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Abstract: In the present work, the structures and magnetic properties of (Nd, Pr, Ce) 2Fe14B/α-Fe
nanocomposite magnets were thoroughly investigated. The microwave annealing was applied to
achieve a uniform heating effect and uniform grains. Microwave annealing is more favorable to
obtain α-Fe phase than conventional annealing, which leads to the enhanced coercivity of hysteresis
loops. The coercivity of nanocomposite magnets was 245 kA/m after annealing at 2000 W for 10 min.

Keywords: (Nd; Pr; Ce)2Fe14B/α-Fe; nanocomposite magnets; microwave-assisted annealing

1. Introduction

Nd2Fe14B/α-Fe nanocomposite magnets have attracted considerable research atten-
tion owing to the highest theoretical maximum energy product [1–3]. As previously
reported, adjustment of the alloy composition and control of the crystallization process,
especially the substitution of the Fe and Nd elements [4–6] was applied to improve the
microstructure and properties [7,8]. Many elements (such as Pr, Y, etc.) have been ap-
plied to tailor the grain size and the crystallization phase [9–11]. As two effective rare
earth elements, Pr and Ce have been widely used to substitute the Fe and Nd elements of
Nd2Fe14B/α-Fe nanocomposite magnets and adjust their magnetic properties. Pr2Fe14B
and Ce2Fe14B have the same crystal structure as the Nd2Fe14B, and the replacement of Ce
element to Nd is beneficial to reduce the cost of RE-Fe-B magnets [12]. Nevertheless, the
substitution of Ce for Nd deteriorates the magnetic properties because of the formation of
Ce2Fe14B with low intrinsic magnetic properties [13], so in this research, the addition of Pr
element is necessary, because the Pr substitution for the Nd improves the hard magnetic
properties of the nanocomposite magnets [14]. The magnetic properties are significantly
improved after the substitution of Ce and Pr elements to Nd [15]. Diffusion-processing
is the typical method to fabricate high magnetic performance Nd-Pr-Ce-Fe-B sintered
magnets [16]. For nanocomposite magnets with Ce and Pr substitution, the uniform and
fine microstructure become the critical factor in improving the magnetic properties.

As is well known, the optimization of the annealing process is one of the effective
ways to obtain uniform and fine microstructure of nanocomposite magnets [17,18]. The
microwave heating process has shown significant advantages against conventional heating
procedures in structure controlling. Microwave heating can heat materials to high tem-
peratures with ultra-fast heating rates, short time, and high energy efficiency [19–24]. A
higher heating rate favors obtaining uniform and refined grains after the crystallization
process [25], enhancing coercivity, and also adjusts the proportion of hard and soft phases.
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Thus, the application of microwave annealing may show great benefit for the improvement
of magnetic properties of Nd2Fe14B/α-Fe nanocomposite magnets.

The contributions of our research are highlighted as follows: we crystallized amor-
phous (Nd, Pr, Ce)2Fe14B/α-Fe nanocomposite ribbons by microwave heating treatment
and investigated their magnetic properties, which has rarely been reported before.

2. Materials and Methods
2.1. Materials

The ingots with nominal composition (Nd0.525Pr0.175Ce0.3)9Fe64.5Co3Cu0.5Ti1B22 rib-
bons were prepared by arc-melting under a high-purity Ar atmosphere. The sizes of small
pieces of ingots are 5–7 mm, they were re-melted and spun onto a copper roll, and the
wheel speed 22 m/s.

2.2. Methods

To study the effect of microwave-assisted annealing on crystallization, we used a
quartz tube with a vacuum of 5 × 10−3 Pa to seal the as-spun ribbons, and apply direct
microwaves on ribbons at 650 ◦C for 10 min under the power of 800, 1500, and 2000 W,
respectively. The HAMiLab-V3 microwave furnace (Beijing Yiye Lantian Technology
Co., Ltd., Beijing, China) with a frequency of 2.45 GHz is experimental equipment. The
(Nd0.525Pr0.175Ce0.3)9Fe64.5Co3Cu0.5Ti1B22 as-spun ribbons were heated at a rate of 5, 20,
and 40 ◦C/min. We used a differential scanning calorimeter (DSC, (Shanghai Precision
Scientific Instrument Co., Ltd., Shanghai, China) to characterize the as-spun ribbons, and
X-ray diffraction (XRD) with Cu-Kα radiation to determine the structure of the as-spun
and annealed ribbons. A vibrating sample magnetometer (VSM, (YP Magnet Technology
Development Co., Ltd.) is used to measure the magnetic properties of the ribbons with a
maximum applied magnetic field of 1.8 T.

3. Results and Discussion
3.1. Crystallization Process

The XRD pattern of (Nd0.525Pr0.175Ce0.3)9Fe64.5Co3Cu0.5Ti1B22 as-spun ribbons is
shown in Figure 1. No distinct diffraction peaks were found in the patterns, the broad peak
in the interval 35–50 degrees is due to the amorphous phase.

Materials 2021, 14, x FOR PEER REVIEW 3 of 10 
 

 

 

Figure 1. X-ray diffraction pattern of the (Nd0.525Pr0.175Ce0.3)9Fe64.5Co3Cu0.5Ti1B22 as-spun ribbons. 

The DSC curves of the (Nd0.525Pr0.175Ce0.3)9Fe64.5Co3Cu0.5Ti1B22 as-spun ribbons at a 

heating rate of 5, 20, and 40 °C/min are shown in Figure 2. Only one exothermic peak is 

detected, which indicates the synchronized precipitation of soft and hard magnetic 

phases, and they were formed at the same temperature. The crystallization characteristic 

temperature increased with the increase of the heating rate due to the hysteresis effect of 

phase change and the superheat. Moreover, as the heating rate increased, the higher the 

phase change energy storage per unit time was, the higher the heat released during the 

phase change was, so the exothermic peak became larger. Activation energy during the 

crystallization is a crucial parameter of thermal stability for the amorphous alloy, which 

statistically reflects the average of the activation energy in the crystallization process. The 

crystallization tendency of the amorphous alloy decreases with the increase of effective 

activation energy. According to Kissinger equation [26]: 

In
T2

B
 = 

E

RT
 + C (1) 

where In is natural logarithm; B is the heating rate; T is the characteristic crystallization 

temperature (in this study, we select T = Tp); E is the crystallization activation energy; R is 

the molar gas constant; and C is constant. The linear relationship between 
𝑇2

𝐵
 and 

1

𝑇
 is 

shown in Figure 3. The slope values of E/R represent crystallization activation energy, 

resulting from E = 121.1 KJ/mol. 
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The DSC curves of the (Nd0.525Pr0.175Ce0.3)9Fe64.5Co3Cu0.5Ti1B22 as-spun ribbons
at a heating rate of 5, 20, and 40 ◦C/min are shown in Figure 2. Only one exothermic
peak is detected, which indicates the synchronized precipitation of soft and hard magnetic
phases, and they were formed at the same temperature. The crystallization characteristic
temperature increased with the increase of the heating rate due to the hysteresis effect of
phase change and the superheat. Moreover, as the heating rate increased, the higher the
phase change energy storage per unit time was, the higher the heat released during the
phase change was, so the exothermic peak became larger. Activation energy during the
crystallization is a crucial parameter of thermal stability for the amorphous alloy, which
statistically reflects the average of the activation energy in the crystallization process. The
crystallization tendency of the amorphous alloy decreases with the increase of effective
activation energy. According to Kissinger equation [26]:

In
T2

B
=

E
RT

+C (1)

where In is natural logarithm; B is the heating rate; T is the characteristic crystallization
temperature (in this study, we select T = Tp); E is the crystallization activation energy; R
is the molar gas constant; and C is constant. The linear relationship between T2

B and 1
T

is shown in Figure 3. The slope values of E/R represent crystallization activation energy,
resulting from E = 121.1 KJ/mol.
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Figure 3. Kissinger curve of the (Nd0.525Pr0.175Ce0.3)9Fe64.5Co3Cu0.5Ti1B22 as-spun ribbons.

3.2. Comparison of Conventional Annealing and Microwave Annealing

The XRD patterns of the (Nd0.525Pr0.175Ce0.3)9Fe64.5Co3Cu0.5Ti1B22 ribbons annealed
at 650 ◦C for 10 min under conventional and microwave heating conditions, respectively,
are shown in Figure 4. Apart from the diffraction peaks from (Nd, Pr, Ce)2Fe14B and α-Fe
phases, a broad peak locates from 20 degrees to 25 degrees is detected, suggesting the
presence of some amorphous phases after conventional annealing treatment. However,
the ribbons were annealed by microwave by increasing the microwave power from 800 W
to 2000 W, the intensity of the α-Fe peak became significantly stronger than the (Nd, Pr,
Ce)2Fe14B peak. The grain size can be calculated from the line width (FWHM in radian) of
XRD [27]. It shows that with the increase of microwave power, the grain size of the α-Fe
phase increased greatly; however, the grain size of the (Nd, Pr, Ce)2Fe14B phase increased
slightly, as are shown in Table 1, because microwave annealing treatment promotes the
diffusion of elements, accelerates the crystallization rate, and then promotes the growth
of grains, especially the α-Fe phase. The average size of grains increases from 11.9 nm
in traditional annealing to 40.3 nm in microwave annealing at 2000 W. It explained that
the microwave annealing treatment increased the grain size. Moreover, the broad peak
completely disappears, presenting the elimination of the residual amorphous phase. The
desired microstructural modifications have been achieved in the (Nd, Pr, Ce)2Fe14B/α-Fe
samples after microwave annealing for the full range of power. The diffusion rates of the
elements were promoted by a microwave field, the proportion of hard and soft magnetic
phases were adjusted as well.

Table 1. The average crystallites size of the main phases of the microwave annealed (Nd0.525Pr0.175Ce0.3)9

Fe64.5Co3Cu0.5Ti1B22 ribbons under different power applied.

Power Applied
D (nm)

α-Fe (Nd, Pr, Ce)2Fe14B

conventional 11.9 9.6
800 W 17.7 12.3

1500 W 25.3 12.9
2000 W 41.3 18.6
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Figure 4. X-ray diffraction patterns of the annealed (Nd0.525Pr0.175Ce0.3)9Fe64.5Co3Cu0.5Ti1B22 rib-
bons under different conditions.

The hysteresis loop curves of the (Nd0.525Pr0.175Ce0.3)9Fe64.5Co3Cu0.5Ti1B22 ribbons
annealed at 650 ◦C for 10 min under conventional heating and microwave heating under
different powers are shown in Figure 5. Their hysteresis loops display low magnetic prop-
erties. As reported, the Ce2Fe14B phase presents a lower first-order anisotropy constant
than the Nd2Fe14B phase at room temperature, which induced the decrease of coerciv-
ity [28–30]. Even though it is expected that microwave heat treatment will increase the
residual magnetization, there is no significant residual magnetic enhancement effect, and
there is a weak exchange coupling effect between the soft and hard magnetic phases. The
coercivity was enhanced with higher microwave power. It shows that the ribbons’ coerciv-
ity and remanence magnetic ratio under microwave annealing treatment with a power of
2000 W reaches 245 kA/m and 0.34, which are higher than that of conventional annealing
(132 kA/m and 0.26), as are shown in Table 2.
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Table 2. The magnetic properties of the annealed (Nd0.525Pr0.175Ce0.3)9Fe64.5Co3Cu0.5Ti1B22 ribbons
under different annealing conditions.

Annealing
Conditions σs (Am2/kg) σr (Am2/kg) Hc (kA/m) σr/σs

conventional 78 20 132 0.26
800 W 65 20 135 0.31

1500 W 65 20 242 0.31
2000 W 61 21 245 0.34

The σs is remanence magnetic, σr is saturation value of magnetization, Hc is coercivity, and σr/σs is remanence
magnetic ratio.

The X-ray diffraction patterns of the (Nd0.525Pr0.175Ce0.3)9Fe64.5Co3Cu0.5Ti1B22 rib-
bons annealed for 5, 10, and 15 min at a microwave power of 2000 W, as are, respectively,
shown in Figure 6. With the increase of crystallization time, the intensity of the pattern
peaks has an increasing tendency. It shows that the grain size of the α-Fe phase increased
greatly; however, the grain size of the (Nd, Pr, Ce)2Fe14B phase increased slightly, as is
shown in Table 3. This is because the elements are difficult to fully diffuse in a short crystal-
lization time, so the grains did not have enough time to grow. When annealing for 5 min,
the average grain size of the α-Fe phase is only 26.9 nm. However, when the crystallization
time is longer, the elements can fully diffuse, which promotes the grain growth; when
annealing for 15 min, the average grain size of the α-Fe phase reached 60.2 nm. It indicated
that the crystallization time affected the grain size and adjustment of the percentage of soft
and hard magnetic phases.
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Table 3. The average crystallites size of the main phases of the microwave annealed
(Nd0.525Pr0.175Ce0.3)9Fe64.5Co3Cu0.5Ti1B22 ribbons for a different time.

Annealing Time (min)
D (nm)

α-Fe (Nd, Pr, Ce)2Fe14B

5 26.9 11.7
10 41.3 18.6
15 60.2 22.4

The hysteresis loop curves of the (Nd0.525Pr0.175Ce0.3)9Fe64.5Co3Cu0.5Ti1B22 ribbons
annealed for 5, 10, and 15 min at a microwave power of 2000 W, are, respectively, shown in
Figure 7. It shows that annealing under the microwave power of 2000 W for 10 min could
obtain a higher coercivity and residual magnetization, 245 kA/m and 21 Am2/kg, as are,
respectively, shown in Table 4. There is no significant residual magnetic enhancement effect,
and there is a weak exchange coupling effect between the soft and hard magnetic phases
annealing under the microwave power of 2000 W for 10 min. The coercivity and remanent
magnetic ratio could be enhanced under appropriate microwave annealing process.
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Figure 7. Hysteresis loop curves of the microwave annealed (Nd0.525Pr0.175Ce0.3)9 Fe64.5Co3Cu0.5Ti1B22

ribbons for a different time.

Table 4. The magnetic properties of the annealed (Nd0.525Pr0.175Ce0.3)9Fe64.5Co3Cu0.5Ti1B22 ribbons
for a different time.

Annealing
Times (min) σs (Am2/kg) σr (Am2/kg) Hc (kA/m) σr/σs

5 81 21 127 0.27
10 61 23 245 0.38
15 74 18 119 0.24

The σs is remanence magnetic, σr is saturation value of magnetization, Hc is coercivity, and σr/σs is remanence
magnetic ratio.

4. Conclusions

This study investigated the crystallization and magnetic properties of (Nd, Pr, Ce)2Fe14B/
α-Fe nanocomposite magnets through microwave annealing treatment. The results of the
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experiment indicate that compared with traditional annealing, even though microwave an-
nealing slightly reduces the magnetic saturation strength of the magnet, it increases the coer-
civity and remanence ratio of (Nd, Pr, Ce)2Fe14B/α-Fe nanocomposite magnets. Coercivity
and remanence ratio up to 245 kA/m and 0.38 for (Nd0.525Pr0.175Ce0.3)9Fe64.5Co3Cu0.5Ti1B22
ribbons were obtained after annealed at microwave field with 2000 W for 10 min.

Author Contributions: Conceptualization, Z.W. (Zhanyong Wang); methodology, C.S., M.L., Y.S.
and T.W.; investigation, C.S., L.W., Z.W. (Zemin Wang) and T.W.; data analysis, C.S., L.W, Y.S.
and T.W.; writing—original draft preparation, C.S. and T.W.; writing—review and editing, T.W.,
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