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Abstract

Ataxia-telangiectasia (A-T) is a neurodegenerative disease caused by mutation of the A-T
mutated (ATM) gene. ATM encodes a protein kinase that is activated by DNA damage and
phosphorylates many proteins, including those involved in DNA repair, cell cycle control,
and apoptosis. Characteristic biological and molecular functions of ATM observed in mam-
mals are conserved in Drosophila melanogaster. As an example, conditional loss-of-func-
tion ATM alleles in flies cause progressive neurodegeneration through activation of the
innate immune response. However, unlike in mammals, null alleles of ATM in flies cause
lethality during development. With the goals of understanding biological and molecular roles
of ATM in a whole animal and identifying candidate therapeutics for A-T, we performed a
screen of 2400 compounds, including FDA-approved drugs, natural products, and bioactive
compounds, for modifiers of the developmental lethality caused by a temperature-sensitive
ATM allele (ATM®) that has reduced kinase activity at non-permissive temperatures. Ten
compounds reproducibly suppressed the developmental lethality of ATM? flies, including
Ronnel, which is an organophosphate. Ronnel and other suppressor compounds are known
to cause mitochondrial dysfunction or to inhibit the enzyme acetylcholinesterase, which con-
trols the levels of the neurotransmitter acetylcholine, suggesting that detrimental conse-
quences of reduced ATM kinase activity can be rescued by inhibiting the function of
mitochondria or increasing acetylcholine levels. We carried out further studies of Ronnel
because, unlike the other compounds that suppressed the developmental lethality of homo-
zygous ATMP flies, Ronnel was toxic to the development of heterozygous ATM? flies. Ron-
nel did not affect the innate immune response of ATM® flies, and it further increased the
already high levels of DNA damage in brains of ATM®flies, but its effects were not harmful
to the lifespan of rescued ATM flies. These results provide new leads for understanding the
biological and molecular roles of ATM and for the treatment of A-T.
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Introduction

Ataxia-telangiectasia (A-T) is an autosomal recessive disorder characterized by progressive
cerebellar atrophy, immunodeficiency, and cancer predisposition [1-3]. The cause of A-T is
mutation of the A-T Mutated (ATM) gene, which encodes a phosphatidylinositol-3-kinase
(PI3K)-related protein kinase involved in the recognition and repair of DNA damage. Loss of
ATM function leads to a variety of cellular and molecular abnormalities, including accumula-
tion of DNA damage, oxidative stress, insulin resistance, mitochondrial dysfunction, cell cycle
dysregulation, and neurodegeneration. Currently, no specific treatment is available for A-T,
but studies of ATM-deficient cells and animals are making progress toward this goal. High-
throughput screens have identified compounds that induce translational read-through of
nonsense mutations in ATM [4]). In addition, large-scale proteomic, metabolomic, and tran-
scriptomic studies have identified potential cellular therapeutic targets [5]. Lastly, directed
approaches have identified possible therapeutics for specific physiological manifestations of
A-T; antioxidants reduce oxidative stress [6], glutamine supplementation blocks neuronal cell
cycle reentry and improves the DNA damage response [7], and increasing intracellular NAD+
promotes the elimination of dysfunctional mitochondria by mitophagy, a selective form of
autophagy [8]. Nevertheless, an opportunity that is yet to be explored because of issues of cost
and feasibility is an unbiased screen for compounds that improve ATM mutant phenotypes in
a whole animal.

Screens of libraries of compounds in Drosophila melanogaster have identified candidate
therapeutics for diverse human diseases, including Fragile X syndrome [9], thyroid cancer
[10], and Alexander disease [11]. Medium-throughput screens of compounds are possible in
flies because flies have a short lifecycle, are maintained in small vials, and feed on inexpensive
food, which collectively make it economical and feasible to screen large numbers of animals.
Flies also have a short lifespan, which allows age-related phenotypes to be analyzed in a reason-
able period of time. Lastly, compounds can be easily administered to flies in food and are only
needed in small quantities.

ATM mutant flies exhibit phenotypes similar to those in A-T, including DNA damage, sen-
sitivity to ionizing radiation, and progressive neurodegeneration [12-17]. A key difference
between flies and mammals is that ATM is essential in flies. The essential nature of ATM in
flies may be due to the fact that flies lack the catalytic subunit of DNA-dependent protein
kinase (DNA-PK(cs)), which like ATM is a PI3K-related protein kinase. In support of this
hypothesis, mice deficient for both ATM and DNA-PK(cs) are embryonic lethal [18]. Because
ATM is essential for viability in flies, a temperature-sensitive ATM allele (ATM %) has been tre-
mendously useful for investigating the mechanistic basis of adult phenotypes such as neurode-
generation [16, 17]. ATM® flies contain a missense mutation that changes the final amino acid
of the ATM protein from leucine to phenylalanine [15]. When raised at 25°C, ATM® flies die
during development, often as pupae, but lowering the temperature to 18°C largely prevents the
developmental lethality. By assaying phosphorylation of the ATM substrate histone H2Av in
response to ionizing radiation-induced DNA damage, we determined that ATM® kinase activ-
ity is inhibited at 25°C but not at 18°C [16]. Furthermore, ATM 8 flies that are raised at 18°C
and shifted to 25°C as adults undergo progressive neurodegeneration that is caused by hyper-
activation of the innate immune response in glial cells [17]. The innate immune response in
flies and humans not only functions to combat pathogens but also influences the process of
neuroprotection [19, 20]. In flies, the Toll and Imd (Immune deficiency) innate immune
response pathways activate distinct NF-kB transcription factors to control the transcription of
genes that encode antimicrobial peptides (AMPs) [21]. In ATM® flies, the expression of AMP
genes is substantially upregulated [16, 17]. Inactivation of the Imd pathway in ATM® flies by
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mutation of the NF-xB transcription factor Relish not only reduces AMP gene expression but
also blocks neuron death and increases lifespan [17]. Chronic inflammation in A-T and links
between the innate immune response and neurodegeneration in disorders such as Alzheimer’s
disease, Parkinson’s disease, Huntington’s disease, and Amyotrophic lateral sclerosis indicate
that ATM® flies are a pertinent model of neurodegeneration in A-T as well as other neurode-
generative diseases [19, 20, 22, 23].

To identify potential therapeutics for A-T and other neurodegenerative diseases, we
screened a library of 2400 compounds for modifiers of the developmental lethality of ATM®
flies. We identified 10 compounds that reproducibly suppressed the developmental lethality of
ATM? flies, and we investigated the physiological and molecular effects of one of these com-
pounds Ronnel because it paradoxically and uniquely suppressed the developmental lethality
of homozygous ATM® flies but enhanced the developmental lethality of heterozygous ATM®
flies.

Results and discussion
Identification of a phenotype that is sensitive to the function of ATM

Dominant modifier screens in flies have been extremely successful in identifying genes
involved in specific biological processes, including genes involved in ATM-mediated neuro-
protection [14]. The key feature of dominant modifier screens is a sensitized, intermediate
phenotype that permits heterozygous mutations in genes that function in relevant biological
processes to dominantly suppress or enhance the phenotype. Based on this paradigm, we set
out to identify a sensitized, intermediate ATM-dependent phenotype where compounds that
affect the function of ATM or its downstream targets would suppress or enhance the pheno-
type. It was previously documented that in ATM? flies, ATM kinase activity and development
to adulthood is temperature-sensitive [12, 15, 16]. Indeed, we found that when heterozygous
ATM?®/TM3 flies (TM3 is a balancer chromosome that contains a wild-type ATM allele) were
self-crossed at 25°C, no ATM® F1 progeny eclosed, indicating that ATM kinase activity is
below the threshold needed for viability (Table 1). In contrast, at 18°C, 24% of the F1 progeny
were ATM®, which approaches the Mendelian ratio of 33% expected for fully viable ATM®
flies. Moreover, an intermediate temperature of 21°C produced an intermediate ratio of ATM®
F1 progeny, 16%. These data suggest that 21°C is a sensitized condition where compounds
that affect ATM kinase activity or signaling through ATM pathways might alter the level of
ATM?® progeny up to as high as 33% or down to as low as 0%.

A primary screen of 2400 compounds identifies many modifiers of ATM®
lethality

To identify compounds that affect the function of ATM, we performed a blinded screen of
2400 compounds from the Spectrum Collection (MicroSource Discovery System) for those
that altered the percent eclosion of ATM?® flies at 21°C. The library included FDA approved
drugs, natural products, and bioactive components. Details of the screening protocol are

Table 1. Effect of temperature on ATM® viability.

Temperature ATM® Total % ATM®
18°C 31 127 24
21°C 19 120 16
25°C 0 71 0

https://doi.org/10.1371/journal.pone.0190821.t001
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described in the Materials and methods and illustrated in Fig 1. In brief, for each compound, 200
ul of 0.2 mM compound in 2% dimethyl sulfoxide (DMSO) was evenly applied to the surface of
newly prepared molasses food in vials. This concentration was selected based on other screens in
flies that used 0.05 or 0.1 mM compounds that were homogenously mixed in food [10, 11, 24]. 50—
60 young ATM®/TM3 flies were added to the vials, and the flies were cultured at 25°C for 5-6 days
to allow egg-laying, at which time the parental flies were removed and the vials were transferred to

— 80 compounds and 4 controls (2% DMSO)
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(100 compounds, n = 2 vials)
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— Determine the percentage of
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Fig 1. Schematic diagram of the primary and secondary screen protocols. Details are provided in the Materials and methods section as
well as the Results and discussion section.

https://doi.org/10.1371/journal.pone.0190821.9001
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Table 2. Overview of the primary screen.

% ATM® Number of compounds
0 147
1-10 819
10-20 892
20-30 425
30-40 99
40-50 16
50-60 0
60-70 1
70-80 0
80-90 0
90-100 1

https://doi.org/10.1371/journal.pone.0190821.t1002

21°C for about 12 days, enough time for eggs to have developed to adults. This protocol allowed
compounds to be consumed ad libitum by parental flies as well as F1 larvae. ATM® and ATM?/
TM3 F1 adults were counted and the percent ATM® flies was determined. In the primary screen,
we only tested each of the 2400 compounds once, but, in a secondary screen, we retested the top
100 compounds two more times to identify compounds that had a reproducible effect.

Table 2 provides an overview of the findings, and S1 Table provides data for each compound.
147 compounds completely blocked the production of ATM® progeny. Of these, 23 compounds,
including several insecticides, also blocked the production of ATM®/TM3 flies either by killing
the parental flies and preventing egg-laying or by inhibiting the development of progeny. The
other 124 compounds that preferentially blocked production of ATM® progeny may provide
insights into ATM function; however, there were no obvious commonalities among these com-
pounds. 892 compounds had little or no effect on the development of ATM® relative to ATM®/
TM3 flies leading to 10-20% ATM® progeny, which was not substantially different than 14%
ATM?® progeny for the control (i.e., 2% DMSO) (Table 3). 819 compounds were detrimental to
the development of ATM® relative to ATM®/TM3 flies, reducing ATM® progeny to 1-10%. In
contrast, the remaining 542 compounds were beneficial to the development of ATM? relative to
ATM?®/TM3 flies, increasing ATM® progeny to >20%. In summary, the primary screen served
the desired purpose of broadly categorizing the collection of 2400 compounds into those that
were detrimental, neutral, or beneficial to the development of ATM® flies.

A secondary screen of 100 compounds identifies reproducible
suppressors of ATME lethality

We performed a secondary screen of the 100 compounds that produced the highest percent
ATM® progeny in the primary screen (S2 Table). Each compound was tested twice under the
same conditions as the primary screen. However, for unknown reasons, controls in the sec-
ondary screen had 1% rather than 14% ATM® progeny observed in the primary screen
(Table 3). Despite these more stringent conditions, 18 compounds substantially increased the
percent ATM® progeny in one of the two trials. Moreover, 10 compounds, listed in Table 3 and
hereafter referred to as the top 10 compounds, substantially increased the percent ATM® prog-
eny in both trials. Thus, in three independent biological trials, the top 10 compounds repro-
ducibly suppressed the developmental lethality due to reduced ATM kinase activity.

Three of the top 10 compounds, Ronnel (also known as fenchlorphos), estragole (also
known as p-allylanisole), and stigmasterol, are inhibitors of the enzyme acetylcholinesterase

PLOS ONE | https://doi.org/10.1371/journal.pone.0190821 January 16, 2018 5/17


https://doi.org/10.1371/journal.pone.0190821.t002
https://doi.org/10.1371/journal.pone.0190821

o ®
@ ' PLOS | ONE Pharmacological modifiers of ATM lethality

Table 3. Top 10 compounds that reproducibly rescue ATM? developmental lethality.

Primary Screen* Secondary Screen**

Compound (0.2mM) ATM? Total % ATM® ATM? Total % ATM®
Ronnel 20 20 100 21 23 91
Estragole 17 50 34 32 126 25
Piperic acid 10 32 31 24 99 24
Quassin 16 47 34 24 100 24
Stigmasterol 10 32 31 32 153 21
Sodium thioglycolate 13 40 33 21 108 19
Avocatin B 11 33 33 22 114 19
Usinic acid 10 32 31 24 129 19
Hypoxanthine 13 40 33 27 151 18
Tyramine 13 38 34 12 117 10
Control (2% DMSO) 670 4796 14 5 441 1

#2400 compounds from the Spectrum Collection (MicroSource Discovery System)
*%100 compounds from the primary screen with the highest percent ATM® viability

https://doi.org/10.1371/journal.pone.0190821.t003

(AChE), which catalyzes breakdown of the neurotransmitter acetylcholine (ACh) to choline
[25-27]. Inhibition of AChE leads to accumulation of ACh at synapses and stimulation of
nerves and muscles in nervous systems. AChE inhibitors have been used in the treatment of
Alzheimer’s and Parkinson’s disease patients who have reduced levels of ACh in the brain [28,
29]. Thus, we retested AChE inhibitors (i.e., donepezil hydrochloride, tacrine hydrochloride,
dichlorvos, galantamine, and rivastigmine tartrate) from the primary screen that were not
included in the secondary screen. In the primary screen, donepezil hydrochloride, tacrine
hydrochloride, and dichlorvos weakly suppressed the developmental lethality of ATM® flies,
but neither these nor the other AChE inhibitors affected ATM® lethality in the retest (S3
Table). Similarly, four of the AChE inhibitors failed to suppress ATM® lethality at other con-
centrations, ranging from 0.002 to 2 mM or when used in combination (S4 Table). Neverthe-
less, direct evaluation of AChE activity and ACh levels are needed to definitively determine the
extent to which inhibition of AChE leads to suppression of ATM? lethality.

Ronnel may also act through other mechanisms, as it is a member of the organophosphate
class of compounds that not only inhibit AChE but also have non-cholinergic effects, including
disruption of mitochondrial oxidative phosphorylation and mitochondrial membrane poten-
tial [30]. Interestingly, six of the other top 10 compounds cause mitochondrial dysfunction
through a variety of mechanisms; hypoxanthine inhibits oxidative phosphorylation [31], quas-
sin and usnic acid cause mitochondrial depolarization [32, 33], sodium thioglycolate (also
known as 2-mercaptoacetate) and avocatin B inhibit mitochondrial fatty acid oxidation [34,
35], and tyramine inhibits mitochondrial respiration [36]. Thus, based on the finding that
elimination of defective mitochondria by mitophagy in ATM-deficient neurons and animals
has beneficial consequences [8], the identified compounds may trigger mitophagy of partially
dysfunctional mitochondria in ATM? cells by further reducing their function and thereby
improve the mitochondrial network’s integrity and functionality.

The top 10 compounds are allele-specific suppressors of ATM lethality

To investigate the mechanisms by which the top 10 compounds suppress the developmental
lethality of ATM® flies, we examined their effect on other recessive lethal ATM alleles, ATM”
and ATM, that were identified in the same chemical mutagenesis screen that identified ATM*®
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[15]. ATM? contains a nonsense mutation that truncates the ATM protein at residue 600 out
of 2429, and ATM* contains a missense mutation that changes leucine 284 to histidine. By
genetic criteria, ATM 3 and ATM* are both null alleles. In three independent tests of each com-
pound at 0.2 mM, we found that none of the top 10 compounds rescued the developmental
lethality of even a single ATM? or ATM fly. These data argue that some level of ATM activity
is required for suppression of developmental lethality by the top 10 compounds.

Ronnel is a dose-dependent suppressor of ATM® and enhancer of ATM?/
TM3 lethality

Among the top 10 compounds, Ronnel (also known as fenchlorphos) stood out because >90%
of the F1 progeny from self-crosses of ATM®/TM3 flies were ATM®, which is considerably
higher than the maximum expected 33% if both ATM® and ATM®/TM3 flies are fully viable
(Table 3). These data indicate that Ronnel is both beneficial to the development of ATM? flies
and toxic to the development of ATM®/TM3 flies. In support of this conclusion, the number of
ATM?® flies that eclosed per vial with Ronnel was similar to the number for the other top 10
compounds, but the total number of eggs from which the flies developed was substantially
lower because Ronnel was lethal to the parental flies (Table 3). In other words, since a similar
number of ATM® flies eclosed from fewer eggs, it means that ATM?® flies that usually would
have died during development were able to survive, indicating rescue by Ronnel rather than
tolerance to Ronnel. Furthermore, the effect of 0.2 mM Ronnel during fly development is
dependent on the level of ATM activity; Ronnel was unable to rescue the lethality of flies with
no ATM activity (i.e., ATM> and ATM? at 25°C), it rescued the lethality of flies with low ATM
activity (i.e., ATM® flies at 21°C), and it increased the lethality of flies with higher ATM activity
(i.e., ATM®/TM3 flies at 21°C and ATM?/TM3, ATM*/TM6B, and wild-type flies at 25°C).

To further characterize Ronnel, we used the screening protocol to examine the effect of different
concentrations of Ronnel on the developmental lethality of ATM® flies. As observed in the primary
and secondary screens, 0.2 mM Ronnel produced >90% ATM?® progeny (Table 4). A 10-fold lower
concentration of Ronnel (0.02 mM) reduced ATM® progeny to 59% and even lower concentrations
(0.002-0.00002 mM) reduced ATM® progeny to 14-19%, which was similar to the 20% ATM®
progeny observed in DMSO controls. Fewer total progeny were produced at high concentrations
of Ronnel because it killed most of the parental flies within 48 hrs thereby reducing the number of
eggs laid. Moreover, the percent ATM® flies at 0.02 mM Ronnel was lower than at 0.2 mM Ronnel
because of increased viability of ATM®/TM3 progeny rather than reduced viability of ATM® prog-
eny. These data indicate that molecular events targeted by Ronnel that suppress ATM® lethality
and enhance ATM®/TM3 lethality are sensitive to different concentrations of Ronnel.

Ronnel does not adversely affect the lifespan of ATM® flies

To investigate whether treatment with Ronnel during the development of ATM® flies has long-
lasting effects during adulthood, we determined the lifespan of ATM® and ATM®/TM3 flies at

Table 4. Dose-dependent effect of Ronnel on ATM? viability.

Ronnel (mM) ATM® Total % ATM®
0.2 19 20 95
0.02 19 32 59
0.002 24 170 14
0.0002 27 183 15
0.00002 34 180 19
% DMSO Control (2—0.0002) 181 893 20

https://doi.org/10.1371/journal.pone.0190821.t1004
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Fig 2. Ronnel does not affect the lifespan of ATM? flies. The survival of ATM® and ATM®/TM3flies raised on the indicated food
source was monitored over time until all of the flies had died. ATM® molasses (n = 244), ATM? 0.2% DMSO (n = 186), ATM®0.02
mM Ronnel in 0.2% DMSO (n = 435), ATM®/TM3molasses (n = 320), ATM®/TM30.2% DMSO (n = 360), and ATM®/TM30.02 mM
Ronnel in 0.2% DMSO (n = 296).

https://doi.org/10.1371/journal.pone.0190821.9002

25°C after being raised at 21°C on molasses food, molasses food with 0.2% DMSO (i.e.,
DMSO), or molasses food with 0.02 mM Ronnel in 0.2% DMSO (i.e., Ronnel). We used 0.02
mM rather than 0.2 mM Ronnel for this and subsequent analyses of Ronnel because it was less
toxic to parental ATM®/TM3 flies and ATM®/TM3 progeny, which led to more ATM®/TM3
flies to analyze (Table 4). This study showed that Ronnel had no effect on the lifespan of either
ATM® or ATM®/TM3 flies (Fig 2). Kaplan-Meier analysis revealed that the mean lifespan of
ATM?® and ATM®/TM3 flies was not significantly different when raised with or without Ronnel
(S5 Table). Furthermore, with and without Ronnel, ATM? flies had similar mean lifespans that
were significantly shorter than those of ATM®/TM3 flies (P<0.01). Thus, the mechanism by
which Ronnel affects the developmental of ATM® and ATM®/TM3 flies does not cause lasting
damage or repair that affects the lifespan of adult flies.

Ronnel does not affect the innate immune response of ATM® flies

The innate immune response is hyperactivated in glial cells of ATM? flies, and genetic manipu-
lations that reduce the innate immune response prevent neurodegeneration and increase the
lifespan of ATM® flies [16, 17]. Thus, Ronnel-mediated suppression of the developmental
lethality of ATM® flies might involve effects on the innate immune response. To test this
hypothesis, we monitored activation of the innate immune response by quantifying mRNA
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levels of AMP genes Diptericin B (DiptB), Metchnikowin (Mtk), and Attacin C (AttC). At 24 hrs
after development of ATM® flies on molasses food containing 0.2% DMSO (i.e., DMSO) or
0.02 mM Ronnel in 0.2% DMSO (i.e., Ronnel), Mtk and AttC expression was equivalent
between DMSO- and Ronnel-treated flies and DiptB expression was about 2-fold lower in
Ronnel-treated flies (Fig 3A). Similarly, the expression of all three AMP genes was not affected
in ATM® flies fed Ronnel as adults, that is, raised on molasses food at 18°C and transferred to
molasses food containing DMSO or Ronnel for 24 hrs (Fig 3B). Longer treatments of ATM®

A 0.7 1 DMSO
p =0.62
~ 0.6 B Ronnel
; I
o
T 0.5
Q
: 1
2 0.4
®
i
° 0.3
o
|
o 1
€ o014 |— p=0.32
- =
0 DiptB Mtk AttC
0.7
B 0=0.24 [ DMSO
N 0.6- I Ronnel
9
g
S 0.5
()
2 0.4
©
id
F.) 03_
> p=0.42
_l -
T 1
€ 0.1 p=0.77
0 /1
DiptB Mtk AttC

Fig 3. Ronnel does not affect the innate immune response of ATM?flies. The expression of AMP genes
(DiptB, Mk, and AttC) was determined by RT-qPCR in (A) ATM?flies raised on 0.2% DMSO (DMSO) or 0.02
mM Ronnel in 0.2% DMSO (Ronnel) at 21°C and transferred to 25°C for 24 hrs or (B) ATM® flies raised at
18°C and transferred to 0.2% DMSO (DMSO) or 0.02 mM Ronnel in 0.2% DMSO (Ronnel) at 25°C for 24 hrs.
Data are presented as the average and standard error of the mean for multiple independent samples. P-
values were determined based on an unpaired equal-variance two-tail t-test.

https://doi.org/10.1371/journal.pone.0190821.g003
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adult flies with 0.02 mM Ronnel were not possible because it killed too many flies within 48
hrs. These data indicate that the innate immune response is unlikely to play a role in Ronnel-
mediate suppression of the developmental lethality of ATM® flies or the lethality of adult
ATM?® flies.

DNA damage accumulates in the brain of ATM® flies

The primary function ascribed to ATM is in the recognition and repair of DNA double-strand
breaks [1-3]. Abnormally high levels of DNA damage have been reported in tissue culture
cells and organisms, including flies, that contain ATM mutations, and DNA damage may be
responsible for triggering neurodegeneration and other phenotypes in A-T patients [12-17].
To test the possibility that DNA damage in the brain contributes to the developmental lethality
of ATM® flies, we measured DNA damage using the Comet assay, which involves lysing cells in
low-melt agarose and electrophoresing the released DNA [37]. Fragments of damaged DNA
migrate faster than intact chromosomes during gel electrophoresis and when visualized with a
fluorescent dye resemble a comet (Fig 4A). The amount of DNA in the comet tail relative to
the total amount of DNA (i.e., percent tail DNA) is a measure of the amount of DNA damage.
We found that cells from dissociated brains of 0-3 day old ATM® flies had a significantly
higher percent tail DNA than w''*® flies (a standard laboratory strain), whereas ATM®/TM3
flies had the same percent tail DNA as w''"® flies (Fig 4B and 4C). Therefore, ATM activity is
required in the brain to prevent the accumulation of DNA damage, and the level of ATM activ-
ity determines the extent of DNA damage.

To confirm that the Comet assay quantitatively detects DNA damage in the brain, we used
it to analyze cells from dissociated brains of 3 day old flies 1 hr after exposure to 50 Gy of ioniz-
ing radiation (IR), which induces DNA double-strand breaks. In all of the flies examined,
w8, ATM®/TM3, and ATM?, IR significantly increased the percent tail DNA relative to unir-
radiated flies (Fig 4B and 4C). Thus, the Comet assay is able to detect a wide range DNA dam-
age levels in brain cells.

Ronnel exacerbates DNA damage in ATM? flies

To investigate whether Ronnel suppresses the developmental lethality of ATM? flies by affect-
ing the level of DNA damage, we used the Comet assay to determine the level of DNA damage
in 0-3 day old ATM 8 and ATM®/TM3 flies that were raised at 21°C on molasses food, molasses
food with 0.2% DMSO (i.e., DMSO), or molasses food with 0.02 mM Ronnel in 0.2% DMSO
(i.e., Ronnel). As observed in Fig 4, ATM 8 flies had higher percent tail DNA than ATM 8/ TM3
flies under all of the culturing conditions (Fig 5). Moreover, relative to molasses food and
DMSO, Ronnel increased the percent tail DNA in both ATM® and ATM®/TM3 flies, indicating
that Ronnel promotes DNA damage. This is consistent with studies showing that organophos-
phate compounds induce DNA damage in multiple cell types [38, 39]. Since Ronnel had the
same effect on DNA damage in ATM® and ATM®/TM3 flies but had opposite effects on the
development of these flies, the effects of Ronnel on DNA damage and development are
unlikely to be mechanistically related.

Conclusions

Our pharmacological screen identified 10 compounds that suppressed the developmental
lethality caused by reduced ATM kinase activity in flies (Table 3). Studies of Ronnel argue
against a suppression mechanism that affects the level of the innate immune response or DNA
damage (Figs 3-5). Subsets of the 10 compounds are known to inhibit the enzyme acetylcho-
linesterase (AChE) or the function of mitochondria, and Ronnel inhibits both AChE and
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Fig 4. DNA damage accumulates in the brain of ATM?flies. (A, top row) Microscopy images of four
examples of individual cells subjected to the Comet assay. The cells are arranged left to right from low to high
levels of DNA damage. Dotted lines indicate the area of electrophoresed DNA. (A, bottom row) Output from
the CometScore Pro Software analysis of the cells shown in the top row. (B) The Comet assay was used to
determine the percent tail DNA for brain cells of flies of the indicated genotype and either not exposed to
ionizing radiation (IR) (-) or exposed to 50 Gy of IR (+). All data points were graphed using a box and whisker
plot in Prism 7.0 (Graphpad) statistical software. Boxes indicate the middle 50% of the data points, lines in the
middle of the boxes indicate the median, +s in the boxes indicate the mean, and the maximum and minimum
whiskers indicate 95% of the data points (minimum whisker begins at 2.5% and maximum whisker ends at
97.5%). >200 comets were analyzed for each condition. (C) P-values for data presented in panel B were
based on an unpaired equal-variance two-tail t-test.

https://doi.org/10.1371/journal.pone.0190821.g004
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Fig 5. Ronnel increases the accumulation of DNA damage in ATM? flies. (A) The Comet assay was used to determine the percent
tail DNA for brain cells of flies of the indicated genotype and raised on molasses food (M), molasses food with 0.2% DMSO (D), or
molasses food with 0.02 mM Ronnel in 0.2% DMSO (R). All data points were graphed using a box and whisker plot in Prism 7.0
(Graphpad) statistical software. Boxes indicate the middle 50% of the data points, lines in the middle of the boxes indicate the median,
+s in the boxes indicate the mean, and the maximum and minimum whiskers indicate 95% of the data points (minimum whisker begins
at 2.5% and maximum whisker ends at 97.5%). >200 comets were analyzed for each condition. (B) P-values for data presented in panel
A were based on an unpaired equal-variance two-tail t-test.

https://doi.org/10.1371/journal.pone.0190821.9005

mitochondria [27, 30]. These data implicate acetylcholine (ACh) in the suppression mecha-

nism. Inhibition of AChE increases ACh levels by preventing its breakdown, and inhibition of
mitochondrial function may increase ACh levels by triggering mitophagy of dysfunctional
mitochondria, thereby improving the overall functionality of mitochondria, which produce
acetyl-CoA, a substrate for ACh synthesis. In support of this hypothesis, AChE inhibitors have
shown benefits in Alzheimer’s and Parkinson’s disease patients [28, 29], and reduced
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mitophagy contributes to mitochondrial dysfunction in many neurodegenerative diseases,
including A-T [8, 40, 41]. However, the mechanism is likely to be complex, since some AChE
inhibitors did not suppress the developmental lethality of ATM mutant flies (S3 and S4
Tables). Nevertheless, the pharmacological screen has uncovered specific avenues to explore
for the treatment of A-T.

Materials and methods
Drosophila strains

Fly stocks were maintained on standard cornmeal-molasses food at 25°C, unless otherwise
stated. ATM®/TM3,Sb, ATM?/TM3,Sb, and ATM*/TM6B,Hu flies (referred to as ATM®/TM3,
ATM?/TM3, and ATM*/TMG6B, respectively) were obtained from the Bloomington Drosophila
Stock Center. To generate ATM® flies, ATM®/ TM3 flies were raised at 18°C or 21°C. Heterozy-
gous ATM®/TM3 flies were maintained at 25°C.

Pharmacological screens

2400 compounds from the Spectrum Collection (MicroSource Discovery Systems) were
obtained in a 96-microplate format, 30 plates of 80 compounds (columns 1 and 12 empty),
and were stored at -80°C. Each plate was thawed at room temperature in light protective pack-
aging for 24 hrs before use. After use, all plates were flushed with nitrogen gas, immediately
capped, and stored at -80°C to prevent degradation. All compounds were provided in 100%
DMSO at a concentration of 10 mM. 6 ul of each compound was diluted in 300 ul of deionized,
distilled H,0O (ddH,O) to a final concentration of 0.2 mM in 2% DMSO. 200 pl of 0.2 mM
compound in 2% DMSO or control 2% DMSO was evenly distributed over the top of freshly
made molasses food [42] in vials before the food completely solidified. Compounds were
allowed to absorb into the molasses food overnight at room temperature. As described in Fig
1, one plate was tested at a time. Compounds were blindly tested through identification by
plate number, row, and column position. For each plate screened, four vials of control 2%
DMSO were screened. 0-7 day old ATM®/TM3 flies raised at 25°C were allowed to lay eggs on
molasses food with compound for 5-6 days at 25°C. ATM®/TM3 parents were removed from
the vials, the vials were incubated at 21°C for ~12 days, and the percent ATM® progeny was
determined. For the primary screen, each compound was tested once. For the secondary
screen, the 100 compounds with the highest percent ATM® from the primary screen were
retested in duplicate.

Lifespan assay

ATM?® and ATM®/TM3 flies were raised on molasses food, molasses food with 200 pl of 0.2%
DMSO, or molasses food with 200 ul 0.02 mM Ronnel in 0.2% DMSO at 21°C, collected at 0-5
days old, transferred to fresh molasses vials at approximately 20 flies per vial, and aged at 25°C.
The day of collection was designated day 1. Surviving flies were counted daily until all flies had
died. Flies were transferred to new vials approximately every 3 days. Lifespan assays for the dif-
ferent genotypes and compounds were performed at the same time. >186 flies were examined
for each assay condition. The number of flies examined is provided in the legend for Fig 2.
Kaplan-Meier survival analysis, standard t-tests, and chi square tests were performed using
Oasis online application for survival analysis (sbi.postech.ac.kr/oasis/) and Rstudio statistical
software.
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RT-gPCR analysis

To determine the effect of Ronnel on AMP gene expression when fed during development,
ATM? flies were raised on molasses food with 0.2% DMSO or molasses food with 0.02 mM
Ronnel in 0.2% DMSO at 21°C, collected at 0-7 days post-eclosion, transferred to molasses
food vials without compound or DMSO at approximately 50 flies per vial, and incubated at
25°C for 24 hrs. Total RNA was isolated from 50 whole flies for each experimental condition,
ATM?® DMSO (n = 13) and ATM?® Ronnel development (n = 14). To determine the effect of
Ronnel on AMP gene expression when fed to adult flies, ATM® flies were raised on molasses
food at 18°C, collected at 0-7 days old, transferred to fresh molasses food with 2% DMSO or
molasses food with 0.02 mM Ronnel in 0.2% DMSO at approximately 50 flies per vial, and
incubated at 25°C for 24 hrs. Total RNA was isolated from 50 whole flies per experimental
condition, ATM® DMSO (n = 15) and ATM® Ronnel (n = 12). RNA was isolated using the
RNeasy Plus Mini Kit (Qiagen). cDNA was generated by reverse transcription (RT) with the
iScript cDNA Synthesis Kit (Bio-Rad). Real-time PCR (qPCR) was carried out as described by
Katzenberger et al. (2006) [42]. Primer sequences for DiptB, Mtk, AttC, and Rpl32 are
described in Katzenberger et al. (2016) [42].

Comet assay

The Comet Assay Kit (Trevigen, Catalog #4250-050K) was used with the following modifications,
fly brains were dissected in cold phosphate-buffered saline (PBS) and placed in 2 ml Eppendorf
tubes at a concentration of 1 brain/10 ul of PBS. A minimum of 6 brains was dissected per sam-
ple. Samples were maintained on ice until they all were dissected. Samples were homogenized
with plastic pestles for Eppendorf tubes, 10 ul of brain homogenate was added to 75 pl of LMA-
garose that had been boiled and cooled to 40°C in a heat block. 50 ul of LM Agarose/homogenate
mix was immediately added to a CometSlide that had been warmed at 37°C. A 200 pl pipette tip
was used to spread the sample evenly across the sample area. Slides were placed flat, at 4°C for 30
min in the dark to cool and harden. Slides were immersed at room temperature in Lysis Solution
and incubated at 4°C overnight in the dark. Slides were removed from the Lysis Solution and
washed by immersion twice for 10 min in 50 ml 4°C tris-borate-EDTA (TBE). Slides were then
placed in an electrophoresis unit side by side lengthwise with the white slide label at the top. The
electrophoresis box was filled with 4°C TBE to just covering the sample on the slide and electro-
phoresed at 23V for 10 min. Excess TBE was drained from the slides, slides were washed twice
for 5 min in ddH,O and then in 70% ethanol once for 5 min, and dried overnight at room tem-
perature in the dark. DNA was stained by placing 100 pul of SYBR Gold solution (30 ml tris-
EDTA (TE) buffer and 1 pl SYBR Gold (Molecular Probes, S11494)) on each circle of dried aga-
rose for 30 min at room temperature. Excess SYBR Gold solution was drained from the slides
and the slides were quickly rinsed in 50 ml ddH,O and dried for 20-25 min at 37°C. Comets
were imaged using a Zeiss LSM 510 confocal microscope with an Imager.M1 module using a
20X/0.8 NA Plan-APOCHROMAT objective. Fluorescence was excited using an Argon laser at
488 nm. Scan mode was set to frame, frame size was 2048x2048, scan speed was 4 sec, and bit
depth was 16 bit. For each sample, >200 comets were imaged and analyzed using CometScore
Pro Software (TriTek Corporation). One-way ANOVA and Tukey’s post hoc test was performed
using RStudio statistical software to compare percent tail DNA between pairs of samples.

lonizing radiation

Three day old flies were placed in empty vials at approximately 20 flies per vial. Vials were
exposed to 50 Gy (5,000 rad) of gamma rays using a Cesium-137 irradiator (J. L. Sheppard
Mark I unit). Brains were dissected and processed for the Comet assay 1 hr after irradiation.
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