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Abstract
This paper looks at the flow of Jeffrey fluid due to a curved stretching sheet. Effect of homo-

geneous-heterogeneous reactions is considered. An electrically conducting fluid in the

presence of applied magnetic field is considered. Convective boundary conditions model

the heat transfer analysis. Transformation method reduces the governing nonlinear partial

differential equations into the ordinary differential equations. Convergence of the obtained

series solutions is explicitly discussed. Characteristics of sundry parameters on the velocity,

temperature and concentration profiles are analyzed by plotting graphs. Computations for

pressure, skin friction coefficient and surface heat transfer rate are presented and exam-

ined. It is noted that fluid velocity and temperature through curvature parameter are

enhanced. Increasing values of Biot number correspond to the enhancement in tempera-

ture and Nusselt number.

1. Introduction
The study of non-Newtonian fluids has gained special focus of the recent researchers and engi-
neers. Such motivation of the researchers is due to various applications of non-Newtonian fluids
in technology and industrial areas. Unlike the viscous materials, the non-Newtonian fluids can-
not be explained using well known Navier-Stokes theory. A single constitutive relationship can-
not describe the characteristics of non-Newtonian liquids. The facts of non-Newtonian fluids are
distinct than the viscous materials. The order of differential system in non-Newtonian fluid situa-
tion is higher than the viscous material. There are many proposed models of non-Newtonian flu-
ids with diverse properties. These fluids in general have been classified into three categories
known as the rate, the differential and the integral types. The most common and simplest model
of non-Newtonian fluids is Jeffrey fluid. Such fluid has time derivative instead of convected deriv-
ative. Aspects of retardation and relaxation times are described by this fluid model. MHD flow of
Jeffrey fluid in a cylindrical tube has been studied by Tripathi et al. [1]. Influences of slip and heat
transfer on MHD peristaltic flow of Jeffrey fluid have been examined by Das [2]. Variable ther-
mal conductivity of Jeffrey fluid in presence of thermal jump has been analyzed by Hamad et al.
[3]. Shehzad et al. [4] presented the nonlinear thermal radiation effect in three dimensional flow
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of Jeffrey nanofluid. Ellahi and Hussain [5] examined slip feature in flow of Jeffrey fluid. Hayat
et al. [6] studied stagnation point flow of Jeffrey nanofluid in presence of Newtonian heating.
Flow of Jeffrey fluid due to oscillation of disks has been studied by Reddy et al. [7]. Farooq et al.
[8] analyzed MHD flow of Jeffrey fluid in presence of Newtonian heating.

Many chemically reacting systems involve homogeneous-heterogeneous reactions for exam-
ple in biochemical systems, combustion and catalysis. The correlation between homogeneous
and heterogeneous reactions is very complex. Some of the reactions have the ability to proceed
very slowly or not at all except in the presence of a catalyst. Fog formation and dispersion, food
processing, ceramics and polymer production, hydrometallurgical industry etc. show obvious
involvement of chemical reaction. Merkin [9] studied homogeneous-heterogeneous reactions
in flow of viscous fluid over a flat plate. He considered homogeneous reaction for cubic autoca-
talysis and heterogeneous reaction on the catalyst surface. It is shown that surface reaction
dominants near the plate. Homogenous-heterogeneous reactions with equal diffusivities have
been examined by Chaudhary and Merkin [10]. Homogeneous-heterogeneous reactions in
stretched flow of viscous fluid have been investigated by Bachok et al. [11]. Khan and Pop [12]
presented stretched flow of viscoelastic fluid in presence of homogeneous-heterogeneous reac-
tions. Shaw et al. [13] studied homogeneous-heterogeneous reactions in flow of micropolar
fluid. Homogeneous-heterogeneous reactions in nanofluid flow over a permeable stretching
surface have been analyzed by Kameswaran et al. [14]. Hayat et al. [15] investigated three
dimensional flow of nanofluid in presence of second order slip velocity and homogeneous—
heterogeneous reactions. Hayat et al. [16] also examined Cattaneo-Christov heat flux in MHD
flow of Oldroyd-B fluid. Here homogeneous-heterogeneous reactions are considered.

Two-phase flow has wide applications in many industrial processes such as natural gas net-
works, spray processes, lubrication and nuclear reactor cooling. Main difference between single
phase flow and multiphase flow is the existence of flow pattern which indicates a flow situation
uniquely defined by the temporal and spatial distribution of the two immiscible phases. Three
typical gas-liquid flow patterns are bubble flow, slug flow and churn flow. Research interests in
the characterization of flow patterns lie on the fact that different flow patterns have distinct
nonlinear dynamical properties. The recent advances in the study of multiphase flow are pre-
sented by Gao et al. [17–20].

Fluid flow by a stretching surface has promising applications in engineering and industrial
processes such as in paper production, manufacture of foods, glass fiber, drawing of wires and
plastic films, liquid films in condensation process, crystal growing, manufacturing and extrac-
tion of polymer and rubber sheets etc. Flow caused by stretching of a sheet has been examined
by Crane [21]. After that stretched flow problems under different configurations have been
examined by several researchers. Cortell [22] studied radiative nonlinear heat transfer in flow
over a stretching sheet. Hsiao [23, 24] presented mixed convection effect in MHD flow of visco-
elastic fluid past a stretching sheet with ohmic dissipation. Hsiao [25] examined MHDmixed
convection for viscoelastic fluid past a porous wedge. Slip effect in stretched flow of nanofluid
have been studied by Malvandi et al. [26]. Hsiao [27] investigated MHD stagnation point flow
of nanofluid over a stretching sheet with mixed convection and partial slip. Sheikholeslami
et al. [28] discussed effect of thermal radiation in magnetohydrodynamic nanofluid flow over a
stretching sheet. Lin et al. [29] analyzed flow of pseudo-plastic nanoliquid over a stretching
surface. In all these articles flat sheet is stretched and Cartesian coordinate system is used for
mathematical modeling. Sajid et al. [30] provided fluid flow due to curved stretching sheet.
They used curvilinear coordinate system in order to obtain the governing equations. They
found that pressure is not negligible inside the boundary layer as in the case of a flat stretching
sheet. Naveed et al. [31] studied MHD flow by a curved stretching surface. Time-dependent
fluid flow due to curved stretching/shrinking surface has been presented by Rosca and Pop
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[32]. Radiative flow of nanofluid by a curved stretching surface with partial slip has been exam-
ined by Abbas et al. [33].

Main objective of present study is to extend the flow analysis of Sajid et al. [30] into follow-
ing directions. Firstly, to model flow analysis for Jeffrey fluid. Secondly to predict the influence
of homogeneous-heterogeneous reactions. Thirdly to examine heat transfer analysis in the
presence of convective boundary conditions. Series solutions of present problem are computed
by homotopy analysis method (HAM) [34–42]. The behaviors of different parameters on the
physical quantities have been examined. Pressure, surface drag force and heat transfer rate are
also studied. We hope that this study will lead to further investigations in future for various
flow geometries and different flow models.

2. Model development
Consider two-dimensional flow of Jeffrey fluid induced by a curved stretching sheet at r = R.
Stretching of sheet is taken in the x – direction with velocity u = uw. A magnetic field of
strength B0 is applied in the r – direction. Also the bottom surface of sheet is heated by convec-
tion from a hot fluid at temperature Tf while ambient fluid temperature is T1. Homogeneous-
heterogeneous reactions of two chemical species A and B are considered. For cubic autocataly-
sis, the homogeneous reaction is

Aþ 2B ! 3B; rate ¼ kcab
2; ð1Þ

while heterogeneous reaction on the catalyst surface is

A ! B; rate ¼ ksa; ð2Þ
where rate constants are defined by kc and ks and the chemical species A and B have concentra-
tions a and b. Governing equations of present boundary layer flow problem are
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with boundary conditions

u ¼ uw ¼ cx; v ¼ 0; kf
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ð9Þ

where the velocity components in (r,x) direction are (v,u) respectively, p denotes the pressure,
ρ the density, σ the electrical conductivity, ν the kinematic viscosity, c> 0 the stretching con-
stant, λ1 the ratio of relaxation to retardation times, λ2 the retardation time, h the convective
heat transfer coefficient, T the temperature, kf the thermal conductivity and α� the thermal
diffusivity.

Using the following transformations
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Eq (3) is satisfied automatically and Eqs 4–8 can be reduced as follows:
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whereM ¼ sB2
0=rc is the Hartman number, λ = λ2c is the Deborah number, K ¼ R
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the curvature parameter, Pr = ν / α is the Prandtl number, δ = DB / DA is the ratio of diffusion
coefficient, Sc = ν / DA is the Schmidt number, k1 ¼ a20kc=c is the homogeneous reaction
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Now eliminating pressure P between Eqs 11 and 12, we obtain
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with boundary conditions

f 0ð0Þ ¼ 1; f ð0Þ ¼ 0; f 0ð1Þ ! 0; f @ð1Þ ! 0: ð18Þ

Pressure can now be determined from Eq 12 as
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Here it is assumed that both chemical species have equal diffusion coefficients DA and DB,
i.e. δ = 1 and thus

FðxÞ þ gðxÞ ¼ 1: ð20Þ

Now Eqs 14 and 15 yield
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with the boundary conditions

F0ð0Þ ¼ k2Fð0Þ; Fð1Þ ! 1: ð22Þ

Skin friction coefficient Cf and Nusselt number Nu are
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trx ¼
m

1þ l1

@u
@r

� u
r þ R

þ l2

(
Ru

r þ R
@2u
@x@r

� Ru

ðr þ RÞ2
@u
@x

" #

þv
@2u
@r2

� v
r þ R

@u
@r

þ uv

ðr þ RÞ2
)#

r¼0

;

ð24Þ

qw ¼ �kf
@T
@r

�����
r¼0

: ð25Þ

Finally, we have

1

2
Cf ðRexÞ1=2 ¼

1

1þ l1
f @ð0Þ � f 0ð0Þ

K
þ l f 0ð0Þf @ð0Þ � 1

K2
½f 0ð0Þ�2

� �� �
; ð26Þ

�

NuðRexÞ�1=2 ¼ �y0ð0Þ; ð27Þ
where local Reynolds number is defined as Rex = cx2 / ν.

3. Homotopic solutions

3.1. Zeroth-order deformation problems
Auxiliary functionsHf,Hθ andHF, linear operators L1, L2 and L3 and the initial guesses f0(ξ),
θ0(ξ) and F0(ξ) are taken in the forms

Hf ¼ e�2x; Hy ¼ e�2x; HF ¼ e�2x; ð28Þ
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in which ci (i = 1–8) are the constants.
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If ℏf, ℏθ and ℏF are nonzero auxiliary parameters and p 2 [0,1] denotes embedding parame-
ter then the zeroth order deformation problems are as follows:
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3.2. mth-order deformation problems
The mth order deformation problems are
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The general solutions (fm, θm, Fm) comprising the special solutions ðf �m; y�m; F�
mÞ are
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c1 ¼ c3 ¼ c5 ¼ c7 ¼ 0; c2 ¼ �c4 � f �mð0Þ; c4 ¼
@y�mðxÞ
@x

����
x¼0

þ f �mð0Þ;

c6 ¼
1

1þ g1

@y�mðxÞ
@x

����
x¼0

� g1y
�
mð0Þ

" #
; c8 ¼

1

1þ k2

@F�
mðxÞ
@x

����
x¼0

� k2F
�
mð0Þ

" #
:

ð52Þ

4. Convergence analysis
Homotopy analysis method (HAM) involves an embedding auxiliary parameter ℏ which gives
the freedom to choose and adjust convergence region of series solutions. The ℏ–curves are
plotted to obtain valid ranges of these parameters (see Fig 1). Allowed values of ℏf, ℏθ and ℏF
are −1.7� ℏf � −0.9, −2� ℏθ � −0.2 and −0.7� ℏF � −0.3. Also HAM solutions converge
when ℏf = −0.9, ℏθ = −1 and ℏF = −0.3 (Table 1).

5. Results and Discussion
In this section the effects of different parameters on the velocity, temperature and concentra-
tion fields are investigated through plots.

Fig 1. The ℏ–curves for f@(0), θ0(0) andΦ0(0) whenK = 0.01, λ1 = 0.5, λ = 0.9, γ1 = 0.1,M = 0.3, Pr = 1, Sc = k1 =
0.9 and k2 = 0.7.

doi:10.1371/journal.pone.0161641.g001
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5.1. Dimensionless velocity profile
Fig 2 depicts the variation of Hartman numberM on the velocity distribution f0(ξ). An
enhancement in the strength of magnetic field produces a resistive force which signifies the
reduction of the fluid velocity. Here negative values of f0(ξ) indicate downward flow in the verti-
cal direction. Fig 3 illustrates the behavior of Deborah number λ on the horizontal component
of velocity f0(ξ). An increase in retardation time enhances elasticity. Since elasticity and viscos-
ity effects are inversely proportional to each other so decrease in viscosity enhances the fluid
velocity. Impact of λ1 on velocity profile f0(ξ) is depicted in Fig 4. An increase in λ1 corresponds
to increase in relaxation time. It means particle needs much more time to come back from per-
turbed system to equilibrium system and consequently the fluid velocity decreases. Fig 5 shows
impact of curvature parameter K on the velocity profile f0(ξ). Here increment in the magnitude
of velocity profile is subjected to the enhanced values of K.

Table 1. HAM solutions convergence whenK = 0.01, λ1 = 0.5, λ = 0.9, γ1 = 0.1,M = 0.3, Pr = 1, Sc = k1 = 0.9 and k2 = 0.7.

Order of approximations –f@(0) –θ0(0) Φ0(0)

1 12.956 0.09395 0.3557

5 2.879 0.09867 0.3773

8 2.865 0.09924 0.3925

10 2.865 0.09931 0.4022

15 2.865 0.09939 0.4167

20 2.865 0.09939 0.4179

26 2.865 0.09939 0.4184

30 2.865 0.09939 0.4184

doi:10.1371/journal.pone.0161641.t001

Fig 2. Impact ofM on velocity.

doi:10.1371/journal.pone.0161641.g002
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5.2. Dimensionless temperature profile
Temperature profile θ(ξ) is plotted in Fig 6 to show the effect of Prandtl number Pr. Since the
thermal diffusivity decreases by increasing Pr so the temperature decreases. Fig 7 indicates that

Fig 3. Impact of λ on velocity.

doi:10.1371/journal.pone.0161641.g003

Fig 4. Impact of λ1 on velocity.

doi:10.1371/journal.pone.0161641.g004
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temperature increases for larger thermal Biot number γ1 as convective heat transfer coefficient
enhances through increasing thermal Biot number γ1. Fig 8 exhibits variation of curvature
parameter K on the dimensionless temperature profile θ(ξ). Enhancement in temperature dis-
tribution is observed for larger values of K.

5.3. Dimensionless concentration profile
Fig 9 shows that concentration profile F(ξ) is decreasing function of Schmidt number Sc. As
increase in Sc reduces the mass diffusivity which consequently decrease fluid concentration.
Fig 10 depicts the effect of strength of homogeneous reaction parameter k1 on concentration
profile. Fluid concentration decreases due to the consumption of reactants when k1 is
enhanced. Variation of strength of heterogeneous reaction parameter k2 on F is portrayed in
Fig 11. Here the concentration profile increases for larger k2.

5.4 Dimensionless pressure profile
Figs 12–14 elucidate the variation in pressure profile for increasing values of Deborah number λ,
ratio of relaxation to retardation times λ1 and curvature parameter K. Here an enhancement in
pressure distribution is noted for increasing λ. Also pressure is decreasing function of λ1 and K.

5.5 Skin friction coefficient

Fig 15 shows variation of curvature parameter K on surface drag force 1
2
Cf ðRexÞ1=2 against Hart-

man numberM. It is noted that skin friction coefficient enhances for larger K and it reduces when
M is increased. Impact of ratio of relaxation to retardation times λ1 via Deborah number λ on sur-
face drag force is illustrated in Fig 16. Here surface drag force decreases for increasing λ1 while it
increases for larger λ. Computed results of skin friction coefficient are compared with previously
published articles in limiting cases and found in very good agreement (see Table 2).

Fig 5. Impact of K on velocity.

doi:10.1371/journal.pone.0161641.g005
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5.6 Nusselt number
Impact of Biot number λ1 on surface heat transfer rate Nu(Rex)

−1/2 via Prandtl number Pr is
shown in Fig 17. It is noted that heat transfer rate enhances for larger values of λ1 and Pr. Fig
18 illustrates variation of Prandtl number Pr on Nusselt number against curvature parameter

Fig 6. Impact of Pr on temperature.

doi:10.1371/journal.pone.0161641.g006

Fig 7. Impact of γ1 on temperature.

doi:10.1371/journal.pone.0161641.g007
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K. Here surface heat transfer rate decreases as curvature parameter K is enhanced while oppo-
site effect is observed for increasing Pr.

Fig 8. Impact of K on temperature.

doi:10.1371/journal.pone.0161641.g008

Fig 9. Impact of Sc on concentration.

doi:10.1371/journal.pone.0161641.g009
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5.7 Surface concentration
Variation of homogeneous reaction parameter k1 on surface concentration F(0) against
Schmidt number Sc is shown in Fig 19. One can see that surface concentration decreases with
the increase of k1 and Sc. It is in view of the fact that surface concentration reduces due to the

Fig 10. Impact of k1 on concentration.

doi:10.1371/journal.pone.0161641.g010

Fig 11. Impact of k2 on concentration.

doi:10.1371/journal.pone.0161641.g011
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Fig 12. Impact of λ on pressure.

doi:10.1371/journal.pone.0161641.g012

Fig 13. Impact of λ1 on pressure.

doi:10.1371/journal.pone.0161641.g013
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consumption of reactants during chemical reaction. Influence of surface concentration via
Schmidt number Sc for higher heterogeneous reaction parameter k2 is depicted in Fig 20. Here
surface concentration increases when k2 is enhanced.

Fig 14. Impact ofK on pressure.

doi:10.1371/journal.pone.0161641.g014

Fig 15. Impact ofK viaM on 1
2
Cf ðRexÞ1=2:

doi:10.1371/journal.pone.0161641.g015
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6. Concluding Remarks
Effects of homogeneous—heterogeneous reactions in convective flow of Jeffrey fluid due to a
curved stretching sheet are studied. The following outcomes are noticed:

• Increase in the values of Deborah number and curvature parameter has similar effects on the
velocity in a qualitative sense

• Fluid velocity and temperature enhance for larger curvature parameter.

• The strength of heterogeneous reaction enhances the fluid concentration.

• Pressure distribution has direct relationship with Deborah number.

• Opposite behavior of curvature parameter and Hartman number is seen on the surface drag
force.

• Increasing values of Biot number correspond to an enhancement in temperature and Nusselt
number.

Fig 16. Impact of λ1 via λ on 1
2
Cf ðRexÞ1=2:

doi:10.1371/journal.pone.0161641.g016

Table 2. Comparison of skin friction coefficient 1
2Cf ðRexÞ1=2:with previous published articles when λ1 =

0 = λ and K =1.

M Hayat et al. [43] Mabood and Das [44] Present

1 1.4142 1.4142135 1.4142

5 2.4494 2.4494897 2.4494

10 3.31662 3.31662 3.3166

50 7.14142 7.1414284 7.1414

doi:10.1371/journal.pone.0161641.t002
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Fig 17. Impact of γ1 via Pr on –θ0(0).

doi:10.1371/journal.pone.0161641.g017

Fig 18. Impact of Pr via K on –θ0(0).

doi:10.1371/journal.pone.0161641.g018
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Fig 19. Impact of k1 via Sc onΦ(0).

doi:10.1371/journal.pone.0161641.g019

Fig 20. Impact of k2 via Sc onΦ(0).

doi:10.1371/journal.pone.0161641.g020
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