
Radiotherapy (RT) has been used for decades as one of the main treatment modalities for cancer pa-
tients. The therapeutic effect of RT has been primarily ascribed to DNA damage leading to tumor cell 
death. Besides direct tumoricidal effect, RT affects antitumor responses through immune-mediated 
mechanism, which provides a rationale for combining RT and immunotherapy for cancer treatment. 
Thus far, for the combined treatment with RT, numerous studies have focused on the immune check-
point inhibitors and have shown promising results. However, treatment resistance is still common, 
and one of the main resistance mechanisms is thought to be due to the immunosuppressive tumor 
microenvironment where myeloid-derived suppressor cells (MDSCs) play a crucial role. MDSCs are 
immature myeloid cells with a strong immunosuppressive activity. MDSC frequency is correlated with 
tumor progression, recurrence, negative clinical outcome, and reduced efficacy of immunotherapy. 
Therefore, increasing efforts to target MDSCs have been made to overcome the resistance in cancer 
treatments. In this review, we focus on the role of MDSCs in RT and highlight growing evidence for 
targeting MDSCs in combination with RT to improve cancer treatment. 
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Introduction 

Radiotherapy (RT) is a major treatment modality for cancer pa-

tients. It is applied for approximately 50% of all cancer patients as 

curative or palliative treatment. RT is often used in combination 

with surgery, chemotherapy, or targeted therapy. Ionizing radiation 

delivered by RT induces DNA damage [1], which leads to tumor 

cell death through senescence, apoptosis, and necrosis [2]. Histor-

ically, the direct killing of tumor cells is considered the major ef-

fect of RT. 

The ionizing radiation also affects lymphocytes (T cells, B cells, 

and natural killer [NK] cells), which are the most radiosensitive 

cells in the tumor microenvironment (TME) [3]. Moreover, systemic 

lymphopenia after localized RT has been observed in patients with 
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solid tumors, such as high-grade glioma, lung cancer, head and 

neck cancer, esophageal cancer, pancreatic cancer, and cervical 

cancer [4-6]. Therefore, RT traditionally has been considered to 

have a suppressive effect on the immune system. 

However, mounting evidence suggests that RT can augment im-

mune responses against tumors. Radiation-induced DNA damage 

results in cytosolic DNA accumulation in tumor cells, which in 

turn triggers type I interferon (IFN) production via cyclic GMP-

AMP synthase (cGAS)-stimulator of interferon genes (STING) 

pathway [7]. Type I IFNs activate dendritic cells (DCs), thereby pro-

moting T cell priming [8]. During cell death, danger-associated 

molecular patterns (DAMPs) are released, thereby activating DCs 

through Toll-like receptors [9]. After the phagocytosis of tumor 

cells, DCs present tumor antigens to T cells through major histo-
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compatibility complex (MHC) molecules, which results in the prim-

ing and activation of T cells in the draining lymph nodes [10]. Then, 

tumor-reactive T cells migrate not only to the irradiated tumor 

sites but also to the non-irradiated sites, leading to a systemic an-

titumor response (termed abscopal effect) [11]. RT also induces se-

cretion of inflammatory chemokines and cytokines that recruit im-

mune cells to the TME, promoting antitumor responses [12]. 

The antitumor effect of RT can be hampered by the activation 

of immunosuppressive pathways. Radiation-induced DNA damage 

activates ataxia telangiectasia mutated (ATM)/ataxia telangiecta-

sia and Rad3-related (ATR)/checkpoint kinase 1 (Chk1) pathway, 

which results in programmed death ligand-1 (PD-L1) upregulation 

via signal transducer and activator of transcription (STAT)/IFN reg-

ulatory factor (IRF) pathway [13]. Type I IFNs produced by DNA 

damage also activate STAT/IRF pathway, contributing to PD-L1 

upregulation [14]. The programmed death-1 (PD-1)/PD-L1 path-

way plays a key role in tumor immune escape [15]. Immune 

checkpoint inhibitors (ICIs) targeting PD-1/PD-L1 pathway protect 

T cells from anergy and apoptosis [16]. Thus, the combination of 

RT and ICIs could enhance antitumor responses more potently 

than either treatment alone. The combined effect of RT and ICIs 

have been evaluated and have shown promising results in preclin-

ical studies [17-20] and clinical trials [21-25]. Furthermore, ab-

scopal effects which seldom occur after RT alone have been in-

creasingly reported in patients treated with the combination of RT 

and immunotherapy [26]. 

ICIs provide durable antitumor responses in various types of 

cancer, but the beneficial outcomes are limited to a minority of 

patients. The therapeutic resistance of ICIs is associated with im-

munosuppressive TME where MDSCs play a role as key drivers of 

immunosuppression [27]. MDSCs suppress antitumor responses of 

T and NK cells and expand regulatory T cells (Treg), promoting 

cancer progression [27]. Importantly, MDSC frequency is negative-

ly correlated with therapeutic efficacy of existing anti-cancer 

therapies, including chemotherapy and RT as well as ICIs [28-31]. 

In addition, MDSCs are associated with the clinical stage, tumor 

burden, and overall survival [32]. Therefore, increasing efforts have 

been made for targeting MDSCs combined with various cancer 

therapies [32]. This review focuses on the role of MDSCs in RT and 

introduces the rationale for the combination strategies of RT and 

MDSC targeting to improve cancer treatment. 

Myeloid-Derived Suppressor Cells 

Myeloid cells are a highly heterogenous population derived from 

bone marrow. They include granulocytes (neutrophil, eosinophils, 

and basophils) and mononuclear cells (monocytes, macrophages, 

and DCs). The name MDSCs was first coined for myeloid cells with 

immunosuppressive function in 2007 [33]. These cells are pheno-

typically and morphologically similar to, but functionally distinct 

from neutrophils and monocytes. The original intent to introduce 

the name MDSCs was not to define a novel population of myeloid 

cells, but to unify different descriptions of these cells [34]. 

In the circulation under healthy conditions, the frequency of 

granulocytes and monocytes is maintained by the coordinated cy-

tokine expression, and MDSCs are almost absent. In pathological 

conditions such as cancer, infection, autoimmune disease, and 

graft versus host disease, MDSCs are generated as result of an al-

tered myelopoiesis [35]. Chronic inflammatory conditions such as 

cancer induce the production of a variety of inflammatory media-

tors including granulocyte colony-stimulating factor (G-CSF), 

macrophage colony-stimulating factor (M-CSF), granulocyte/mac-

rophage colony-stimulating factor (GM-CSF), interleukin (IL)-6, IL-

10, IL-1β, vascular endothelial growth factor (VEGF), transforming 

growth factor-β (TGF-β), tumor necrosis factor-α (TNF-α), CC 

chemokine ligand 2 (CCL2), CCL5, and prostaglandin E2 (PGE2) 

[36]. These inflammatory mediators change normal myelopoiesis 

and skew myeloid differentiation toward MDSCs [35] (Fig. 1). 

MDSCs are discriminated from other myeloid cells in which they 

possess potent immunosuppressive activity. Using a wide range of 

suppressive molecules, MDSCs suppress the functions of T and NK 

cells and promote the differentiation of Treg [32] (Fig. 1).  

One of the main immunosuppressive molecules is arginase 1 

(Arg1), which converts L-arginine into L-ornithine and urea. As a re-

sult of the enzymatic reaction, L-arginine is depleted from the TME. 

The lack of L-arginine causes downregulation of the T cell receptor 

(TCR) ζ-chain and G0/G1 phase cell cycle arrest in infiltrating T cells 

[37]. The induction of MDSCs in hepatitis C infection suppresses 

IFN-γ production of NK cells via L-arginine depletion [38]. 

MDSCs also overexpress indoleamine 2,3-dioxygenase (IDO), 

which correlates with increased infiltration of Treg in tumors and 

metastatic lymph nodes [39]. IDO converts L-tryptophan into 

N-formylkynurenine. The lack of tryptophan and production of ky-

nurenine result in down-regulation of TCR ζ-chain in CD8+ T cells. 

Additionally, kynurenine produced by IDO activity induces regula-

tory phenotype in naïve CD4+ T cells [40]. 

Another important factor produced by MDSCs is suppressive re-

active oxygen species (ROS). Different subsets of MDSCs employ 

different types of oxidative stress to regulate effector T cells. Poly-

morphonuclear (PMN)-MDSCs exert their function through NA-

DPH oxidase expression and ROS generation, while monocytic 

(M)-MDSCs express inducible nitric oxide synthase (iNOS) and 

generate nitric oxide (NO). High levels of ROS induce T cell apop-

tosis and TCR ζ-chain downregulation. Reacting with NO, ROS ni-
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trosylates the TCR, resulting in T cell anergy defined as a lack of 

responsiveness to antigen [41]. 

MDSCs secrete immunosuppressive cytokines such as TGF-β and 

IL-10 and reduce antitumor activity of effector T cells [36]. 

Furthermore, MDSCs exerts their immunosuppressive effects via 

upregulation of PD-L1. The binding of PD-L1 to PD-1 receptor on T 

cells leads to the anergic state in T cells [42]. 

In mice, MDSCs were first phenotypically identified by the ex-

pression of CD11b (a classical myeloid lineage marker) and Gr-1. 

The Gr-1 is a common marker of Ly6G and Ly6C molecules. MDSCs 

were initially defined as CD11b+Gr1+ cells, but this criterion is not 

sufficient to identify different subsets of MDSCs. According to the 

relative expression of Ly6G and Ly6C, MDSCs are classified into 

two subsets, PMN-MDSC (CD11b+Ly6G+Ly6Clo) and M-MDSC (CD-

11b+Ly6G-Ly6Chigh). Human MDSCs are generally identified based 

on the expression of the myeloid marker CD11b and low or absent 

HLA-DR. The equivalent to PMN-MDSC is further defined as 

CD14–CD15+, and M-MDSC is defined as CD14+CD15– [34]. 

However, theses phenotypic evaluations cannot discriminate 

PMN-MDSCs from neutrophil, and M-MDSCs from monocytes. 

Presently, there are no unique phenotypic marker for MDSCs. 

Therefore, an algorithm was proposed to identify cells as MDSCs. 

First, pathological conditions such as chronic inflammation and 

cancer should be associated with an expansion of cells with an 

MDSC phenotype. Then, isolated cells with MDSC phenotype must 

have immune suppressive activity [34]. 

MDSC Targeting for Cancer Treatments 

It is important to prevent T cell inhibition to boost the existing 

antitumor responses as proven by the immune checkpoint target-

ing, but it is also important to regulate the TME for effective can-

cer treatment. In recent years, the accumulation of MDSCs have 

been highlighted as a major contributing factor in the immuno-

suppressive TME. The efficacy of MDSC inhibition have been eval-

uated in numerous preclinical and clinical studies [32]. There exist 

different approaches to target MDSCs: inhibition of MDSC accu-

mulation, blocking of MDSC recruitment, and inhibition of MDSC 

function [32] (Table 1). Recently, MDSC inhibition in combination 

with immunotherapy have shown promising results in humans 

[43]. Clinical trials targeting MDSCs are summarized in Table 2. 

1. Inhibition of MDSC accumulation 
The frequency of MDSCs can be reduced by all-trans retinoic acid 

(ATRA), an active metabolite of vitamin A. ATRA has been success-

fully used in the treatment of acute promyelocytic leukemia where 

it terminally differentiates immature myeloid cells into mature 

myeloid cells, resulting in leukemic cell death [44]. This concept of 

differentiation therapy provides a rationale for the use of ATRA in 

reducing MDSC accumulation. ATRA induced the differentiation 

MDSCs into DCs and macrophages, and thereby improved T cell 

function in mouse and human samples [45,46]. The antitumor ef-

fects of ATRA have been extensively studied in numerous studies 

in the past decades, but MDSCs were not almost evaluated in 

these studies [47]. In some clinical studies, ATRA has been report-

ed to reduce the frequencies of circulating MDSCs [43,48,49]. 

ATRA treatment improved the immune response to cancer vaccine 

[48] and antigen-specific T-cell response [49]. 

Fig. 1. Schematic roles of myeloid-derived suppressor cells (MDSCs) 
during tumor progression. Tumor and immune cells release a variety 
of inflammatory mediators, leading to the altered myelopoiesis and 
the generation of MDSCs in the bone marrow. MDSCs are recruited 
to the tumor site by various cytokines and chemokines secreted in 
the tumor microenvironment (TME). Radiation is known to induce the 
expression of CSF1, SDF-1 and CCLs facilitating MDSC recruitment to 
the TME. MDSCs suppress antitumor immune responses of T and nat-
ural killer (NK) cells and expand regulatory T cells (Treg) via various 
mechanisms. CSF1, colony stimulating factor 1; SDF-1, stromal 
cell-derived factor-1; CCLs, CC chemokine ligands; HSC, hematopoi-
etic stem cell; IMC, immature myeloid cell.
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Table 2. Clinical trials targeting MDSCs in cancer patients from ClinicalTrials.gov

Trial number Title Conditions Interventions
NCT03214718 MDSCs and chronic myeloid leukemia Chronic myeloid leukemia Imatinib, nilotinib
NCT03302247 Depletion of MDSCs to enhance anti-PD-1 therapy Non-small lung cancer (stage IIIB) Nivolumab, gemcitabine
NCT04022616 MDSC function in breast cancer patients Breast cancer Specimen collection
NCT02868255 MDSC control by signal regulatory protein-alpha: 

investigation in hepatocellular carcinoma
Hepatocellular carcinoma Collection of human samples

NCT02916979 MDSCs and checkpoint immune regulators’ ex-
pression in allogeneic SCT using FluBuATG

Leukemia, lymphoma, multiple myeloma Fludarabine, busulfan, metho-
trexate, rabbit ATG

NCT02664883 MDSC clinical assay in finding kidney cancer Metastatic renal cell cancer, recurrent renal cell 
carcinoma, renal cell cancer (stage I, II, III)

-

NCT02669173 Capecitabine + bevacizumab in patients with re-
current glioblastoma

Glioblastoma Capecitabine, bevacizumab

NCT01803152 Dendritic cell vaccine with or without gemcitabine 
pretreatment for adults and children with sarco-
ma

Sarcoma, soft tissue sarcoma, bone sarcoma DC vaccine, gemcitabine, 
imiquimod

NCT03525925 Ibrutinib and nivolumab in treating participants 
with metastatic solid tumors

Metastatic malignant solid neoplasm Ibrutinib, nivolumab

NCT02637531 A dose-escalation study to evaluate the safety, 
tolerability, pharmacokinetics, and pharmacody-
namics of IPI-549

Advanced solid tumors, non-small cell lung 
cancer, melanoma, squamous cell cancer of 
the head and neck, triple negative breast can-
cer, adrenocortical carcinoma, mesothelioma, 
high-circulating MDSCs

IPI-549, nivolumab

NCT03161431 SX-682 treatment in subjects with metastatic 
melanoma concurrently treated with pembroli-
zumab

Melanoma (stage III), melanoma (stage IV) SX-682, pembrolizumab

NCT03848182 Analyzing childhood recall antigens in patients 
with pancreatic cancer

Pancreatic cancer Gemcitabine, TT vaccine 
booster

NCT03961698 Evaluation of IPI-549 combined with front-line 
treatments in patients with triple-negative 
breast cancer or renal cell carcinoma

Breast cancer, renal cell carcinoma IPI-549, atezolizumab, 
nab-paclitaxel, bevacizumab

NCT04105335 A study of MTL-CEBPA in combination with a 
PD-1 inhibitor in patients with advanced solid 
tumors

Solid tumor MTL-CEBPA, pembrolizumab

NCT02259231 RTA 408 capsules in patients with melanoma Melanoma, unresectable melanoma, metastatic 
melanoma

Omaveloxolone, ipilimumab, 
nivolumab

NCT03301636 A study of indoximod or placebo plus pembroli-
zumab or nivolumab for subjects with unresect-
able or metastatic melanoma

Melanoma Pembrolizumab, nivolumab, 
indoximod

MDSC, myeloid-derived suppressor cell; PD-1, programmed death-1; SCT, stem cell transplant; ATG, anti-thymocyte globulin; DC, dendritic cell; TT, 
tetanus toxoid.

Table 1. Strategies for MDSC targeting

Targeted process Known mechanism of action Agent
MDSC accumulation Induction of MDSC differentiation ATRA

Induction of MDSC apoptosis Inhibit DNA synthesis Gemcitabine, 5-fluorouracil
Inhibition of MDSC generation VEGFR and c-KIT inhibitor Sunitinib

MDSC recruitment CCR2 antagonist PF-04136309
CCR5 antagonist Maraviroc, vicriviroc
Inhibition of CXCR2 SX-682

MDSC function Inhibition of PDE-5 Sildenafil, tadalafil
Class I HDAC inhibitor Entinostat
IDO inhibitor Indoximod

MDSC, myeloid-derived suppressor cell; ATRA, all-trans retinoic acid; VEGFR, vascular endothelial growth factor receptor; CCL, CC chemokine ligand; 
CXCR2, CXC chemokine receptor 2; PDE-5, phosphodiesterase-5; HDAC, histone deacetylase; IDO, indoleamine 2,3-dioxygenase.

https://doi.org/10.3857/roj.2019.006404

Changhee Kang, et al



Chemotherapeutic agents such as gemcitabine and 5-fluoro-

uracil have been shown to reduce the number of MDSCs and to 

enhance antitumor immunity in mouse tumor models [50,51]. 

These agents had no significant effect on the frequencies of T cells 

and NK cells [50,51]. Similar to the preclinical observations, gem-

citabine reduced MDSC frequency in the peripheral blood of pa-

tients with pancreatic cancer [52]. In a recent report, a liver X re-

ceptor (LXR) beta agonist, RGX-104 induced MDSC apoptosis in 

the periphery and TME, leading to enhanced T cell-mediated anti-

tumor immunity in various mouse tumor models [53]. 

Sunitinib is a tyrosine kinase inhibitor acting toward VEGF re-

ceptor (VEGFR), platelet-derived growth factor receptor (PDGFR), 

KIT and fetal liver tyrosine kinase receptor 3 (FLT3). It was ap-

proved for the treatment of patients with advanced renal cell car-

cinoma (RCC) and imatinib-resistant gastrointestinal stromal tu-

mor (GIST) in 2006 [54]. Since VEGF was implicated in the accu-

mulation of MDSCs, the effect of sunitinib on MDSCs was evalu-

ated [55]. The elevated levels of circulating MDSCs were decreased 

after sunitinib treatment in patients with RCC [56] and oligome-

tastases [28]. 

2. Blocking of MDSC recruitment 
MDSC recruitment to the tumor is essential process for their im-

munosuppressive function. This process is mediated by various 

chemokines secreted in the TME. MDSCs express chemokine re-

ceptor CCR2, CCR5, and CXCR2, which mobilize them to the blood 

and the tumor sites. 

CCR2 interacts with its ligands CCL2 and CCL5, which is re-

quired for the recruitment of M-MDSCs [57]. In a phase Ib clinical 

trial, a CCR2 antagonist (PF-04136309) was tested in combination 

with nab-paclitaxel plus gemcitabine in patients with pancreatic 

ductal adenocarcinoma. However, the results showed that PF-

04136309 did not improve the efficacy compared to nab-pacli-

taxel plus gemcitabine [58]. 

CCR5 interacts with its ligand CCL3, CCL4 and CCL5, and the 

CCR5-CCL5 axis is required for the mobilization of PMN-MDSCs. 

Targeting CCR5-CCL5 axis has been reported to block MDSC re-

cruitment and prevent tumor growth in preclinical studies [59,60]. 

Intriguingly, individual who carry CCR5 deletion mutation 

(CCR5Δ32) are physiologically normal, whereas tumor cells over-

express CCR5. With plausible rationale for CCR5 targeting, in-

creasing number of studies have focused on targeting CCR5 in 

combination with immunotherapy [61]. 

CXCR2 is also overexpressed in PMN-MDSCs and required for 

recruitment of these MDSCs to the TME. Recent studies have 

shown that targeting CXCR2 inhibits recruitment of PMN-MDSCs 

and enhances immunotherapy in preclinical studies [62,63]. 

3. Inhibition of MDSC function 
Phosphodiesterase-5 (PDE-5) inhibitors are widely used in the 

treatment of erectile dysfunction and pulmonary hypertension. It 

was reported that PDE5 inhibitors induced antitumor immune re-

sponses and substantially delayed tumor progression. PDE5 inhibi-

tor sildenafil downregulated Arg1 and iNOS expression, and inhib-

ited the suppressive function of MDSCs in mouse tumor models 

[64,65]. Recent clinical trials showed that PDE5 inhibitor tadalafil 

inhibited MDSC function and promoted antitumor immunity in 

patients with head and neck squamous cell carcinoma [66,67]. 

Histone deacetylase (HDAC) inhibitors have been reported to 

have potent immunomodulatory activity in mouse tumor models 

and cancer patients [68]. A class I HDAC inhibitor entinostat com-

bined with ICIs has been evaluated in mouse tumor models 

[69,70]. Entinostat reduced Arg1 and iNOS expression and inhibit-

ed the immunosuppressive function of MDSCs, resulting in en-

hanced responsiveness to ICIs [69,70]. 

As described above, IDO is a key enzyme required for immuno-

suppressive activity of MDSCs. IDO inhibition reversed tumor-as-

sociated immunosuppression and showed antitumor effect in 

mouse tumor models [71]. However, clinical trials with IDO-1 

monotherapy have not produced satisfactory results as observed 

in preclinical studies. Consequently, clinical trials have been rede-

signed to test IDO inhibitors in combination with other therapies, 

such as ICIs, chemotherapy, and radiotherapy [72]. 

MDSC Targeting for RT 

RT has two opposite effects on MDSCs, dependent on dose-frac-

tionation schemes and tumor models. Although it seems difficult 

to draw a consistent conclusion from recent studies, some pat-

terns emerge, that is, conventional fractionated radiotherapy 

(CFRT) increases MDSCs while ablative hypofractionated radio-

therapy (ABHRT) decreases MDSCs [73]. However, regardless of RT 

scheme, targeting of MDSCs has been shown to increase the anti-

tumor effect of RT in several studies. 

Radiation induced colony stimulating factor 1 (CSF1) expression 

through ABL1-dependent transcription. In response to CSF1, MD-

SCs were recruited to tumor sites and expanded systematically in 

the tumor, spleen, lymph nodes, and peripheral blood. CSF1/CSF1 

receptor (CSF1R) blockade inhibited MDSC infiltration and tumor 

growth after irradiation (3 Gy × 5). In accordance with mouse stud-

ies, serum CSF1 was elevated in prostate cancer patients after RT 

[74]. As mentioned above, several chemokines and their receptors 

promote MDSC recruitment into the TME. Stromal cell-derived 

factor-1 (SDF-1) is a chemokine up-regulated in tumor tissues af-

ter radiation [75,76]. SDF-1 receptor CXCR4 is expressed on im-
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munosuppressive cells including Treg and MDSCs, which are at-

tracted by SDF-1 produced within the tumor [77]. CXCR4 antago-

nist AMD3100 was shown to prevent tumor regrowth when com-

bined with radiation [75,76]. These studies suggest that CD-

11b+F4/80+ myeloid cells are associated with tumor regrowth af-

ter radiation. However, M-MDSCs also express F4/80 marker and 

distinct phenotypic markers for M-MDSCs were not used in these 

studies. Therefore, it cannot be ruled out that CD11b +F4/80+ my-

eloid cells may be attributed to M-MDSCs. Radiation-induced 

STING activation also contributes to MDSC infiltration. This acti-

vation caused tumor cells to produce type I IFN which, in turn in-

duced expression of CCL2, CCL7, and CCL12, chemoattractants for 

MDSCs. Chemokine receptor CCR2 knockout blocked MDSC accu-

mulation and enhanced tumor regression following radiation (20 

Gy) in MC38 and LLC tumor models. Treatment with anti-CCR2 

antibody also enhanced antitumor effects of radiation [78]. More 

recently, it was reported that radiation (12 Gy × 3) increased infil-

tration of MDSCs in tumors, which was suppressed by IDO1 inhib-

itor. Radiation combined with IDO1 inhibitor enhanced tumor 

growth inhibition in LLC tumor model [79]. 

On the other hand, several recent studies have shown that high-

dose irradiation decreases MDSC frequencies. A single high-dose 

irradiation (30 Gy) induced complete remissions, which was relat-

ed to an increased CD8+ T cell infiltration and a reduced MDSC 

infiltration into the TME in CT26 and MC38 tumor models [80]. In 

hepatocellular carcinoma (HCC) patients, the frequency of MDSCs 

after RT was significantly decreased and inversely correlated with 

overall survival. These results suggest that patients with a high 

frequency of MDSCs should be monitored closely and the inhibi-

tion of MDSCs may improve treatment outcomes after RT [31]. In 

mouse studies, ABHRT inhibited MDSC recruitment into tumors 

and significantly inhibited the tumor growth compared with CFRT. 

VEGF expression, which mediated MDSC recruitment, was rela-

tively lower after ABHRT than CFRT. VEGFR2 blocking antibody 

plus CFRT reduced infiltrating MDSCs in tumors and inhibited tu-

mor growth more efficiently than CFRT alone [81]. These results 

indicate that via blockade of MDSC recruitment, the therapeutic 

efficacy of ABHRT could be achieved and the effect of CFRT en-

hanced. As described above, receptor tyrosine kinase inhibitor 

sunitinib inhibited MDSC accumulation, and thereby restored an-

titumor immunity. Concurrent sunitinib and stereotactic body ra-

diotherapy (SBRT) reversed MDSC-mediated immunosuppression 

and resulted in favorable clinical outcomes in patients with oligo-

metastases [82]. 

When combined with ICI treatment, RT have shown improved 

efficacy in preclinical studies [17-20] and clinical trials [21-25]. In 

TUBO and MC38 tumor models, high levels of radiation (12 Gy for 

TUBO and 20 Gy for MC38) combined with PD-L1 blockade syner-

gistically amplified the antitumor effect, which was correlated with 

a reduction of MDSCs mediated by tumor infiltrating CD8+ T cells 

[17]. Similarly, in LLC tumor model, radiation (6 Gy in 3 fractions) 

and anti- PD-L1 antibody effectively inhibited tumor growth com-

pared to either therapy alone [19]. A recent clinical study evaluated 

whether SBRT could enhance the effect of ICI treatment in patients 

with advanced NSCLC. Interestingly, PD-L1-negative patients had 

the largest benefit of improved overall survival and progres-

sion-free survival in the combined treatment of RT [24]. These re-

sults suggest that RT may convert the immunosuppressive TME to 

a more ICI-responsive one. One more important finding is no in-

crease in treatment-related toxic effect. 

The therapeutic effect of anti-PD-L1 antibody was initially as-

sumed to result from blockade of PD-L1 expressed on the tumor 

cell itself. However, several recent studies highlighted the essential 

roles of PD-L1 expressed on host myeloid cells. These studies sug-

gest that PD-L1 on DCs, macrophages and MDSCs rather than tu-

mor cells is the relevant mechanistic target for PD-1/PD-L1 inhibi-

tors [83,84]. 

For the combined treatment with RT, numerous studies so far 

have focused on ICIs, which target PD-1/PD-L1 interactions. The 

available data provide evidence that the therapeutic efficacy of RT 

could be enhanced when combined with MDSC targeting therapy. 

Conclusion 

RT-mediated immune responses support both tumor immune rec-

ognition and tumor immune evasion. Thus, combining RT and im-

munotherapy can be a rational strategy to improve cancer treat-

ment. Numerous studies have shown promising results in the 

combination of RT and immunotherapy. However, translational re-

search behind this approach is still needed to maximize the thera-

peutic efficacy and increase the response rate in cancer patients. 

In the light of therapeutic resistance, recent studies highlight the 

immunosuppressive TME which promote tumor immune evasion. 

MDSCs are increasingly recognized as important contributors to 

immunosuppression in the TME and are also closely associated 

with resistance to RT. Therefore, MDSC targeting could be a suc-

cessful complementary strategy for RT, and also RT combined with 

other therapies. Further work is needed to identify specific markers 

for MDSCs, which would enable the development of methods to 

selectively target these cells. Improving specificity in targeting 

MDSCs could help to find the strategy to maximize the efficacy of 

antitumor therapies. 
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