scene and the anisotropy reported in perceptual filling-in 
investigations. This proposition supports the general speculation6, 8, 10–12 that orientation anisotropy in natural 
scene plays a significant role in determining the anisotropy in the cortex as well as the anisotropy in perceptual 
orientation preference. As a premise, we first explored the capability of the HPC model network to learn (via 
training) the anisotropic distribution of features present in the natural image. Secondly, we explored whether the 
learned statistics (learned internal model) could explain the anisotropy in filling-in and the anisotropy of toler-
ance in filling-in reported in other psychophysical studies.

The HPC model network considered in this study is similar to the one described in a recent investigation20 
(details are given in the method section). The network was trained with hundreds of thousands of natural image 
patches in one cycle. To perform the investigations with statistical rigors, we repeated the training cycle 40 times. 
As reported in several studies20–22, each training set yielded Gabor-like weighting profiles at level 1 (Fig. 2a) (with 
different orientation and spatial frequency), which resembles the simple cell receptive field at V1. Level 2 weight-
ing profiles resemble more abstract features (corner, curves, long bar, and so on) as reported in recent studies20.
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To investigate the presence of any anisotropy, we measured the orientation tuning distribution of the trained 
neurons in V1. To do these, we utilized bar stimulus of different orientation and frequency and determined the 
orientation tuning of a particular neuron by registering their optimal response. Figure 2b shows the distribution 
of orientation tuning of neurons in V1. It is evident from the distribution that larger number of neurons are ori-
ented towards the horizontal direction, followed by vertical and then non-cardinal orientation. This anisotropic 
distribution is very much in-line with the reported anisotropy of orientation distribution in natural scenes10, 13, 23 
and orientation tuning distribution of neurons in primary visual cortex11, 12, 17, 19, 24.

Anisotropy in filling-in.  To investigate the anisotropy in filling-in, the learned network was exposed to a 
pair of expanding bar segments, placed as shown in Fig. 3a, oriented in the horizontal direction. One end of both 
bars was fixed and other ends were free to expand together in sync as described in the Fig. 3a. The network was 
also stimulated with stimuli oriented in the vertical direction (not shown). The responses of PE neurons were 
recorded as a function of bar extension (length) for both orientation configurations. This process was repeated 40 
times with 40 different training cycles. Investigations with different training can be considered analogous to the 
psychophysical investigation performed on different participants (human), which leads to more statistical rigors 
in results. All the subsequent investigations reported in this study follow the same number of repetitions. From 
these simulated responses, equivalent “perceptual images” were reconstructed, which are shown in Fig. 4a for 
both horizontal (top row) and vertical configurations (bottom row).

To quantify the filling-in, grayscale values in the middle (central 2 × 2 pixel wide region inside the blind spot, 
indicated by the small red square in Fig. 4a) of the perceptual image were averaged. We defined this average as 
the ‘filling-in-value’, where more negative ‘filling-in-value’ indicates better filling in. We obtained this response 
values from all the perceptual images corresponding to 40 training for the given attributes (bar extension and 
configuration).

Figure 1.  Anisotropy in the natural scene, the cortex, and perception. The aim of this work is schematically 
presented in this diagram. Here we explored the possible link between the anisotropy in the contours in the 
natural scene, orientation preference of neurons in the cortex and orientation bias in human perception.

Figure 2.  Anisotropy in orientation selectivity. (a) Learned weighting profiles of 130 neurons at one of the 9 
modules at level 1 after a single training. (b) Orientation distribution at level 1 for all the neurons (130 × 9). The 
envelope (continuous line) is obtained by averaging over 7 bins of the histogram.
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Figure 4b shows the plot of ‘filling-in-value’ as a function of the bar extension for both configurations (hori-
zontal and vertical). Inspection of Fig. 4b shows that the filling-in starts improving rapidly (more negative) 
when the length of the expanding bar exceeds a certain minimum. It can be visualized from the perceptual 
images (Fig. 4a) where beyond a certain minimum length, the bars appear continuous. This result exhibits the 
‘minimum-length requirement’3 property of filling-in. The comparative plots of filling-in-value for horizontal and 
vertical configuration in Fig. 4b show that for a particular filling-in-value the minimum critical length needed for 
the onset of filling-in would be lesser for the horizontal configuration. In other words, for the equal bar extension, 

Figure 3.  Stimuli. (a) Expanding bar stimulus: Two bar stimuli are shown at the opposite end of the blind spot 
shown as a gray square (8 × 8 pixels) in the center. The dotted square (12 × 12 pixels) denotes the area exposed 
to the central module (called BS module) of one of the nine level 1 modules (see Methods). One end of both 
bars is fixed inside the blind spot, whereas other ends are free to expand in sync in steps of one pixel in opposite 
directions. Bar extension is measured from the border of the blind spot. (b) Misaligned bar stimulus: The bar 
at the left side of the blind spot is fixed while the bar on the right side is free to move in the vertical direction in 
steps of one pixel every time. (c) Rotating bar stimulus: In this case, the bar on the left side is fixed but the bar at 
the right side can rotate in steps of 10 degrees.

Figure 4.  Anisotropy in filling-in. (a) Perceptually equivalent images are shown, which are generated from the 
response of PE neurons while the network was stimulated with stimuli depicted in Fig. 3a. The dotted black 
square (in the fourth column) indicates the position of the blind spot and the red square indicates the area 
(2 × 2 pixel) from where the average filling-in-value is obtained. The same convention is followed for all the 
images. (b) The plots of ‘filling-in-value’ in BS area of the images in (a) are shown as a function of bar extension 
measured from the edge of the blind spot. The lines represent the average, and the shaded portion indicates the 
standard deviation for the 40 training set.
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the filling-in performance is better (more negative ‘filling-in-value’) for the horizontal case. This anisotropic prop-
erty is in agreement with the results of psychophysical studies3.

To validate our results, a two-way ANOVA was conducted that examined the significance of the effect of 
bar extension and the configuration (horizontal and vertical) on the filling-in-values. We found that the effect 
of extension [F (10,858) = 933.93, p = 0)], configuration [F (1,858) = 585, p = 0)], and, the interaction between 
them [F (10,858) = 24.09, p = 0)] was significant. Moreover, a post hoc Tukey test showed that the horizontal and 
vertical configuration differed significantly at p = 0.

Anisotropy of tolerance in filling-in.  Anisotropy of tolerance in filling-in for misaligned bar.  For this 
study, the model network was exposed to a pair of bar segments placed on both sides of the blind spot, and this is 
repeated separately for horizontal and vertical configuration. The arrangement for the horizontal case is shown 
in Fig. 3b. One bar was kept fixed at one side of the blind spot while the position of the other one was shifted 
vertically in small steps to vary the misalignments. The response of PE neurons in BS module was recorded with 
changing misalignment, and the perceptually equivalent images were generated from these responses, which are 
shown in Fig. 5a (top row). Likewise, the images generated for the vertical configuration are shown in Fig. 5a 
(bottom row).

The images show that, in both configurations, the filling-in is best in the case of perfect alignment but deterio-
rates with increasing misalignment. Inspection of ‘filling-in-value’ plotted in Fig. 5b show that it is more negative 
(better filling-in) for the horizontal configuration compared to that of the vertical one, which is the signature of 
anisotropy in filling-in, as we have already discussed in the previous section. Moreover, we can also observe that 
the slope of the curve is higher for the horizontal case. It indicates that the rate of change of the ‘filling-in-value,’ 
for the horizontal orientation, is more sensitive to the change in misalignment. In other words, filling-in, in the 
case of vertical orientation, is more tolerant to misalignment compared to that of the horizontal orientation. This 
behaviour could be considered as a signature of anisotropy of tolerance in filling-in.

A two-way ANOVA was conducted that examined the significance of the effect of bar misalignment and the 
configuration on the filling-in-values. We found that the effect of misalignment [F (6,546) = 175.91, p < 0.001)], 
configuration [F (1,546) = 81.96, p < 0.001)], and, the interaction between them [F (6,546) = 26.53, p < 0.001)] 
was significant. Additionally, a post hoc Tukey test showed that the horizontal and vertical configuration differed 
significantly at p = 0.

Figure 5.  Anisotropy of tolerance in filing-in for misaligned bar. (a) Perceptually equivalent images are shown, 
which are generated from the response of PE neurons while the network was stimulated with stimuli depicted 
in Fig. 3b. (b) The plots of ‘filling-in-value’ in BS area of the images in (a) as a function of misalignment between 
the bars are shown. Convention for lines and the shades are as described in Fig. 4b.
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Anisotropy of tolerance in filling-in for disoriented bar.  The focus of the study was to investigate the anisotropy 
of tolerance in filling-in for orientation difference of two bar segments placed on both sides of the blind spot in 
horizontal and vertical configuration. The configuration for the horizontal case is shown in Fig. 3c. The stimulus 
consisted of a fixed bar and a rotating bar. The fixed bar was placed horizontally for the horizontal configuration 
and vertically for the vertical configuration. The other bar, the test bar, was rotated in steps of 10 degrees from 
the aligned position (0 degree difference in orientation) to the perpendicular position (90 degree difference in 
orientation). The perceptual images, generated from the recordings of PE neurons, are shown in Fig. 6a for both 
horizontal (top row) and vertical cases (bottom row).

As expected, the filling-in performance is better for the aligned bars, but it deteriorated with increasing dif-
ference in orientation (Fig. 6b) in both configurations. It is also evident that the ‘filling-in-value’ is more negative 
(indicating better filling-in), in horizontal case, throughout the entire range of difference (in orientation) from 0 
degrees to 60 degrees and after that, the difference becomes indistinguishable. The results show that the horizontal 
configuration favors filling-in but exhibit more sensitivity to the changes in orientation difference (less tolerant); 
on the other hand, the vertical configuration is little less favorable for filling-in but is less sensitive to the changes 
in orientation difference (more tolerant).

A two-way ANOVA was conducted that examined the significance of bar disorientation and the configuration 
on the filling-in-value. We found that the effect of disorientation [F (9,780) = 334.4, p < 0.001)], configuration [F 
(1,780) = 104.66, p < 0.001)], and, the interaction between them [F (9,780) = 13.12, p < 0.001)] was significant. 
Additionally, a post hoc Tukey test showed that the horizontal and vertical configuration differed significantly at 
p = 0.

Comparison with the psychophysical results.  For the purpose of direct comparison with psychophysical results4, 5, 
we have redrawn our results (Figs 4b, 5b and 6b) in Fig. 7 taking into account the concept of visual angle (VA) and 
a threshold. In our study, the extent of the model blind spot is 8 × 8 pixels. On the contrary, if we approximate the 
blind spot to be a square region, the average size of the spot is 5 × 5 degree25, 26. Therefore, we have used a scaling 
factor of 0.625 for converting pixels to degrees. Additionally, we have introduced an artificial threshold (at 50%), 
which is used to obtain quantitative estimates. Bar diagrams compatible for comparison with psychophysical 
experiments are plotted on the right of each of the plots.

In psychophysical investigations, the anisotropy in filling-in (discussed in Fig. 4) was measured using staircase 
method3. On the contrary, in our study, we have measured the filling-in-value which directly corresponds to the 
activity of the PE neurons of our model network. Change in the activity of these neurons, for exposure to different 
stimuli, encodes properties of the filling-in process. As shown in Fig. 4b, in our model network, neurons exhibited 
higher activity (more negative filling-in-value) when exposed to horizontal bar stimulus compared to the activity 
induced by vertical bar stimulus for a given bar length. Therefore, bar length that induces similar levels of neural 
activity will be different for different configuration (horizontal or vertical), and this may provide an estimate of 
anisotropy. We have estimated these lengths (‘minimum length requirement’) by considering a threshold at 50% 

Figure 6.  Anisotropy of tolerance in filing-in for disoriented bar. (a) Perceptually equivalent images are shown, 
which are generated from the response of PE neurons while the network was stimulated with stimuli depicted 
in Fig. 3c. (b) The plots of ‘filling-in-value’ in BS area of the images in (a) as a function of orientation difference 
between the bars are shown. Convention for lines and the shades are as described in Fig. 4b.
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filling-in-value corresponding to the vertical case (in red) as shown in Fig. 7a. The estimated bar lengths are 
plotted as bars in Fig. 7b that are similar to the results reported in experiments3. We did not consider a threshold 
corresponding to the 50% filling-in value in the horizontal case because that would have estimated longer bars, 
whereas our focus is to find the minimum lengths of bars.

Figure 7.  Comparison with psychophysical results. Results of Figs 4b, 5b and 6b are redrawn in (a), (c) and 
(e) respectively for the comparison. The visual angle is represented as VA in the plots. (a) The horizontal line 
represents the threshold corresponding to the 50% of the maximum filling-in-value for vertical configuration, 
and the estimated bar lengths corresponding to this threshold are plotted as bars in (b). (c) Normalized plots, 
as explained in the text, for the positive misalignments are presented, which continued from the 100% to 50% 
probability (artificial threshold). The amount of misalignment at this threshold for the horizontal and vertical 
cases are shown as bars in (d). (e) Similar normalized plots for orientation difference are shown here and 
estimated orientation difference at 50% threshold is shown as bar plots in (f).
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For the presentation of results related to the tolerance in filling-in, we have conceived a general notion of the 
tolerance as a rate of change of filling-in-value, with increasing difference in attributes. Faster change (higher 
rate) will indicate lesser tolerance, and this is advantageous because one can predict the tolerance by inspecting 
the slope of the curve representing the changing filling-in-value, which is directly available from the simulation 
study. Several psychophysical studies4, 5, on the other hand, have defined tolerance in filling-in as the maximum 
difference in attribute above which filling-in is not perceivable with certainty. This definition is more compatible 
with the outcome of psychophysical experiments. Therefore, a different presentation of our results is necessary for 
direct comparison with psychophysical findings.

For comparison, we have normalized the results shown earlier in Figs 5b and 6b. The normalization is per-
formed by dividing the filling-in values represented by a given curve (for a specific configuration) by the mag-
nitude of the maximum filling-in value for that specific case, and this is repeated for each of the plots separately. 
To compare with the psychometric plot of psychophysical results we have, in the resultant plots, considered −1 
to represent 100% probability and 0 to represent 0% probability. Additionally, following the general convention 
where the y-axis ranges from minimum probability (at the bottom) to the maximum (at the top), we have inverted 
our plots which are shown in Fig. 7c and e. These normalized plots range from 50% probability at the bottom to 
the 100% probability at the top and tolerances are estimated from these plots. We have introduced an artificial 
threshold at the 50% probability, where it is assumed that beyond this threshold filling-in cannot be perceived 
with certainty.

In line with the definition of tolerance (maximum difference for which filling-in cannot be perceived with cer-
tainty) compatible with psychophysical experiments, tolerances are represented as vertical bars in Fig. 7d and f.  
Estimated lengths for misalignment shown in Fig. 7d corroborate the experimental findings presented in the 
psychophysical study4 for the vertical as well as for horizontal configurations. The estimated orientation difference 
for horizontal and vertical configurations are shown in Fig. 7f. In this plot, the tolerances are ~19 degrees and ~24 
degrees for horizontal and vertical configuration respectively while the psychophysical results4 provides these 
value as ~40 degrees and ~55 degrees. Though the magnitude of tolerances obtained in our investigation differs 
from the tolerances reported in psychophysical experiments, it is interesting to observe that the ratio (1.26) of 
vertical to horizontal tolerance is very close to the value (1.37) obtained experimentally. It shows that qualitatively 
our results agree well with the experimental findings. These results presented in Fig. 7d and f clearly show the 
vertical dominance in the case of tolerance of filling-in for misalignment and as well as for disorientation.

Filling-in phenomenon for misaligned bars was reinvestigated recently5 in the context of linear and curvilin-
ear completions at the blind spot. In this study, perceptual completion was defined as the case where participants 
perceived continuous bar irrespective of the apparent shape being straight or curved. This definition is identical to 
the misalignment case we have considered in this article as well as the one reported earlier4. Though the tolerance 
of misalignment reported in later study5 is higher approximately by a factor of 2 than the results reported eariler4, 
the vertical dominance in filling-in is preserved and the ratio of vertical to horizontal misalignment remained 
very close to that reported in psychophysical study4. Therefore, our results related to misalignment investigation 
to some extent corroborates the results reported in psychophysical study5.

The common asymptotic shape, as observed in psychometric plots, near 100% probability5, is not apparent in 
our plots. The most plausible reason is the lower resolution we have achieved in our simulation, where we have 
considered a 8 × 8 pixels wide blind spot that provided 4 data points corresponding to four misalignments. For 
the same limited resolution, the results of collinear experiments5 could not be discussed with the results of our 
investigation. The collinear filling-in has been shown for the very narrow misalignment which is not possible to 
investigate in the current context. However, a model network with a better resolution could be able to shed some 
light on these phenomena.

Relation between natural image statistics and filling-in at the blind spot.  How anisotropy, then, arises from the 
response of the model network? We have shown (Fig. 2b) that, in agreement with natural scene statistics, the 
distribution of the orientation preference of the learned receptive fields at V1 reflects the over-representation of 
neurons tuned towards horizontal orientation. This result demonstrates that the model network could encode 
the anisotropies of natural scene statistics through learning. In a separate study20, it has been suggested that the 
likelihood of filling-in of features (bars with different attributes) is guided by its likelihood of occurrence in the 
natural scene. Features that are more frequent tend to be more likely candidates for filling-in. In this perspective, 
we argue that the over-representation encoded by the learned receptive fields at V1 dominates the prediction at 
the blind spot that leads to filling-in of discontinuity. This is plausible because in the absence of the feed-forward 
connections (in the network representing blind spot region) top-down predictions biased by the learned internal 
model dominates. Thus, the prevalence of horizontally oriented features (lines, bar and the like) in the learned 
internal model results in the superiority of horizontal features in filling-in. This is reflected as more negative 
‘filling-in-value’ in all three horizontal cases (blue line) in Figs 4b, 5b and 6b.

How vertical superiority of tolerance in filling-in arises? The nature of variation in filling-in-value, shown 
in Fig. 5b (or Fig. 7c) and Fig. 6b (or Fig. 7e), can be explained by taking into account the orientation tuning 
distribution of neurons shown in Fig. 2b. Inspection of Fig. 2b reveals that neurons tuned toward horizontal ori-
entation have a higher population and sharper distribution. In comparison, neurons tuned toward vertical orien-
tation have a relatively lower population and relatively broader distribution. The sharper distribution (and higher 
population) of neurons tuned toward horizontal orientation results in a more specific estimate for filling-in that 
would be less tolerant despite the fact that better filling-in will be observed for that orientation. On the other 
hand, broader distribution (and lower population) of neurons tuned toward vertical orientation results in higher 
tolerance and the lesser response results from the comparatively lower population. Therefore, in the case of hori-
zontally oriented stimuli, the filling-in performance deteriorates at a faster rate with increasing difference in 
stimulus attributes compared to that of vertically oriented one.
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These arguments can be readily put forward for explaining the anisotropy of tolerance in filling-in for diso-
riented bar stimuli (Fig. 6). For a given configuration (horizontal or vertical), the rotating segment of the stim-
uli makes varying angles with the fixed segment. Because of this, the filled-in section that resides inside the 
blind-spot will have to be aligned at varying angles either toward vertical or horizontal depending on the configu-
ration. For every angle (0 to 90°), neurons having the similar orientation preference matching that of the filled-in 
section (in the blind spot) that connects the pair of bars will be activated for filling-in. For horizontal configura-
tion, neurons having horizontal orientation preference as well as neurons having close to horizontal orientation 
preference are activated (depending on the stimuli in Fig. 6b). Because of the sharper distribution of neurons with 
orientation preference toward horizontal, a smaller orientation difference (with the horizontal) of the rotating bar 
will activate a certain population of neurons with similar orientation sensitivity. However, this population will be 
much smaller compared to the population that has been deactivated due to the increase in orientation difference. 
The deactivation will result in a larger decrease in response of the neurons, which is reflected as a faster decrease 
(lesser tolerance) in responses with increasing stimulus deviation from the horizontal orientation. Similar argu-
ments can be given to explain the slower decrease (greater tolerance) in responses of neurons (because of broader 
distribution) in the case of vertical configuration.

In the case of misaligned bar investigation (Fig. 5), one bar is kept fixed, and the other is shifted (either verti-
cally or horizontally) to simulate the varying amount of misalignment. Because of this, the filled-in section of the 
pair of bars (inside the blind-spot) will have to be aligned at varying angles either toward vertical or horizontal 
depending on the configuration. For every misalignment, neurons having orientation preference similar to that 
of the filled-in section become activated for filling-in. Therefore, as discussed before, the filling-in-value will 
be determined by the population of neurons tuned to a specific orientation and the nature of variation (with 
increasing misalignment) will be determined by the width of the distribution of neurons. This is reflected as 
better filling-in (more negative filling-in-value) and faster deterioration in filling-in with increasing difference in 
attributes in case of the horizontal configuration shown in Fig. 5b.

From the preceding discussions, it is evident that the predominance of horizontal contours in natural 
scene results in better filling-in operation in all three cases considered, and this is reflected as more negative 
filling-in-value as shown in Figs 4, 5 and 6 (in blue). On the other hand, broader distribution of vertical con-
tours results in a more tolerant response in filling-in operation with increasing difference in attributes, which is 
reflected in the curves (in red) with shallower gradient depicting the changing filling-in-value in Figs 5 and 6.

Does the model HPC network predict filling-in-value in accordance with the statistics of natural images it was 
trained with? To validate these conclusions, we have repeated investigations with misaligned bar stimuli (Fig. 5) 
with a natural image having vertical orientation superiority with asymmetric distribution of contours and its 
90° rotated version, which is shown in Fig. 8a. The distribution of orientation content of the upper-left image is 
shown at the bottom of Fig. 8a. We have evaluated the orientation at each pixel (upper left image in Fig. 8a) from 
the direction of the local gradient (of the grayscale image), which was evaluated from the arc tangent of partial 
derivative (in 3 × 3 kernel) in the vertical direction divided by the value in the horizontal direction.

The distribution reveals the dominance of vertical contours and an asymmetric distribution around the dom-
inant orientation (90 degrees) with a sharper rise (left side) and a slower fall (right side). Training with these two 
images produced an orientation preference of V1 neurons as shown in Fig. 8c, where the neurons are equally 
sensitive to cardinal orientations and possessed similar distributions around cardinal directions, which nearly 
preserved the asymmetries of the original image (Fig. 8a). This similarity resulted in an equal filling-in response 
as shown by the superimposed curves (representing filling-in-values) in Fig. 8d. Despite the fact that the distri-
butions are similar, close inspection of Fig. 8c reveals that the distributions, centered around cardinal angles, are 
asymmetric exhibiting a sharper rise at the left side and a comparatively slower fall at the right side. This asym-
metry implies that as long as the moving bar is aligned at 180 − θ (90 − θ) (Fig. 8b), the filling-in-value altered at a 
faster rate with the angle and when it was aligned at 180 + θ (90 + θ), the filling-in-value altered at a comparatively 
slower rate. This is visible in the plot shown in Fig. 8d as faster rise on the left and a slower rise on the right side. 
From these results we conclude that the filling-in-value predicted by the model HPC network is in accordance 
with the statistics of images used for training, where the absence of anisotropy in the contours tuned to cardinal 
orientations results in equal filling-in response; and similar distribution of cardinal orientations results in similar 
gradient in the changing filling-in-value with increasing difference in the attributes.

Discussions
Our study suggests that natural scene statistics plays a significant role in determining the anisotropy in percep-
tual filling-in including the anisotropy of tolerance in perceptual filling-in at the blind spot. Over-representation 
of horizontal contours in natural scene biases the orientation preference of neurons in V1, and that is possibly 
responsible for the emergence of anisotropy, which is reflected as a horizontal preference in perceptual filling-in 
operation. The width of the distribution of orientation preference, on the other hand, determines the anisotropy 
of tolerance in filling-in, where the broader distribution of vertical contours in natural scene possibly contributes 
to the greater stability towards vertical orientation in perceptual filling-in operation.

These results demonstrate that there is a link between the orientation anisotropy in the contours in the natu-
ral environment, orientation preference of neurons in V1 and orientation bias in the perceptual filling-in at the 
blind spot. Our result supports the general speculation6, 8, 10–12 that orientation anisotropy in natural scene plays 
a significant role in determining the anisotropy in the cortex as well as the anisotropy in perceptual orientation 
preference.

Firstly, we show that the model HPC network, which mimics the prediction-correction computational para-
digm of the cortex, is capable of building an internal model of the outside environment by learning the statistics 
of natural scenes it is exposed to. This is reflected by the fact that the orientation preference, as well as the distribu-
tion of orientation preference of model neurons in V1, is very similar to the predominance of horizontal contours 
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and their distribution in the natural environment. The plausibility of this paradigm can be established with the 
help of several previous findings. A recent survey16, in the physiological domain, involving cells in the cat’s striate 
cortex indicates the preferential bias of cells towards horizontal orientation. Imaging studies also revealed17–19 the 
preference of higher percentage of the area of the exposed visual cortex towards horizontal orientation compared 
to vertical. Innate specification along with prolonged exposure to an anisotropic environment during develop-
ment is believed to be responsible for the emergence of over-representation of horizontal orientation preference 
of these neurons. In the psychophysical domain, correspondence between the horizontal bias in human visual 
processing and the anisotropy in the natural scene has been reported8, 9. A detailed survey in this work also shows 
the prevalence of horizontal contours in a typical natural scene compared to vertical contours. In a recent study, 

Figure 8.  Validation Investigation. (a) Natural images with asymmetric orientation distribution are shown. The 
upper-left image mainly possesses contours with a bias towards vertical orientation. The histogram exhibiting 
this property is shown below. The upper-right image is 90 degrees rotated version of the left one (histogram is 
not shown). (b) A detailed schematic of the misaligned bar study conducted in horizontal and vertical 
configuration is presented. The moving bar was shifted by a maximum amount of 3 pixels on both sides of the 
mean (aligned) position. For the horizontal configuration it moved upward from the bottom, and for the 
vertical case, it moved leftwards. The angular deviation of the filled-in portion (represented by dotted line inside 
the BS) can be evaluated from θ = tan−1(position of the moving bar in pixels/8). (c) Orientation distribution of 
trained neurons at level 1 is plotted. The continuous line (black) plot is the envelope of the histogram, which was 
obtained by convoluting the histogram, averaging over 7 bins. The shaded regions around horizontal (in blue) 
and vertical (in red) orientation indicate the population of neurons that is likely to be activated for filling-in 
when the moving bar is displaced by an amount ±20 degree (θ = tan−1(3/8) ~ 20 degrees) around the mean 
position. The difference in height between red lines (blue lines) across this smoothed plot is to indicate the 
neuronal density difference for the maximum misalignment (20 degrees) around the vertical orientation 
(horizontal orientation). The arrows above the shadowed regions indicate the direction of the moving bar. (d) 
Plots of ‘filling-in-value’ as a function of misalignment obtained from the response of the network are drawn. 
Convention for lines and the shades are as described in Fig. 4b.
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it has been demonstrated that visual orientation perception reflects the knowledge of environmental statistics6. 
In this work, the estimated internal model of human observers was found to match the orientation distribu-
tion measured in photographs of environment though the difference between horizontal and vertical was not 
addressed.

Secondly, our investigations reveal that the anisotropy in orientation preference (horizontal) of V1 neurons 
results in the similar anisotropy in the filling-in performance and the distribution (sharper or broader) of cardinal 
neurons results in the anisotropy of tolerance in filling-in performance. What is the biological plausibility of such 
a scheme? In an imaging study13, it has been shown that in V1 the distribution of inputs to the cardinal neurons is 
narrower compared to those of oblique neurons. When exposed to selective perturbation induced by adaptation 
(oriented away from the neuron’s preferred orientation), cardinal neurons exhibited greater stability compared to 
the neurons tuned to oblique orientation. This is attributed to the fact that because of the narrower distribution 
of local inputs to the cardinal neurons, an adaptive stimulus would stimulate a fewer number of neurons in the 
vicinity compared to that of the neurons tuned to oblique orientation. This demonstrates that the width of the 
distribution (of neurons) plays a significant role in determining the responses when stimulated away from the 
preferred orientation. From a different perspective it indicates that for neurons having narrower distribution, 
a much greater change in response will be observed with increasing deviation of the stimulus orientation from 
the neuron’s preferred orientation. This implies greater sensitivity and therefore, lesser stability in the present 
context. Comparatively, neurons having broader distribution will be less sensitive (more stable). This is similar to 
the findings of our observation. Evidence in favour of larger neural population preferring horizontal orientation 
(compared to vertical) have also been found in several physiological studies16–18, as discussed earlier.

In studies on filling-in completions at the blind spot4, it was speculated that there might be different aniso-
tropic process responsible for different kinds of anisotropy observed in different (misalignment, disorientation, 
and luminance difference) filling-in investigations e.g., it was speculated that the anisotropy in misalignment 
experiment might have arisen from the anisotropy in vernier acuity. Alternatively, studies5 related to linear and 
curvilinear filling-in for misaligned bar suggest the possible involvement of different processes for the observed 
anisotropy. Here in this study, we have proposed a possible alternative explanation in terms of a unified principle 
based on the role of natural image statistics. We have demonstrated this in filling-in investigations involving mis-
aligned and disoriented bar stimuli. Results of our studies also suggest that the anisotropy in vernier acuity might 
have its origin in the statistics of natural scenes. Evidence in support of these suggestions can be found in a related 
work27, where it was argued that the vernier misalignment could be discussed on the premise that the average 
orientation of a misaligned pair of abutting lines differs from that of the aligned lines. Vernier acuity preferring 
horizontal directions over the vertical including the cardinal over the oblique has been demonstrated in this work.

We speculate that the horizontal superiority4 in the tolerance of luminance difference could be discussed in 
terms of statistics of the natural scene. Luminance is a surface property, and, therefore, for proper inference, the 
cortex should be capable of encoding 3D surface information efficiently. In a recent study28, it has been shown 
that disparity neurons are capable of encoding statistics of the natural scene. Studies29 also show that the pair-wise 
functional connectivity between the disparity tuned neurons in V1 matches the anisotropic distribution of corre-
lation between disparity signals in the natural scene. Though, these studies mainly concentrated on the cardinal 
vs non-cardinal aspect of the anisotropy, a close inspection of the plots indicate a broader distribution of the 
horizontal features. This broader distribution in disparity signal (or pair-wise connectivity) could be linked to 
the horizontal superiority in the tolerance of luminance difference. Some supportive evidence can be found in a 
recent work30 showing that relative luminance and binocular disparity preferences are correlated in accordance 
with the trends of natural scene statistics. These studies suggest a possible link between the anisotropy in the 
disparity signal and the relative luminance. In future work, incorporation of surface representation in the internal 
model in the HPC framework might explain the anisotropy in luminance difference.

In this work, we have studied the origin of anisotropy in perceptual filling-in in a simple standard linear 
Hierarchical Predictive Coding network. Because of this, our findings could only explain the possible reasons 
responsible for the emergence of anisotropy in filling-in reported by human participants, but a quantitative com-
parison with psychophysical results is not straightforward. In the present context, however, what matters is that 
given the statistical information of the input stimuli derived from natural images, the network was able to predict 
the anisotropy in perceptual filling-in at the blind spot. The findings, in this work, offer new insights into the role 
of natural scene statistics and suggest what is possibly the first systematic bridge linking anisotropy in three levels: 
natural environment, visual cortex, and perceptual filling-in at the blind spot.

Methods
Standard hierarchical predictive coding (HPC).  In this paradigm, the visual system is considered to 
be an active predictor-corrector system implemented in a hierarchical neural architecture where perception is 
accomplished via the interaction of top-down prediction and bottom-up correction21, 31. Instead of passively 
responding to the input signal, higher-level cortical activities (predictions) are conveyed to lower levels via top-
down connections, and in response, lower levels convey residual errors via bottom-up connections (see Fig. 9a). 
It is further assumed that prediction by the higher cortical levels is mainly governed by the regularities learned via 
the exposure to the natural scene during development.

The visual system learns the model of the outer world through its parameters related to statistical regularities 
U. The prediction Ur is generated from the activity of the neurons coding the internal representations or estimate 
r which is the actual cause of input sensory signal I. Given that the vision is a stochastic phenomenon, the goal of 
the visual system is, thus, to maximize the posterior probability distribution P r U I( , ). According to the Bayesian 
theorem, this is roughly equal to the product of likelihood P I r U( , ), which is a distribution of stochastic error 
between prediction and sensory input, and the prior distributions P(r) and P(U). Assuming Gaussian type sto-
chastic error, with variance σ2, the posterior distribution can be written as -
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where, Z, is a normalization constant. Maximizing this equation is equivalent to minimizing the negative loga-
rithm of it, which is called cost function in the MDL terminology and can be written as,
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where the subscript T indicates the transpose of the vector or matrix. Also g(r), h(U) are the negative logarithm 
of P(r) and P(U), respectively.

The cost function of an inference system with 3 level of hierarchy, in which the higher (3rd) level makes infer-
ence (or prediction) rtd to the immediate level representation r with error variance σtd

2, can be written as (for 
details see refs 21, 31)
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This equation serves as a guiding principle for the standard Hierarchical Predictive Coding (see Fig. 9b), 
which assumes that the predictive estimator (PE) modules at each visual processing level send the prediction 
signal Ur to its immediate lower processing level via feedback connection. On the other hand, the lower levels 
send back the error signal −I Ur( ) via feed-forward connection. The error signal is then utilized to correct the 
current estimate r, which is coded by PE neurons, of the sensory driven input.

The dynamics and the learning rule, thus, result from minimizing the cost function (using gradient decent 
method), with respect to r and U respectively-
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Kurtosis prior probability α= − +P r r( ) exp( ln(1 ))i i1
2  on response ri has been considered in this study to 

accommodate sparse coding32, which provides α′ = +g r r r( ) 2 /(1 )i i i
2 . Additionally, considering prior P U( ) as a 

Gaussian provides λ′ =h U U( ) 2 . Here α and λ are variance related parameters.

Figure 9.  Hierarchical predictive coding (HPC)20. (a) The general mechanism of Hierarchical Predictive 
Coding is shown schematically. (b) The general computational architecture of a predictive estimator (PE) 
module is presented. (c) Details of a three level HPC model network is shown; where level 2 module sends a 
feedback signal to all 9 level 1 modules and in response, receives back the error signal from all of them.
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An optimum estimate at a visual processing level is determined by the error signal from lower area (first term 
in the equation (4)) as well as error signal corresponding to a higher level (second term in equation (4)) that carry 
the contextual information since the higher area codes larger visual patch. This multilevel optimum-estimate for 
prediction is considered as an internal representation of the sensory input. The internal representation fabricated 
from the prediction Ur is assumed to represent ‘perceptual experience’ in this study.

Network.  A three-level network has been used in this study (Fig. 9c). Level 0, level 1 and level 2 are equiv-
alent to the LGN, V1, and V2. Level 0 pre-procsses (low pass filtering) the stimuli in line with LGN function. 
Each module at level 1 sends prediction signal to level 0, by feedback connection and in response receives the 
error signal by the feed-forward connection. Likewise, each module at level 2 sends the prediction signal to all 9 
modules at level 1, and get back the error signal by a feed-forward connection from all of them. The modules at 
level 1 consist of 130 feed-forward, 130 PE neurons, and 144 feedback neurons. The level 2 module contains 256 
feed-forward neurons, 256 PE neurons, and 1170 feedback neurons.

Training.  For obtaining statistically significant results, we performed 40 training cycles. In each training cycle, 
the network received a thousand batches of 100 (variance normalized and pre-processed32) 30 × 30 pixel image 
patches as inputs. Each level 1 module received signals corresponding to 12 × 12 pixel image patches which were 
overlapped by 3 pixels20. The network was allowed to achieve the optimum-estimate (equation (4)) for each batch, 
and then the average of the optimum-estimate was used to update the weighting profile of neurons (equation (5)),  
initially assigned to random values. To prevent the weighting profile from growing boundlessly, the gain of 
the weighting profile of each neuron were adapted such that it maintains the equal variances on the response. 
Parameters used in this study are same as considered in the previous study20.

Blind spot implementation.  First, the model network was trained without considering the blind spot, and 
thereafter, the blind spot was created in the trained network by removing the feed-forward connection from level 
0 to level 1 (8 × 8 pixel wide in the middle of BS module). This process is in agreement with the actual physio-
logical findings, where the neurons contributing to the filling-in process (at the blind spot) are found to be of a 
binocular type and therefore, receive inputs from both the eye. Thus, despite the absence of any input from one 
eye (the blind spot eye), the neurons could develop their weighting profiles. For a detailed discussion see the 
previous study20.
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