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Abstract

A subject-specific model of instantaneous cost of transport (ICOT) is introduced from the

joint-space formulation of metabolic energy expenditure using the laws of thermodynamics

and the principles of multibody system dynamics. Work and heat are formulated in general-

ized coordinates as functions of joint kinematic and dynamic variables. Generalized heat

rates mapped from muscle energetics are estimated from experimental walking metabolic

data for the whole body, including upper-body and bilateral data synchronization. Identified

subject-specific energetic parameters—mass, height, (estimated) maximum oxygen

uptake, and (estimated) maximum joint torques—are incorporated into the heat rate, as

opposed to the traditional in vitro and subject-invariant muscle parameters. The total model

metabolic energy expenditure values are within 5.7 ± 4.6% error of the measured values

with strong (R2 > 0.90) inter- and intra-subject correlations. The model reliably predicts the

characteristic convexity and magnitudes (0.326–0.348) of the experimental total COT

(0.311–0.358) across different subjects and speeds. The ICOT as a function of time pro-

vides insights into gait energetic causes and effects (e.g., normalized comparison and sen-

sitivity with respect to walking speed) and phase-specific COT, which are unavailable from

conventional metabolic measurements or muscle models. Using the joint-space variables

from commonly measured or simulated data, the models enable real-time and phase-spe-

cific evaluations of transient or non-periodic general tasks that use a range of (aerobic)

energy pathway similar to that of steady-state walking.

Introduction

Evaluating metabolic energy expenditure (MEE) is critical in a wide range of basic and applied

research areas, including gait analysis [1–5], sports science [6,7], engineering design [8,9],

fatigue and obesity studies [10,11], and comparative and evolutionary biomechanics [12,13].

In conventional laboratory settings, indirect calorimetry is used to estimate MEE from the rate

of oxygen uptake ( _VO2) [6,7,14–16]. However, the predictive capabilities of such methods are
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limited by experimental protocols (e.g., steady state, aerobic metabolic range) and equipment

(limited tasks and ranges of motion, time delay between the onset of energy expenditure and

when the _VO2 reaches steady state) [7]. For these reasons, only the metabolic measurement of

conventional tasks such as steady-state walking [3,4,17] and cycling [7] have been extensively

studied, even though steady-state activities are the exception rather than the norm during real-

world tasks [18]. In this regard, a recent study introduced a dynamic systems approach that

estimates instantaneous metabolic rate during non-steady-state walking from measured data

[18]. However, even in those conventional tasks, the results in general are not always reliable

(e.g., disagreements involving the relative metabolic costs of gait stance and swing phases [1]).

Also, since even a simple task is not performed with identical kinematics and dynamics by a

subject on different trials, which result in different MEE, the use of empirically constructed

formulas [7,16] or look-up tables can produce significant errors [19].

The MEE models scaled from experimental energetics of individual muscle activations

[13,20,21] avoid the use of _VO2 measurement and the associated limitations. The instanta-

neous evaluation from models enables integration over a phase-specific time duration to esti-

mate the relative metabolic costs of different phases of a task [1]. However, there are two main

problems in current muscle energy models: redundancy and unknown interactions. Multiple

musculotendon units that cross a given joint can be activated as synergists to generate a resul-

tant moment of muscle forces about the joint center [22]. Due to the large number and redun-

dancies of functional skeletal muscles in a human body, the excessive number of degrees of

freedom (DOFs) makes deterministic and verifiable evaluation difficult. In addition, due to

the compliance in the geometric and mechanical configurations of soft tissue, the muscle space

is essentially infinite dimensional. Although this redundancy is often addressed through opti-

mization to predict a unique muscle activation pattern [23], most models still struggle when

attempting to predict submaximal activation patterns [24]. As a result, existing muscle energy

models may demonstrate conflicting results, especially in the case of eccentric (lengthening)

contractions [25].

Furthermore, the energetics of the human musculoskeletal system is not simply a scaled

version of the energetics of a single muscle commonly modeled using line segment, because

interactions between muscles and their surroundings (other muscles, bones, and adipose tis-

sue) are often difficult to measure or predict. These time-varying interactions, including nor-

mal and frictional contacts, wrapping and sliding with the internal surroundings [26], change

of moment-arms [26], and compliance due to elastic tissues [24,27], alter the transmission of

muscle forces to their resultant joint actuator torque, which become more severe when the

joint angles deviate far from neutral positions. These complexities and indeterminacies indi-

cate that the evaluation of MEE from muscle-space energy models (usually obtained from in
vitro measurements) does not consistently provide reliable results. For instance, even in nor-

mal walking, the predicted MEE results from existing muscle-space models often include sig-

nificant errors (up to 50%) [25,28,29]. Furthermore, the quantitative models of molecular-level

muscle energetics in the current literature are mostly hypothetical and not validated [30,31].

Consequently, the validity and applications of existing muscle energy models are limited to

specific conditions, tasks, and certain muscle types (e.g., skeletal muscles that can be approxi-

mated as straight lines during a given task).

A plausible solution to the aforementioned problems is to model the MEE in joint space.

The resultant effect of multiple muscles that contribute to the rotation of a single anatomical

joint can be mapped to a combination of one or more kinematically equivalent revolute joints

[26,32]. The relative angles of these revolute joints form the generalized coordinates of joint

space. Under a rigid-body assumption for each segment, joint space is finite dimensional,
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from which the whole-body segmental configurations can be uniquely determined using inde-

pendent DOFs. Unlike those in muscle space, the joint-space kinematic and kinetic variables

are readily available from commonly measured or simulated movement data. Furthermore,

the maximum-torque-angle-velocity relationships in joint space [33,34] are simpler than the

maximum-force-length-velocity relationships in muscle space [24,27]. For these reasons,

joint-space formulations are commonly used in inverse dynamics for motion analysis [26,35–

37] and computational simulation and optimization [38–40]. Several recent studies have dem-

onstrated that MEE during walking can be predicted using joint-space kinematic and kinetic

data [41,42]. However, due to the lack of an accurate MEE model in joint space, incomplete

proxies for MEE, such as center-of-mass work [43,44], segmental work [43,45], modified total

mechanical work [45], rate of normalized absolute joint moment impulses [43], mechanical

work derived from experimental efficiencies [46,47], and other combinations [48], are often

used as approximations in the literature.

In this study, instantaneous evaluation of energetic cost of transport (COT) is introduced

from the derivation of a novel subject-specific model of MEE rate in joint space. The COT is a

quantity (formulated either without [49,50] or with dimensions [51]) that provides a measure

of energy economy and is defined as the total energy expended during locomotion per unit

distance and body weight or mass. While the energy efficiency of human gait is formulated

inconsistently without unique definition throughout existing studies [36,46,47,52,53], the

inverse of COT quantifies the “locomotion efficiency” and allows for non-dimensional com-

parisons across different subjects and gait strategies [49–51]. However, the common total

COT values are lumped over a time duration due to the aforementioned limitations of meta-

bolic measurement. The instantaneous COT (ICOT) is defined in this study (Section 2.4) as

the COT evaluated at each time instant, rather than for a finite time interval. The ICOT can

provide a deeper analysis and insights about the energetic causes and effects between the body

and gait parameters as a function of time or gait cycle. (Note: This study introduces the first

use of the acronym ICOT defined as the “instantaneous cost of transport”. The definition of

iCOT in a previous study [54] seems to be a typo and is inconsistent with other work, e.g.,

[55], from the same authors in which iCOT is correctly defined as incremental cost of trans-

port.) Unlike the previous joint-space model that was estimated from empirical formula [42],

the new models are established through refined model identifications, subject-specific parame-

ters, and metabolic measurements. The MEE, ICOT, and phase-specific COT models are first

derived theoretically by combining the laws of thermodynamics and the principles of multi-

body system dynamics. Distinct from a few inductive, empirical muscle energy models that

were also described with respect to the first law of thermodynamics [25,56–58], the proposed

deductive approach includes rigorous mathematical formulations and systematic identifica-

tions of energy transformation (among various energy components) and transfer (through

external versus internal work and heat). The generalized heat rates as functions of subject-spe-

cific system parameters in joint space, which are mapped from muscle energetic properties,

are estimated from walking data. The experimental walking data with different speeds and

metabolic measurements used for estimation and validation are processed for the whole-body

energetics, which includes upper-body and bilateral data synchronization.

Methods: Modeling and Experiments

The main focus of this work is to identify and derive physically accurate terms and forms in

the MEE model. The MEE and ICOT models as functions of joint kinematic and dynamic var-

iables are mathematically derived. Then the subject-specific heat rates in joint space are esti-

mated from experimental whole-body walking data.
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Model Constraints, Identification, and Derivation

The entire human body is identified as the system of interest for thermodynamic analysis in

order to include the metabolic energy component (internal biochemical energy) explicitly as

one of the energy terms, which would not be possible if only muscles were selected. In the pro-

posed derivations, the changes of system energy due to mass transfer (e.g., air, sweat, and

food) and chemical reactions for metabolism (between air and biochemical energy) at the sys-

tem boundary are not taken into account. While the inhaled or exhaled air through respiration

is not included in the system, it is assumed that sufficient amount of metabolic energy source

is readily available within the human body throughout the duration of a given task. This is a

plausible constraint with respect to the scope of this study, which encompasses the transfer

and transformation between metabolic energy, mechanical work, heat, and other various

chemically-nonreactive energy components. Furthermore, the derivations from the first law

are not dependent on either how or at what rate the energy source is produced from metabo-

lism, or the internal process of energy transfer and transformation within the human body.

Whether the energy transformation includes chemical reaction or not is also one of the criteria

for the following breakdown of system energy into components. Therefore, the derived model

terms are valid for tasks that utilize metabolic pathways both with (i.e., aerobic) and without

(i.e., anaerobic) oxygen, which is only important as an oxidizing agent, as long as there is no

instantaneous shortage (or fatigue) in the available metabolic energy source. The differences

due to aerobic versus anaerobic pathways can be reflected in the model through the heat coeffi-

cient parameter values that are experimentally identified (the walking experiments in this

study are for aerobic conditions only). In addition, while the heat dissipation due to muscle

actuation is a significant portion in the models, additional heat exchange due to sweat is

assumed to be negligible. These model constraints imposed on the energetic effects of respira-

tion and sweat allow closed-system thermodynamic analysis, and are plausible assumptions

for natural tasks like normal walking for a brief period of time after an initial period of rest.

The energy components associated with the human multibody dynamic system include the

kinetic ( _Ek), external potential ( _Ep; corresponds to the work done by all external conservative

forces), internal potential or strain ( _Up; corresponds to the work done by all internal conserva-

tive forces), internal thermal ( _Ut), and metabolic (� _Emet ; where _Emet is the MEE rate) energy

rates, where upper dots indicate time-derivatives. Another term ( _Eo) includes various energy

components that are not directly related to muscle activities, for instance, those at the tissue

level for the brain, kidneys, liver, etc. (which have no muscle at all) and those for the molecules

transportation through the GI tract membranes. The rate of change in the total energy is incor-

porated into the first law for a closed system:

_Ek þ _Ep þ _Up þ _Ut þ _Eo � _Emet ¼ _Wext þ _Qext ð1Þ

where _Wext is the work rate done by non-conservative external forces and _Qext is the heat trans-

fer rate across the system boundary. The segment volumes (pressure-volume work) and con-

tact properties (elasticity, viscosity, and friction) of the system elements are assumed to be

independent of the heat and thermal energy. The MEE rate can be derived in terms of the rate

of work _Wint done by non-conservative internal forces by incorporating the work-energy prin-

ciple [59] of dynamics ( _Ek þ _Ep þ _Up ¼ _Wint þ _Wext) into the above equation:

_Emet ¼ _Wint þ _Ut � _Qext þ _Eo ð2Þ

The heat rate ð _Ut � _QextÞ is due to the net effects of increased internal thermal energy and

outbound heat transfer. In general, the heat and internal work result from actuation and
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dissipation within the system, where the actuation is generated by the activations of skeletal,

smooth, and cardiac muscles.

Generalized Coordinates and Heat Rates: Muscle to Joint Space

Mapping

The angles between adjacent link segments of the human body serve as the generalized coordi-

nates in joint space. If the human body configuration can be represented using n revolute

joints (n DOFs) in addition to the position and orientation of a body base with respect to an

inertial frame, the joint space is composed of vectors of n independent generalized coordinates

qi, i = 1, . . ., n. The kinematic constraints imposed on the musculotendon systems by anatomi-

cal structure result in one effective DOF angle for each revolute joint that is dependent on the

muscle and musculotendon lengths. As a result, each joint angle (and velocity as its total time-

derivative) is a function of the associated muscle and musculotendon lengths (and contraction

velocities), representing the mapping from the infinite-dimensional muscle space to the finite-

dimensional joint space, in which the generalized coordinates (joint angles) are uniquely

determined (Fig 1).

At each joint, the muscle-induced actuator torque τ(t) is the resultant of the moments of

the associated muscle forces about the joint axis of rotation. Since each muscle force’s orienta-

tion and position of its point of application (including the varying moment-arm length and

shape) with respect to the rotational axis depend on their contact and wrapping with the sur-

roundings [26], each joint actuator torque is a function of the associated muscle forces and

musculotendon lengths. In this study, to avoid the complexities and indeterminacies in multi-

ple musculotendon dynamics, the joint actuator torque serves as a generalized torque for the

corresponding generalized coordinate (joint angle) (Fig 1). This mapping incorporates the

activation, contraction, and musculotendon dynamics and their maximum-force-length-

velocity properties [24,27] into the actuator torque dynamics at each joint along with the

maximum-torque-angle-velocity properties [33,34]. The remainders of the agonist and antago-

nist muscle forces that correspond with moment equilibrium contribute to active stiffness as

Fig 1. Mapping from muscle space to joint space

doi:10.1371/journal.pone.0168070.g001
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cocontraction, which can only be measured using EMG, and is indeterminate and not uniquely

identifiable in joint space. In this approach, the cocontraction at a joint is divided into torque-

dependent (by active joint stiffness required for basic structural and motor control stability)

and torque-independent (due to excessive muscle activations that are arbitrary and not essential

for a given activity) components [42]. While torque-dependent cocontraction is the minimum

requirement for a given task for a subject, the torque-independent cocontraction is unnecessary

surplus.

The heat that active skeletal muscles dissipate depends on their voluntary activations. Simi-

lar to the generalized coordinates and torques, the activations of the associated muscles at each

revolute joint constitute the generalized activation in joint space [42], which can be derived as

a function of τ(t) using the common Hill-type muscle contraction dynamics [24,27,60]. The

generalized activation is used along with the skeletal muscle heat-activation characteristics

[20,21,24,61,62] to derive generalized heat rates in joint space [42]. The generalized activation-

maintenance heat rate is:

_Qam
i ðtÞ ¼ ham

i jtiðtÞj þ hamε
i þ ham1

i ðtÞ ði ¼ 1; . . . ; nÞ ð3Þ

where ham
i is the coefficient associated with the joint actuator torque and torque-dependent

cocontraction, hamε
i is the coefficient associated with basal torque-dependent cocontraction,

which represents the minimal activations by skeletal muscles required for structural integrity

and motor control stability even when τ(t) is zero, and ham1
i is the time-varying coefficient asso-

ciated with the active stiffness due to torque-independent cocontraction. Both ham
i and hamε

i are

functions of the joint angle, velocity ( _q), and maximum (across angles and velocities for the

joint) actuator torque (τmax), incorporating muscle’s maximum-force-length-velocity proper-

ties. The generalized shortening-lengthening heat rate is:

_Qsl
i ðtÞ ¼ hsl

i jtiðtÞ _qiðtÞj þ hslε
i þ hsl1

i ðtÞjtiðtÞj þ hsl2
i ðtÞj _qiðtÞj þ hsl3

i ðtÞ ði ¼ 1; . . . ; nÞ ð4Þ

where hsl1
i , hsl2

i , and hsl3
i are the time-varying coefficients associated with the active stiffness due

to torque-independent cocontraction. The coefficients hsl
i and hslε

i are associated with the joint

mechanical power and basal torque-dependent cocontraction, respectively, and both are func-

tions of the joint angle, velocity, and maximum actuator torque incorporating muscle’s maxi-

mum-force-length-velocity properties.

The above terms corresponding to torque-independent cocontraction (the last in _Qam
i and

the last three in _Qsl
i ) can be considered to be voluntarily arbitrary. Therefore, these arbitrary

terms can be re-grouped as an independent variable, the generalized torque-independent

cocontraction heat rate _Qcc
i ðtÞ at each DOF. Likewise, the terms corresponding to the basal tor-

que-dependent cocontraction can be re-grouped as a single variable _Qε
i :

_Qcc
i ðtÞ ¼ ham1

i ðtÞ þ hsl1
i ðtÞjtiðtÞj þ hsl2

i ðtÞj _qiðtÞj þ hsl3
i ðtÞ and _Qε

i ¼ hamε
i þ hslε

i ði ¼ 1; . . . ; nÞ ð5Þ

In this approach, the number of variables is reduced significantly, which is another advan-

tage of joint-space formulation.

Joint-Space Dynamic Models of MEE Rate and ICOT

From the definition of generalized torques, the total work rate done by skeletal muscle forces

is equal to the total joint work rate _Wjoint ¼
Xn

i¼1

tiðtÞ _qiðtÞ done by joint actuator torques (i.e.,

net mechanical power summed over all joints). Therefore, the total internal work is the sum of

the work done by the joint actuator torques, smooth muscles ( _Wsmooth), and cardiac muscles

Instantaneous Metabolic Cost of Walking
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( _Wcardiac):

_Wint ¼ _Wjoint þ _Wsmooth þ _Wcardiac ¼
Xn

i¼1

tiðtÞ _qiðtÞ þ _Wsmooth þ _Wcardiac ð6Þ

The total heat rate is the sum of the generalized heat rates _Qam and _Qsl from skeletal muscle

activation and the heat from the activations of smooth muscles ( _Qsmooth) and cardiac muscles

( _Qcardiac). The fractions of the skeletal muscle heat that correspond to torque-independent and

basal torque-dependent cocontraction in the above derivations can be split into separate

terms:

_Ut � _Qext ¼ _Qam þ _Qsl þ _Qsmooth þ _Qcardiac

¼
Xn

i¼1

ham
i jtiðtÞj þ

Xn

i¼1

hsl
i jtiðtÞ _qiðtÞj þ

Xn

i¼1

_Qcc
i ðtÞ þ

Xn

i¼1

_Qε
i þ

_Qsmooth þ _Qcardiac
ð7Þ

The heat and work terms due to involuntary activations (for vital organs and structures) of

smooth and cardiac muscles, the heat of the basal torque-dependent cocontraction (which can

be assumed to be relatively small and invariant for a given subject from a mechanical perspec-

tive) by skeletal muscle activations, and the other energy component due to tissue-level sources

[63] can be combined to constitute the basal metabolic rate (BMR), _Ebmr :

_Ebmr ¼ _Wsmooth þ _Wcardiac þ _Qsmooth þ _Qcardiac þ
Xn

i¼1

_Qε
i þ

_Eo ð8Þ

The BMR is the minimal energy expenditure at rest without visible body movement. In

general, the BMR may vary within and across the trials even for a given subject. However,

in this study, possible variation of the BMR is assumed to be negligible, which is supported

by the experimental protocol. Thus, despite the complexity involved in decomposing the

BMR [63], the BMR is regarded as one of the subject-specific system parameters in the

models.

Rearranging the above equations, the total MEE rate (in watts) as a function of time is:

_EmetðtÞ ¼ _Wint þ _Ut � _Qext þ _Eo

¼
Xn

i¼1

tiðtÞ _qiðtÞ þ
Xn

i¼1

ham
i jtiðtÞj þ

Xn

i¼1

hsl
i jtiðtÞ _qiðtÞj þ

Xn

i¼1

_Qcc
i ðtÞ þ _Ebmr ð9Þ

This equation represents the dynamic model of the MEE rate in terms of state variables ( _qi),

control inputs (τi and _Qcc
i ), and system parameters (ham

i , hsl
i , and _Ebmr). The time-varying state

variables and control inputs depend on the specific motion’s kinematics and dynamics, and

thus can incorporate any transient or steady-state motion. Note that, the joint velocities and

actuator torques in this model, as well as in experimentally measured inverse-dynamics data

(below), are the results of the activation-contraction-musculotendon dynamics of the associ-

ated muscles. According to the second law of thermodynamics, any heat transfer to the body

cannot be stored or recycled as metabolic energy. Therefore, the components in the heat terms

are always non-negative, where the absolute values reflect the contributions of both positive

and negative variables.

In contrast to the first law that is stated in terms of external work and heat [64], the MEE

rate is formulated explicitly in terms of internal work and heat, which depend only on the rela-

tive internal quantities, i.e., joint velocities and actuator torques. In particular, the relative

Instantaneous Metabolic Cost of Walking
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quantities in the joint work formulation do not require the use of a specific reference frame as

in the calculation of the center-of-mass work or total work that are commonly used in the liter-

ature (e.g., [65,66]; these other forms of work cannot be used for the first law derivations). This

allows the consistent use of generalized coordinates (joint angles) and the associated quantities

(velocities and torques) in each term and provides additional advantages of joint-space formu-

lations. In addition, the internal work term inherently includes the contributions of soft-tissue

work ( _Up) that is known to be non-negligible in some human tasks like walking [65], which

would otherwise be needed as an explicit term.

The dimensionless COT at a time instant (ICOT) and each gait phase (phase-specific COT)

can then be calculated as follows:

ICOTðtÞ ¼
_EmetðtÞ
MgvðtÞ

ð10Þ

COT ¼
1

T

R

T
_EmetðtÞdt

Mg 1

T

R

TvðtÞdt
� � ð11Þ

where M is body mass, g is the gravitational acceleration, and v(t) is the instantaneous speed of

the body’s center of mass. These models can be evaluated for any time interval of interest T, not

only for an entire gait cycle (Ttotal), but also for its constituent gait phases (TSS for single support

(SS) and TDS for double support (DS) phases, respectively) and even at a given time instant.

Both ICOT and phase-specific COT are based on _EmetðtÞ, which includes the BMR, and are dif-

ferent from locomotion COT, which excludes the BMR, or mechanical COT, which is based on

positive mechanical work only [67]. While the structures of the models are mathematically

derived, determining the forms and parameter values of the heat coefficient functions (ham
i and

hsl
i ) requires estimation based on experiments. Note that these generalized heat coefficient func-

tions in joint space reflect the effects of the contributing muscles’ energetic properties.

Experiments and Data Processing

Ten healthy subjects (Table 1) provided written informed consent according to a protocol

approved by the Hospital for Special Surgery Institutional Review Board. In addition to height,

mass, and age, the maximum isometric extension torque (tmax
knee) at the right knee was measured

for each subject with a Biodex dynamometer (Biodex Medical Systems) to estimate the maxi-

mum joint torques at all DOFs. The knee joint was positioned at a flexion angle of 60˚, which

allows production of the theoretical maximum isometric knee extension torque as determined

through existing data [34] and OpenSim software.

The experimental data were divided into two groups: estimation and validation (Table 1

and Fig 2). All of the trials from six subjects and the majority of the trials from two other sub-

jects were included in the estimation group. These trials were used to estimate the heat coeffi-

cient functions, and the resulting complete models were evaluated from the validation data.

The validation data included 2–3 stride cycles (defined here as a right heel contact to the next

right heel contact) at each walking speed from two subjects not represented in the estimation

group (Subjects 7 and 9), and one stride at each walking speed from two subjects (Subjects 6

and 8) also included in the estimation group. Student’s t-tests were used to confirm there were

no statistical differences in mass, height, age, or maximum knee torque between the estimation

and validation groups.

Metabolic Measurements Using Indirect Calorimetry. A metabolic cart (TrueOne1

2400 Metabolic Measurement System, Parvo-Medic, Inc.) was used to measure oxygen uptake

Instantaneous Metabolic Cost of Walking
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_VO2 (liters O2/minute) and carbon dioxide output _VCO2 (liters CO2/minute). Initially, the

BMR was obtained during quiet sitting over a six-minute interval. The average of the last three

minutes was determined as the BMR. Although standing BMR is sometimes used to determine

net MEE in gait analysis, sitting BMR was used in this study to separate the MEE required to

maintain a standing posture, which is attributed to the skeletal muscle heat terms.

Each subject was asked to walk for 3 to 5 minutes on a treadmill (Woodway, Inc., WI) and

choose a preferred walking speed with self-selected stride frequency and length. Then the

experimental protocol of five test speeds was started using this preferred walking speed

(100%), followed by 70%, 85%, 115%, and 130% of the preferred walking speed. The full proto-

col consisted of 25 total minutes (five minutes for each speed) of treadmill walking with rest

periods of two minutes between trials. The short duration of each trial and the sufficient rest-

ing time between the trials ensure the effects of fatigue, sweat loss, and possible variation of the

BMR were minimized. Subjects were instructed to relax during the trials to avoid unnecessary

(i.e., torque-independent) cocontraction. Average _VO2 was recorded for each minute during

Table 1. Descriptive statistics for all subjects used in the estimation (mean ± standard deviation) and validation of the modelsa.

Group Subjects Sex Height (m) Mass (kg) Age (yrs) Max Torque (Nm)

Estimation Subjects 1,3,4,6 M 1.83 ± 0.06 87.9 ± 10.9 31 ± 6 212.4 ± 66.2

Subjects 2,5,8,10 F 1.62 ± 0.07 57.1 ± 10.0 32 ± 9 107.6 ± 35.7

Validation Subject 6 M 1.79 68.5 21 284.4

Subject 7 M 1.63 52.6 20 208.4

Subject 8 F 1.75 75.0 32 124.1

Subject 9 F 1.56 52.2 23 109.7

aData from Subjects 6 and 8 are included in both the estimation and validation groups. Maximum torque values are for the right knee.

doi:10.1371/journal.pone.0168070.t001

Fig 2. Data processing flow chart (left; the subject numbers shown are different from the actual experiments for schematic illustration),

metabolic testing on treadmill (inset), and whole-body model with marker sets and local coordinate frames (right)

doi:10.1371/journal.pone.0168070.g002
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the five-minute period at each speed, and the average of the last three of these measurements

was determined as the representative _VO2 for a given speed with units converted to watts [14].

Note that this unit conversion method is equivalent to that described by Brockway [68] as long

as the respiratory exchange ratio is less than unity, which signifies that aerobic metabolism is

the main metabolic pathway [5]. To confirm the validity of the conversion, the respiratory

exchange ratio was monitored during the experiment at each speed [53,69].

Upper-Body and Bilateral Data Synchronization for Whole-Body Kinematics and

Kinetics. Since the metabolic testing provided the MEE for the whole body, it was necessary

to process the whole-body kinematics and kinetics, so that associations could be made between

the data sets. A whole-body reflective marker set (a standard 6-DOF set for lower body [70]

and a Rab marker set [71] for upper body) was used to define the head, upper arm, forearm,

hand, torso, pelvis, thigh, shank, and foot segments of each subject (Fig 2). This provided a

42-DOF (n = 42) three-dimensional human model consisting of 3 DOFs for each of the 2

ankles, 2 knees, 2 hips, 2 wrists, 2 elbows, 2 shoulders, 1 neck, and 1 waist. Each segment was

defined by a local coordinate system according to the International Society of Biomechanics

standards [72,73]. After standing static calibration trials, kinematic and kinetic data were col-

lected as each subject walked over ground at the same five walking speeds as during the meta-

bolic testing. Each trial data were matched with the respective metabolic data collected for

each test speed, which is commonly supported by the equivalency between over-ground and

treadmill walking [74]. Kinematic data were collected at 120 Hz using a twelve-camera motion

capture system (Motion Analysis Corporation, CA). Ground reaction forces were measured

concurrently at 4800 Hz using four force plates (two Bertec Corp, OH, and two AMTI, MA).

Subject speed was monitored using a pair of photogates straddling the 30-m walkway and only

trials that were within 5% of the target speed were retained. Steady-speed walking was verbally

encouraged during each trial, and confirmed through observation when processing motion

capture data.

The coordinates for the reflective markers and the ground reaction force data were obtained

using Cortex software (Motion Analysis Corporation) and was exported for further processing

in Visual3D software (C-Motion Inc.). Joint torques were then calculated using inverse

dynamics and inertial parameters for each segment identified by the marker sets [75,76].

Gait event detection was implemented and all joint variables and torques per stride along

with other descriptive statistics (e.g., stride length) were exported to text files for subsequent

processing in MATLAB (The MathWorks, Inc.). To get whole-body data, the upper body and

the right leg data were exported for each right leg stride captured. Then the left leg data were

exported for each left leg stride captured. A whole-body stride was created by dividing the left

stride data at the right heel strike event, then combining it with the upper body and right leg

data such that at any given time instant the left leg data were synchronized with the corre-

sponding right leg time instant.

Subject-Specific Parameters and Constrained Nonlinear Least-Squares

Estimation of Heat Coefficient Functions

In general, the MEE varies across different subjects even with identical kinematic and kinetic

input variables. To account for the different energetic properties across subjects (and DOFs),

relevant subject-specific parameters are identified and incorporated into the heat coefficient

functions. The system parameters associated with energetic properties were identified by

extensive least-squares error analyses among several measurable parameters, and were con-

firmed using correlation analyses [77,78] for all subjects. The strong correlations between the

experimental average MEE rates and each of the measured parameters, including mass (M),
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height (H), maximum rate of oxygen uptake ( _VOmax
2

), and maximum knee torque (tmax
knee), were

identified at the subject’s preferred walking speeds (see Results section). Measuring _VOmax
2

that

reflects the aerobic fitness of an individual involves an intensive fatiguing test protocol, which

is accompanied with potential risk and would have been impractical for this study. Alterna-

tively, it can be estimated from the ratio between maximum and resting heart rate [79], where

the maximum heart rate can be estimated from age [80]. In this initial study, age (A) was used

as a substitute for _VOmax
2

in the heat coefficient functions. In addition, from the above deriva-

tions, the generalized heat coefficient functions ham
i and ham

i at each DOF depend on the

respective maximum actuator torque. The maximum actuator torque at ith DOF is estimated

by linearly scaling the measured tmax
knee with ~tmax

i =~tmax
knee, where ~tmax

i and ~tmax
knee are the average

human’s maximum torque of ith DOF and knee, respectively, from available data (e.g.,

[34,81,82]). In this way, tmax
knee=~tmax

knee serves as a subject-specific ratio that scales the DOF-specific

~tmax
i . This linear scaling provides a relative measure of each subject’s strength at each DOF

(DOF-specific) as well as across different subjects (subject-specific). Using these subject-spe-

cific system parameters as independent variables, the heat coefficient functions at each DOF

(assumed right-left symmetric) are formulated as a product of two terms—divided according

to their dependencies on DOF—using the method of separating variables:

ham
i ¼ ðw

am
0
þ wam

1
M þ wam

2
Aþ wam

3
HÞ 1þ wam

4

tmax
knee

~tmax
knee

~tmax
i

� �

ði ¼ 1; . . . ; nÞ ð12Þ

hsl
i ¼ ðw

sl
0
þ wsl

1
M þ wsl

2
Aþ wsl

3
HÞ 1þ wsl

4

tmax
knee

~tmax
knee

~tmax
i

� �

ði ¼ 1; . . . ; nÞ ð13Þ

where w ¼ ½wam
0
;wam

1
;wam

2
;wam

3
;wam

4
;wsl

0
;wsl

1
;wsl

2
;wsl

3
;wsl

4
� are the weight parameters that will be

solved for through the constrained nonlinear least squares algorithm, and each term in the

product is approximated as a linear polynomial function of the associated variables (linear

regression). Note that the second terms in these products are both subject- and DOF-specific.

To estimate the unknown weight parameters w in the heat coefficient functions, the differ-

ences between the model MEE values and the experimental MEE values are minimized as a

constrained nonlinear least squares problem (Fig 2). Since only the time-averaged total

amount of MEE (�Emet) can be obtained from experimental measurements, the proposed model

MEE rate is integrated over the total time duration (T = Ttotal) for N number of strides and

implemented into the average residual. The following (squared) root-mean-square error is

used as the cost function:

errorðwÞ ¼
1

2






½ð�Emet �

R

T
_EmetðtÞdtÞk�








2

N
ðk ¼ 1; . . . ;NÞ ð14Þ

The irreversibility of the MEE and heat dissipation based on the second law of thermody-

namics is imposed through inequality constraints. The non-negativity of heat dissipation

implies ham
i � 0 and hsl

i � 0 (i = 1, . . ., n), and thus each subject- and DOF-based term must

satisfy the following inequalities:

wam
0
þ wam

1
M þ wam

2
Aþ wam

3
H � 0; 1þ wam

4
ðtmax

knee=~tmax
kneeÞ~t

max
i � 0 ði ¼ 1; . . . ; nÞ ð15Þ

wsl
0
þ wsl

1
M þ wsl

2
Aþ wsl

3
H � 0; 1þ wsl

4
ðtmax

knee=~tmax
kneeÞ~t

max
i � 0 ði ¼ 1; . . . ; nÞ ð16Þ

In addition, since the expended metabolic energy cannot be recharged by negative joint

work, the net MEE (excluding the BMR and cocontraction term) at each DOF should be
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nonnegative at all times:

tiðtÞ _qiðtÞ þ ham
i jtiðtÞj þ hsl

i jtiðtÞ _qiðtÞj � 0 ði ¼ 1; . . . ; n for 8tÞ ð17Þ

While the torque-independent cocontraction at each DOF is arbitrarily controlled, its heat

dissipation is always non-negative. Since the total MEE on average is bounded from above by

the subject-specific maximum oxygen uptake ( _VOmax
2

in watts), the torque-independent

cocontraction heat for a given time duration T is also bounded from above accordingly:

0 �
R

T
_EmetðtÞdt � _VOmax

2
� T and _Qcc

i ðtÞ � 0 ði ¼ 1; . . . ; n for 8tÞ ð18Þ

Since subjects were instructed to relax and walk naturally during all trials in this study, it is

assumed that torque-independent cocontraction heat is negligible as compared with other

model terms, and is not included in the least squares estimation. Note, on the other hand, that

the torque-dependent cocontraction that exists in natural walking is included in the coefficient

functions ham
i , hsl

i and the BMR _Ebmr .

The algorithm is implemented with the fmincon subroutine in MATLAB. The resulting

weight parameters, which are used to complete the models, are independent of motion or sub-

ject, and thus their estimated values from these steady-state normal walking can be used in the

evaluation of any subject’s general tasks (time-varying state variables and control inputs) that

are transient or non-periodic.

Results

The values of the average (± standard deviation) preferred walking speed (1.29 ± 0.11 m/s) and

the corresponding stride length (1.48 ± 0.11 m) for all subjects’ trials are within normal ranges

for healthy adults [46]. The walking data show typical characteristic patterns [46] for the two

input variables of the models, i.e., joint velocities and torques. The respiratory exchange ratio

was monitored and remained less than unity in all trials for all subjects, which validates the

conversion approach used to calculate the MEE in watts.

The inclusion of mass, height, _VOmax
2

(estimated from age), and maximum joint torques

(estimated from tmax
knee) in the heat coefficient functions is supported by correlation analyses at

each subject’s preferred walking speed (Fig 3), which were guided by similar correlation analy-

ses in the literature [78]. No significant difference in mass (p = 0.95), height (p = 0.69), _VOmax
2

(p = 0.89), or maximum knee torque (p = 0.67) was found between the estimation and valida-

tion groups.

The unknown weight parameters w in the joint-space heat coefficient functions were deter-

mined from the constrained nonlinear least squares algorithm using the estimation group

experimental data (Table 2). To account for the different dimensions and scales across the sub-

ject parameters, the values shown in Table 2 were obtained by normalizing the subject parame-

ters by their respective maximum order of magnitudes (100 for mass, age, and maximum joint

torques and 10 for height). The results were then incorporated into the model and used to eval-

uate the models from the validation group. The mean of the time-averaged model MEE rates

for the validation group was within 5.7 ± 4.6% absolute error of the experimental indirect calo-

rimetry values. Strong inter-subject (R2 = 0.98) and intra-subject (R2 = 0.90–0.98) correlations

were noted (Fig 4).

The instantaneous MEE rates at different walking speeds are also predicted as a function of

percent gait cycle (Fig 5 - left). Integrating the instantaneous MEE rates over phase-specific

time intervals TSS and TDS provides the average MEE rates during SS and DS phases, respec-

tively. The percent of gait cycle duration and MEE for SS increase as the walking speed
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increases, while those for DS decrease (Fig 5 - right). On average across all the validation sub-

jects’ average strides, the two DS phases account for a decreasing portion of the gait cycle dura-

tion and the model MEE per gait cycle, dropping from 34.9 to 22.1% and from 52.8 to 39.2%,

respectively, as walking speed increases. The respective remainders correspond to the increases

in the percent gait cycle duration and MEE in SS phases per gait cycle as the walking speed

increases.

The individual contributions of the main terms—joint work, generalized heat, and BMR—

in the MEE rate as well as those of the generalized heat components ( _Qam and _Qsl) can also be

predicted from the model. The result from a preferred walking speed stride of a validation sub-

ject is illustrated as an example (Fig 6).

Fig 3. Correlation plots of experimental MEE rate at preferred walking speed versus subject-specific parameters for all subjects

doi:10.1371/journal.pone.0168070.g003

Table 2. Results of the constrained nonlinear least squares algorithm for weight parameters estimation

wam
0
¼ � 2:27� 10� 4 wam

1
¼ � 6:40� 10� 5 wam

2
¼ 1:61� 10� 4 wam

3
¼ 1:43� 10� 3 wam

4
¼ 1:82� 103

wsl
0
¼ 9:79� 10� 1 wsl

1
¼ 3:45� 10� 2 wsl

2
¼ 1:07� 100 wsl

3
¼ � 1:46� 100 wsl

4
¼ � 6:97� 10� 3

doi:10.1371/journal.pone.0168070.t002
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For each subject, the total (T = Ttotal) model and experimental COT versus speed curve can

be approximated from all validation trials using a basic Laurent polynomial form (Fig 7). The

dimensionless walking speed represented using the Froude number �v=
ffiffiffiffi
gl

p
, where �v is the aver-

age walking speed and l is leg length (estimated as 0.53 multiplied by the height [46]), is used to

normalize the speed across the subjects of a broad range of dimensions (Table 1) [83–85].

The ICOT model results are illustrated as a function of percent gait cycle for different walk-

ing speeds (Fig 8 - left). As the walking speed increases, the peaks in the ICOT appear earlier in

the gait cycle and the ranges between the maximum (peak) and minimum ICOT values are

larger. While the total COT can be obtained from both the experiments and the model, these

instantaneous evaluations are available only through the proposed approach. In addition, the

instantaneous MEE model enables the calculation of not only the total gait cycle COT, but also

its breakdown (i.e., phase-specific) into SS and DS COT (Fig 8 - right) by integrating over TSS

and TDS, respectively, which are not available from conventional experiments. The model total

COT values (0.326–0.348) averaged across all validation subjects (using each subject’s aver-

ages) reliably predicted the magnitude and the convexity along walking speed of those from

experiments (0.311–0.358). While the DS COT curve shows roughly increasing but irregular

patterns, the SS COT demonstrates a clear convex curve with respect to walking speed. Overall,

the DS COT (0.486–0.591) and SS COT (0.239–0.274) values are consistently larger and

smaller, respectively, than those of total gait cycle.

Fig 4. Inter- and intra-subject correlations between time-averaged model and experimental MEE rates

for all trials in the validation group. Dashed line indicates ideal slope for zero errors.

doi:10.1371/journal.pone.0168070.g004
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Discussion

This study introduces the dynamic models of MEE and ICOT in joint space with subject-spe-

cific energetic properties. The generalized heat coefficient functions that complete the models

were formulated as functions of the measurable subject parameters—mass, height, age (as an

indirect implementation of _VOmax
2

), and maximum joint torques (also DOF-specific)—which

was qualified from strong correlations between each of these parameters and experimental

time-averaged MEE rates (Fig 3), and were approximated from weight parameters estimation

(Table 2). The positive weight parameter values for the age term in the heat coefficient func-

tions also imply increased COT (due to increased torque-dependent cocontraction) in older

adults.

Subject-Specific MEE Rate Model in Joint Space: Accuracy and Validity

The main focus of this work is the derivation of physically accurate terms and forms in the

MEE model, rather than the prediction of accurate numeric values. Nevertheless, the resulting

heat coefficient functions led to a versatile MEE model capable of accurate predictions (within

5.7 ± 4.6% average absolute error of the measured values) of the total MEE across subjects and

speeds. The inter-subject and intra-subject correlations between the model and experimental

MEE values of all trials in the validation group are also very strong (Fig 4). This demonstrates

the ability of the proposed model to predict reliable MEE values consistently across different

subjects and different ranges of walking speeds within the same subject. Possible sources of

errors include the approximations used in the derivations and inaccuracies in the experimental

values. Although the respiratory exchange ratio was less than unity during all trials (which vali-

dates the conversion approach), these errors may be due to the assumptions inherent in the

indirect calorimetry measurement or conversion method [14], or inaccuracies in the measure-

ment equipment (e.g., treadmill calibration). Nevertheless, in comparison with the existing

Fig 5. Instantaneous model MEE rates for 70%, 100%, and 130% preferred walking speed of Subject 7 (from the validation group) as a

function of percentage gait cycle (left). Horizontal lines indicate experimental mean MEE rates for the respective walking speeds. Percent of gait

cycle duration (from experiments) and MEE (from the model) in SS and DS on average across all validation subjects (from each subject’s

averages) at different speed conditions (right).

doi:10.1371/journal.pone.0168070.g005
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Fig 6. Components of model MEE rate for one stride at the preferred walking speed of Subject 7

doi:10.1371/journal.pone.0168070.g006

Fig 7. Model and experimental total COT versus dimensionless walking speed for all validation trials of each subject

doi:10.1371/journal.pone.0168070.g007
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muscle energy models that may overestimate the MEE by up to 50% [1,28,29], the errors from

the proposed models are relatively and consistently low. The improved accuracy in the pro-

posed model is likely due to the incorporation of the subject-specific parameters in the estima-

tion of the joint-space heat coefficient functions directly from active human data, as opposed

to the traditional in vitro and subject-invariant parameters used by most muscle energy mod-

els. Note that the accuracy achieved through the proposed model is not solely due to the com-

mon relationship between walking speeds and time-averaged metabolic rates. The derived

distribution of the heat coefficient functions to the body joints enables the non-uniform con-

tribution of each joint to the total MEE. In particular, the DOF-specific term in the heat coeffi-

cient function ham
i implies that, for a given subject, stronger joints (with larger maximum

actuator torque or maximum strength) have larger heat coefficient values, and thus contribute

to larger portions of MEE in generating the same actuator torque. For instance, the MEE at the

hip will be larger than that at the ankle when generating the same joint actuator torque or

mechanical power, due to the difference in the maximum actuator torque values (e.g., 240.1 N.

m for hip vs. 151.5 N.m for ankle used in this study for male subjects). Despite the relatively

low heat coefficient values in the sagittal plane at the ankle as compared to the hip, the ankle’s

joint actuator torque and mechanical power during walking result in its larger MEE, which

may be in line with its larger active muscle volume [12].

The instantaneous model MEE rates (and ICOT, as discussed below) as functions of time

or percent gait cycle (Fig 5) and their breakdown into the various energetic components (Fig

6) can only be validated indirectly (from various perspectives), because similar data from

experiments that would allow direct comparison does not exist in the current literature. In

addition to the aforementioned mean model MEE rates that show strong correlations (Fig 4)

Fig 8. ICOT (from the model) for 70%, 100%, and 130% preferred walking speed of Subject 7 (from the validation group) as a function of

percentage gait cycle (left). Horizontal lines indicate experimental total COT values for the respective walking speeds. Model COT values in SS,

DS, and total gait cycle and experimental total COT values on average across all validation subjects (from each subject’s averages) at different

speed conditions (right).

doi:10.1371/journal.pone.0168070.g008
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with the respective experimental values, the curve patterns are similar among the subjects with

periodic attributes. As in the experimental mean MEE rates, the instantaneous MEE rate at a

given percentage of the gait cycle increased as speed increased. Also, the peaks in the MEE rate

curves in all trials correspond with the DS phases. Although the percentage DS phase durations

decrease from 34.9 to 22.1% of the gait cycle time as speed increases, which is consistent with a

previous experimental study [85] (the major results in this reference for pediatric gait charac-

teristics are described to be consistent with those of adults), the model shows that they are

responsible for the decrease from 52.8 to 39.2% of the total MEE per gait cycle (Fig 5). This

trend of the MEE rate curves and their similarity with those of the joint mechanical power (Fig

6) are also in line with previous studies showing that the mechanical work during step-to-step

transition that occurs in parallel with the DS phase is a major determinant of the metabolic

cost of walking [1,17,86,87]. It is interesting that, at the preferred walking speed, the average %

MEE for DS in the current study is about 46% (Fig 5), which falls between the previously

reported ~70% [87] and 37% [1,86] for step-to-step transitions. The peaks of the joint mechan-

ical power occurring during the DS phases, in which more muscles are engaged to support the

body, explain the higher metabolic demand at these phases due to the increase in muscular

activities. Those for the SS phases demonstrated the opposite patterns. The percent durations

of SS per gait cycle were constantly larger than those of DS for all speed conditions. However,

the percent MEE values of SS were smaller than those of DS for slow walking speed, and

became larger as the speed increased. Overall, for both the SS and DS phases, the increasing/

decreasing trends of the average percent MEE rates along walking speed were consistent with

those of the respective percent durations per gait cycle. Additional aspects of the validity are

discussed below along with those of the COT and ICOT.

Total COT: Model versus Experiments

The total COT plots of each subject (versus normalized speed; Fig 7) and all validation subjects’

averages (versus percent of preferred walking speed; Fig 8) demonstrate the characteristic con-

vexity (as approximated by a Laurent polynomial form) in both the experimental and model

curves that are consistent with the results in existing literature [4,43,51,88]. These curves have

a minimum at or near the preferred walking speed of each subject and subjects’ averages,

respectively, and are relatively flat for a wide range of speeds surrounding the preferred walk-

ing speed. This is also consistent with the results in an extensive experimental study [47], in

which the experimental COT showed a notable increase only at very high or very low speeds of

walking. Also, the ranges of the model total COT for each subject curve (0.26–0.41) and for all

validation subjects’ averages (0.326–0.348) agree with the current experimental values (0.311–

0.358) and encompass the average experimental value of 0.3 at preferred walking speeds

reported in the literature [50], [67]. These results demonstrate that the subject-specific joint-

space models established in this study are able to predict the trend and magnitudes in total

COT observed at different walking speeds in different subjects.

ICOT and Phase-Specific COT

Since the ICOT is effectively the MEE rate normalized by subject weight and velocity at a given

time instant, the ICOT as a function of time or percent gait cycle (Fig 8) follows a similar peri-

odic pattern as in the MEE rates (Fig 5). Like MEE rates, the maximum peaks of the ICOT

curves occur during DS phases, and are shifted down and forward in time as speed decreases,

which is in agreement with joint kinetics during walking found in an experimental study [85].

The range between the maximum and minimum ICOT values increases as the speed increases.

On the other hand, there are notable differences between the instantaneous MEE rate and
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ICOT. The peaks and average of ICOT profiles are less sensitive to walking speeds as compared

with those of MEE rates. The ratio of the maximum peak values of the ICOT for 70%, 100%,

and 130% preferred walking speed of a subject is 0.82:1.00:1.05, while that of the MEE rate is

0.59:1.00:1.46. The ratio of the mean values of the ICOT, 1.02:1.00:1.05, is even smaller than

that of the MEE rate, 0.74:1.00:1.48, of the same subject’s trials. This low sensitivity of the

ICOT with respect to instantaneous walking speed is due to the nature of its quantification.

While the MEE rate increases with walking speed for a given subject at a time instant, the

ICOT is calculated from the division of the increased MEE rate by the increased instantaneous

speed. This point becomes clearer by comparing the minimum values of the MEE rates and

ICOT both occurring during SS phases; while the minimum MEE rates are similar across dif-

ferent speeds (0.97:1.00:1.16 for 70%, 100%, and 130% preferred walking speed), the ICOT

results illustrate noticeably decreased minimum values as speed increases (1.60:1.00:0.87).

Generally, the ICOT provides normalized comparison of the energetic costs across different

speeds and subjects, which is not available through MEE rate alone. This is in line with the

results of the total COT (Fig 7 and Fig 8), in which the minimum occurred near the preferred

walking speed, in contrast to the minimum experimental mean MEE rate that occurred at the

lowest walking speed (Fig 5).

The results per gait cycle phase illustrate that the DS COT values (0.486–0.591) were consis-

tently larger than those of the total gait cycle and SS phase, and roughly increased as speed

increased (Fig 8). On the other hand, the SS COT demonstrated more notable and interesting

features that were consistent among all subjects. Like the total COT, the SS COT resulted in a

convex curve with its minimum near the preferred walking speed. This is distinct from the per-

cent MEE in SS (Fig 5), which increased as speed increased. The similarity in patterns of the SS

COT and the total COT is likely due to the consistently larger percent duration of the SS phases

per gait cycle (about 1.9–3.5 times) than those of DS, since the COT calculation depends on the

duration of interest. For the same reason, the magnitudes of the SS COT (0.239–0.274), which

were constantly smaller than those of the total gait cycle, are closer than those of the DS to the

total COT curve. This characteristic is different from that of the percent MEE, in which the

ratio of the magnitude of SS relative to DS increased with speed, and the percent MEE values of

SS were larger than those of DS for all speed conditions except for the slowest (70% preferred

walking speed). In other words, in terms of both the patterns and magnitudes of the COT, the

SS phase is more influential than the DS phase.

As another validation aspect, the consistently smaller COT in SS than that in DS is also in

agreement with the trade-off between efficiency (as the inverse of COT) and stability of normal

human walking [50] in the sagittal plane, where the SS phases are relatively unstable with

respect to static [37] and dynamic balance [89]. The contrasting features of the efficiency-sta-

bility compromise in the relatively unstable SS versus the relatively stable DS were not available

through the percent MEE rates (Fig 5) alone, but through (the inverse of) the phase-specific

COT. Note that, while the proposed model can evaluate the ICOT for any unnatural/abnormal

gait, these attributes do not always characterize the walking with unnatural compensation due

to, for instance, heavy load [90] or disability.

Concluding Remarks and Future Work

The ICOT and phase-specific COT demonstrated normalized comparison across different

speeds and subjects, major influence from the SS phase, and relatively low sensitivity with

respect to walking speed, which were not available through the analyses from the instanta-

neous MEE rates or the total COT (as detailed in Section 4.3). While the model parameters

were estimated using normal walking data in this study, there is no inherent limitation on
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these models for real-time calculations of instantaneous MEE rate and ICOT as functions of

time in transient as well as steady-state evaluations of any subject’s general tasks that use a

range of energy pathways similar to that of (i.e., aerobic) steady-state walking. For instance,

when experimentally measured movement data (available from common gait analysis) are

provided as inputs, the models will predict the MEE and ICOT as outputs without _VO2 mea-

surement for complex non-periodic tasks that may not be experimentally verifiable. When

experimental data are not provided, the proposed models can be used to predict or computa-

tionally simulate movement data as well as the MEE and ICOT in various what-if scenarios.

On the other hand, note that, while the model and its parameters are validated against normal

walking in this study, the accuracies of the model parameters are not tested for other activities.

Future work will address some of the aforementioned assumptions used in establishing the

models. First, the initial experimental data limited validation to steady-state walking. Although

walking was chosen due to the wealth of comparable literature, less than 1% of walking actually

happens in steady state, a condition required for traditional metabolic measurements [91].

Also note that, although the derived model terms and forms are general and are valid for both

aerobic and anaerobic tasks, the parameter values that were estimated through indirect calo-

rimetry in this study are reliable only for aerobic tasks. Future work should extend the model

and its experimental validation to running, non-steady-state gait [18], and other general tasks,

including those that are aperiodic, submaximal, or have a substantial anaerobic component

[92]. Second, open-system thermodynamic analysis, including chemically reacting compo-

nents, will incorporate the energetic effects of respiration-induced metabolism process

(between air enthalpy and biochemical energy), which will allow modeling of the instanta-

neous change in available metabolic energy source and fatigue. In this regard, incorporating

the molecular-level models of muscle energetics [30] may also advance the understanding of

the energetic differences among positive, zero, and negative work. Third, for more accurate

calculation of the MEE components, inverse dynamics methods should be advanced such that

the resultant joint torque can be accurately partitioned into muscle-induced actuator torque

and passive reaction moments [93,94]. Finally, future studies will include direct measurements

of _VOmax
2

, age-related trend of cocontractions (through EMG), and percent body fat to be con-

sidered explicitly as subject-specific parameters.
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