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SUMMARY

Bayesian clinical trials allow taking advantage of relevant external information through the elicitation of
prior distributions, which influence Bayesian posterior parameter estimates and test decisions. However,
incorporation of historical information can have harmful consequences on the trial’s frequentist (condi-
tional) operating characteristics in case of inconsistency between prior information and the newly collected
data. A compromise between meaningful incorporation of historical information and strict control of fre-
quentist error rates is therefore often sought. Our aim is thus to review and investigate the rationale and
consequences of different approaches to relaxing strict frequentist control of error rates from a Bayesian
decision-theoretic viewpoint. In particular, we define an integrated risk which incorporates losses arising
from testing, estimation, and sampling. A weighted combination of the integrated risk addends arising
from testing and estimation allows moving smoothly between these two targets. Furthermore, we explore
different possible elicitations of the test error costs, leading to test decisions based either on posterior
probabilities, or solely on Bayes factors. Sensitivity analyses are performed following the convention
which makes a distinction between the prior of the data-generating process, and the analysis prior adopted
to fit the data. Simulation in the case of normal and binomial outcomes and an application to a one-
arm proof-of-concept trial, exemplify how such analysis can be conducted to explore sensitivity of the
integrated risk, the operating characteristics, and the optimal sample size, to prior-data conflict. Robust
analysis prior specifications, which gradually discount potentially conflicting prior information, are also
included for comparison. Guidance with respect to cost elicitation, particularly in the context of a Phase
II proof-of-concept trial, is provided.

Keywords: Average type I error rate; Bayesian clinical trial design; Bayesian decision theory; Prior-data conflict;
Robust prior; Sampling-analysis prior

1. INTRODUCTION

Bayesian clinical trial designs are often evaluated in terms of frequentist (i.e., conditional on a given
parameter value) operating characteristics such as type I error rate, power, and mean squared error (MSE).
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The work of Viele and others (2014) provides an overview of the effects of different borrowing
mechanisms on clinical trial frequentist operating characteristics. In general, improvements in terms of
frequentist type I error rate, power, and MSE can be achieved if prior (historical) information is indeed
consistent with the true parameter value generating the current data, at the cost of type I error rate and MSE
inflation, and power loss, otherwise. Indeed, if strict control of frequentist type I error rate is required and
a uniformly most powerful test is available, the maximum attainable power ultimately depends only on the
final sample size, irrespectively of whether a static or dynamic borrowing mechanism is adopted, i.e., it
does not depend on whether the prior is fixed or adapts to the observed degree of conflict between historical
and current information (see Kopp-Schneider and others, 2020). In practice, however, a carefully elicited
prior should contain trustworthy information, and its incorporation is therefore likely to improve the trial’s
test decision and effect estimate. It is therefore of interest to investigate the rationale and consequences
of different approaches to relaxing strict control of frequentist operating characteristics in a quantitative,
rational, and unified framework. Moreover, as sampling generally comes at a non-negligible monetary
and/or ethical cost, such a framework should allow taking sampling costs into account when eliciting the
trial’s sample size.

The task just described is essentially a Bayesian decision-theoretic problem. In this context, we define
a loss function to explicitly account for costs in terms of all operating characteristics, including the
estimation error, and in terms of sample size. Estimation error can be of particular relevance in, e.g., a
Phase II proof-of-concept trial. Indeed, such a trial aims at assessing both significance and relevance of a
treatment, and can more likely result in indeterminate outcomes (i.e., when only significance or relevance
is declared, see e.g., Fisch and others, 2014) also under a large true effect if a large uncertainty is associated
with the posterior estimate. In addition, as the posterior estimate of a Phase II trial is often used to inform
the sample size calculations of the subsequent Phase III trial, a large estimation error can induce a high
risk of an under- or over-powered Phase III trial (Wang and others, 2006).

We show how the decision-theoretic framework can unify different approaches to sample size selection,
ultimately connected to cost elicitation. Moreover, following Sahu and Smith (2006), we illustrate how
sensitivity analyses can be performed through the elicitation of two priors: a sampling prior, which is
used to reproduce different potential data-generating mechanisms, and an analysis prior, which is used
to fit the data and perform the trial. The sampling and the analysis priors are also referred to in the
literature as the design and the fitting prior, respectively. In addition to the performance of sensitivity
analysis, their distinction has been adopted to reflect a different view on the use of prior information.
For example, a pharmaceutical company may be willing to incorporate available prior information to
estimate the probability of success of a trial (also known as assurance or average power), while regulatory
agencies may require the analysis to be performed under a pessimistic prior or the frequentist paradigm
(O’Hagan and Stevens, 2001; Crisp and others, 2018). Indeed, the sampling prior allows formally taking
into account uncertainty about the parameter of the data-generating process when computing the operating
characteristics of the design (O’Hagan and Stevens, 2001). On the other hand, frequentist operating
characteristics can still be retrieved simply by assuming a point-mass sampling prior.

In contrast to the commonly adopted frequentist approach to type I error rate control, however, here
we place particular focus on the idea of controlling a cost-weighted sum of both error rates (see e.g.,
Grieve, 2015; Pericchi and Pereira, 2016). Such choice has decision-theoretic foundations, and has been
shown to unify Bayesian and frequentist approaches to hypothesis testing by effectively solving Lindley’s
paradox (i.e., the fact that different test decisions are provided by frequentist and Bayesian approaches as
the sample size increases) (Pericchi and Pereira, 2016); moreover, it induces a test decision strictly related
to the value of the Bayes factor (BF), which has been advocated as a sensible alternative to p-values as a
measure of statistical evidence (Bayarri and others, 2016).

Section 2 introduces the decision-theoretic framework adopted in this work, it outlines the rationale for
the control of a weighted sum of error rates, and provides further details on the choice and consequences
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of the sampling-analysis prior dichotomy. Section 3 describes the proposed approach by introducing the
target loss function and provides guidance on cost elicitation. The simulations of Section 4 exemplify
its behavior in terms of operating characteristics and elicited sample sizes for different analysis prior
specifications, including robust prior specifications. Section 5 provides a sample application to a proof-of-
concept trial (Roychoudhury and others, 2018). In the final section, we provide a summary of this work,
an outlook on possible developments, and a further endorsement of the decision-theoretic approach in the
context of the recent debate on p-values and significance testing.

2. THE DECISION-THEORETIC FRAMEWORK

2.1. Hypothesis testing

Assume that a clinical trial is performed to test the null hypothesis H0 that a given effect θ ≤ θ0 versus
the alternative hypothesis H1 that θ > θ0. Let y denote the observed data having probability density
function f (y|n, θ) indexed by θ and sample size n, and let π(θ) be the prior distribution for θ . Let also
m(y) denote the marginal data distribution, i.e. m(y) = ∫

�
f (y|n, θ)π(θ)dθ . The decision dc0,c1 consists

in either rejecting (dc0,c1 = 1) or keeping (dc0,c1 = 0) the null hypothesis. A c0–c1 loss function can be
defined as (see e.g., Robert, 2007)

L(θ , dc0,c1(y)) =

⎧⎪⎨
⎪⎩

0 if dc0,c1(y) = I{θ>θ0}
c0 if I{θ>θ0} & dc0,c1(y) = 0

c1 if I{θ≤θ0} & dc0,c1(y) = 1,

(2.1)

where I denotes the indicator function, and c0 and c1 are the losses assigned to keeping H0 when it is false
and rejecting H0 when it is true, respectively. Taking into account uncertainty about θ , the optimal test
decision after an outcome y has been observed is obtained by minimization of the posterior expected loss
ρ(π , dc0,c1(y)|y) = Eπ [L(θ , dc0,c1(y))|y], i.e.,

ρ(π , dc0,c1(y)|y) =c1Pπ (θ ≤ θ0|y)I{dc0,c1 (y)=1} + c0{1 − Pπ (θ ≤ θ0|y)}I{dc0,c1 (y)=0}, (2.2)

where Pπ (θ ≤ θ0|y) is the posterior probability of the null hypothesis under data y and prior π .
ρ(π , dc0,c1(y)|y) is minimized by choosing dπ

c0,c1
(y) = I{Pπ (θ≤θ0|y)<γπ }, where γ π = c0/(c0 + c1) (note that

only the ratio between c0 and c1 is relevant). In contrast, uncertainty about y can be taken into account
by averaging the loss function (2.1) across data realizations for a fixed θ , leading to the frequentist risk
measure R(θ , dc0,c1(y)) = Ef [L(θ , dc0,c1(y))],

R(θ , dc0,c1(y)) =c1I{θ≤θ0}Pf (dc0,c1(y) = 1|θ) + c0I{θ>θ0}{1 − Pf (dc0,c1(y) = 1|θ)}, (2.3)

where Pf (dc0,c1(y) = 1|θ) is the probability of rejecting H0 under the data density f (y|n, θ). Note that, for
c0 = c1 = 1, the risk function (2.3) represents the conditional type I error rate α(θ) for θ ≤ θ0, or type II
error rate β(θ) = 1 − α(θ), for θ > θ0. Uncertainty about both the data outcome and the parameter value
can be accounted for by integration of the frequentist risk (2.3) over π(θ) or, equivalently, of the posterior
expected loss (2.2) over the marginal data distribution m(y). This leads to the integrated risk measure

r(π , dc0,c1(y)) =
∫ θ0

−∞
c1α(θ)π(θ)dθ +

∫ ∞

θ0

c0β(θ)π(θ)dθ . (2.4)
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Therefore, the decision dπ
c0,c1

(y) which minimizes the posterior expected loss for each y ∈ Y , also min-
imizes the integrated risk (see, e.g., Robert, 2007). Note that if π(θ) is chosen as a two-point mass
prior, with one point belonging to the support of the null, and one point belonging to the support of
the alternative hypothesis, the integrated risk (2.4) is equivalent to the frequentist risk (2.3) with “re-
weighted” c0 and c1. The integrated risk (2.4) can also be seen as the sum of the average type I error
rate α = ∫ θ0

−∞ α(θ){Pπ (θ ≤ θ0)}−1π(θ)dθ and type II error rate β = ∫ ∞
θ0

β(θ){Pπ (θ > θ0)}−1π(θ)dθ , by
taking c0 = {Pπ (θ > θ0)}−1 and c1 = {Pπ (θ ≤ θ0)}−1.

Minimizing the sum of type I and type II error rate The optimal decision dπ
c0,c1

is intrinsically connected
to the value of the BF. Indeed, H0 is kept if Pπ (θ ≤ θ0|y) ≥ γ π , i.e., if (see e.g., Parmigiani and Inoue,
2009; Pericchi and Pereira, 2016)

c0

c1
≤ Pπ (θ ≤ θ0)

Pπ (θ > θ0)

∫ θ0
−∞ f (y|θ)π(θ |θ ∈ (−∞, θ0])dθ∫ ∞

θ0
f (y|θ)π(θ |θ ∈ (θ0, ∞))dθ

(2.5)

The first factor on the right-hand side of Equation (2.5) is given by the prior odds of the null versus the
alternative hypothesis, while the second factor is the BF of the null versus the alternative hypothesis.
By exploiting the duality between prior probabilities and test error costs (Robert, 2007), if we assume
c0 = c′

0{Pπ (θ > θ0)}−1 and c1 = c′
1{Pπ (θ ≤ θ0)}−1, H0 is then kept if (Pericchi and Pereira, 2016)

c′
0

c′
1

≤
∫ θ0

−∞ f (y|θ)π(θ |θ ∈ (−∞, θ0])dθ∫ ∞
θ0

f (y|θ)π(θ |θ ∈ (θ0, ∞))dθ
= BF(y), (2.6)

i.e., if the ratio of the costs is lower than the BF. The advantage of the latter cost elicitation is that the
integrated risk can be seen as the (weighted) sum of the average type I and type II error rates, which should
aid interpretability and cost elicitation. Moreover, the test decision no longer depends on the prior odds.
In this sense, it can be thought to be induced only by the available data, although the influence of the prior
shape distinguishes it from a purely frequentist concept unless point-mass priors are adopted (Berger and
Sellke, 1987).

Performing a test decision based only on the principle of minimizing the sum of test error rates, thus
without enforcement of (either conditional or average) type I error rate control, is the natural and optimal
choice in a decision-theoretic set-up, and has been advocated in various works (see, e.g., Grieve, 2015;
Pericchi and Pereira, 2016; Isakov and others, 2019, and references therein). As expressed very clearly in
Pericchi and Pereira (2016) and references therein, an error rates-weighted approach defines the rejection
region by fixing the required amount of evidence in favor of the alternative hypothesis relative to the null,
rather than by fixing the type I error rate, and this has desirable consequences in terms of asymptotic
behavior and independence of the result from the mechanism by which data were collected. Crucially, the
latter also implies that no adjustment is required in sequential testing procedures (Grieve, 2015; Bayarri and
others, 2016). Additionally, Pericchi and Pereira (2016) show that Lindley’s paradox is not a discrepancy
between frequentist and Bayesian test decisions, but rather a discrepancy between decisions based on
fixing type I error rate, and decisions which allow a decrease in both test error rates, according to their
relative costs, as the sample size increases. It is also of interest to note that (see Bayarri and others, 2016;
Pericchi and Pereira, 2016)

∫
Y BF(y)f (y|θ ∈ (θ0, ∞), R)dy = α/(1 − β), where R denotes the rejection

region, i.e., the set of y outcomes such that dπ
c0,c1

(y) = 1, and α and β are the average type I and type
II error rate, respectively. This is directly related to Equation (2.6), and in particular to the fact that the
decision based on the BF is the minimizer of the sum of average test error rates (Pericchi and Pereira,
2016).
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2.2. Sampling and analysis prior

As outlined in the Section 1, here we assume that two priors are elicited, a sampling prior πs, which is
assumed to generate the data, and an analysis prior πa, which is used to fit the data and which induces
the actual trial decisions (see, e.g., O’Hagan and Stevens, 2001; De Santis, 2006; Sahu and Smith, 2006;
Psioda and Ibrahim, 2018). Assuming the integrated risk (2.4) to be computed with respect to the sampling
prior πs, it would be minimized by a choice taken with respect to the sampling prior itself, i.e., dπs

c0,c1
(y).

In practice, however, the true sampling prior is unknown and thus decisions have to be undertaken based
on optimality with respect to the analysis prior. Sensitivity analyses can be performed to explore the
integrated risks induced by different data-generating mechanisms. Following Sahu and Smith (2006), the
integrated risk is then computed as r(πs, dπa

c0,c1
(y)) = Eπs [R(θ , dπa

c0,c1
(y))].

In the formalization of Berger (1990), our and Sahu and Smith’s (2006) approach performs sensitivity
analyses with respect to the integrated risk as functional of interest. Note that we obtain the integrated risk
by averaging the frequentist risk over the sampling prior distribution (rather than averaging the posterior
expected loss induced by the analysis prior over the marginal data distribution). When πs �= πa, the
two approaches would not lead to the same result. Our choice has the desirable feature of providing a
straightforward connection with the frequentist approach simply by replacing the sampling prior with a
point-mass prior. Furthermore, in a context where no dichotomy between sampling and analysis prior
is assumed, Berger (1985) notes that this approach involves “uncertainty about π only at the stage of
averaging R(θ , d).”

If sensitivity analyses are not of primary interest, a single sampling prior can be elicited (see, e.g.,
Psioda and Ibrahim, 2018). In the default sampling prior approach of Psioda and Ibrahim (2018), the
sampling priors under the null and alternative hypothesis arise by truncation of the prior elicited from the
historical information at θ0, and the subsequent normalization. Average type I error rate and power are
then computed with respect to the elicited sampling priors, and their control is achieved by adopting a
fixed threshold for rejection, equal to the desired average type I error rate, and adapting the analysis prior
informativeness and the sample size until the desired characteristics are obtained.

Here, we follow a related approach which, however, includes the costs of average rates of type I and
type II errors in the integrated risk function and targets the weighted sum of such average test error rates.
Moreover, we incorporate estimation error and sampling costs as criteria to derive an optimal sample
size. Finally, the distinction between πs and πa is exploited to perform sensitivity analyses of the optimal
sample size and operating characteristics with respect to different data-generating processes conveyed by
the sampling prior πs.

3. EXTENDED INTEGRATED RISK DEFINITION AND OPTIMISATION

3.1. Extended integrated risk definition

Early phase clinical trials, e.g., proof of concept studies, often focus not only on detecting efficacy, i.e.,
whether the null hypothesis can be rejected, but also on determining relevance, i.e., whether the observed
effect is large enough to motivate proceeding to a Phase III study. Here, we follow Fisch and others (2014)
and denote a trial outcome “relevant” if Pπa(θ ≤ θR|y) < 0.5, where θR is the relevance threshold, and
“indeterminate” if either relevance or significance is observed. When θ > θR, we expect the probability
of an indeterminate outcome to correlate with estimation error as the sample size increases (we will show
in Section 4 that such probability may, however, be non-monotone). Estimation error might be considered
even more harmful if, as is often the case, the effect detected in the Phase II trial is exploited to perform
sample size calculations for the subsequent Phase III trial, as a large error can induce a significantly higher
risk of Phase III trial under- or over-powering (see Wang and others, 2006, for a discussion and a related
approach addressing this point). These observations motivate the introduction of estimation error in the
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loss function (2.1). Thereby, we add to each subcase the commonly adopted quadratic loss function with
decision dq, L(θ , dq(y)) = {θ − dq(y)}2 (see, e.g., Parmigiani and Inoue, 2009). Moreover, as both the
test error rates and the estimation error would decrease for increasing sample size, a desirable principled
approach for the choice of the sample size needs to explicitly incorporate the cost of each additional
observation into the loss function (see, e.g., Lindley, 1997). The cost of sampling can be assumed to be,
e.g., additive and linear in the number of observations (Lindley, 1997). The integrated risk (2.4) becomes

r(n) =
∫ θ0

−∞
c1α(θ)πs(θ)dθ +

∫ ∞

θ0

c0β(θ)πs(θ)dθ + cq

∫
�

MSE(θ)πs(θ)dθ + cnn, (3.7)

where MSE(θ) = Ef [θ − dπa
q (y)]2, cq is a constant introduced to reflect the relative importance of

estimation versus test error, and cn is the cost per sample. Note that we have dropped the dependence
of r on the sampling prior πs and the vector of decisions with respect to the analysis prior dπa(y) =
{dπa

c0,c1
(y), dπa

q (y)} for ease of notation. When πa = πs, the risk is minimized by the optimal choices
dπa

c0,c1
(y) and dπa

q (y) = Eπa [θ |y], while the optimal sample size needs to be identified numerically.

3.2. Cost elicitation

Cost elicitation can proceed as follows. We can first select c1 = c′
1{Pπs(θ ≤ θ0)}−1 and c0 = c′

0{Pπs(θ >

θ0)}−1 according to the relative importance assigned to each average error rate, keeping in mind that the
BF should be larger than c′

0/c′
1 to keep H0 (see, e.g., Kass and Raftery, 1995; Pericchi and Pereira, 2016,

for guidance on BF thresholding); to facilitate interpretation, we can additionally require c′
1 + c′

0 = 1.
Note that, if we aim at minimizing the weighted sum of average test error rates, under the sampling prior
we have that c0 = c′

0{Pπs(θ > θ0)}−1 and c1 = c′
1{Pπs(θ ≤ θ0)}−1. However, as the sampling prior

is generally not available, decisions must be undertaken with respect to the analysis prior, leading to

a threshold for rejection γ πa = c′
0Pπa (θ≤θ0)

c′
0Pπa (θ≤θ0)+c′

1(1−Pπa (θ≤θ0))
. As πa approaches πs, γ πa also approaches the

optimal decision threshold γ πs , and the integrated risk is minimized. However, for the purpose of evaluating
the integrated risk (3.7), c0 and c1 are computed with respect to the sampling prior, and only the decision is
affected by πa.

To elicit cq and cn, we take advantage of the connection between the “goal sampling” and the integrated
risk minimization approach highlighted by Lindley (1997). In particular, for a specific sample size choice
induced by the goal sampling approach, i.e., the minimum sample size required to achieve specific testing
or estimation targets, a cost per observation can be inferred through a local approximation of the integrated
risk. This can be achieved by first noting that both operating characteristics, i.e., weighted sum of average
test error rates and average MSE, are a function of the sample size n. Let the integrated risk for, e.g., the
weighted sum of average test error rates (SATE) be denoted by rSATE(n) = SATE(n)+cSATE

n n. In the usual
risk optimization procedure, cSATE

n is fixed, while the sample size and, therefore, SATE(n) are varied so
that the integrated risk is minimized. However, if a target SATE is specified and a given sample size nSATE

is elicited so that such SATE target is achieved, the cost per observation corresponding to this combination
can be inferred. In particular rSATE(n) is minimized if drSATE(n)/dn = 0, i.e., if cSATE

n = − dSATE(n)

dn |nSATE .
The same procedure can be applied to infer a cost for the average MSE (AMSE), cAMSE

n . An example is
provided in Section S1 and Figure S1 of the supplementary material available at Biostatistics online. This
procedure also highlights why goal sampling approaches cannot be considered “cost free,” and are rather
based on an implicit elicitation of the costs (Lindley, 1997).

In order to obtain cq and cn in Equation (3.7), note that the minimum of the integrated risk is invariant to
multiplication by a constant; therefore, if we divide rSATE(n) and rAMSE(n) by cSATE

n and cAMSE
n , respectively,

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa027#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa027#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa027#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa027#supplementary-data
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the combined integrated risk (3.7) can be written as

r(n) = w

cSATE
n

{∫ θ0

−∞
c1α(θ)πs(θ)dθ +

∫ ∞

θ0

c0β(θ)πs(θ)dθ

}
+ (1 − w)

cAMSE
n

∫
�

MSE(θ)πs(θ)dθ + n, (3.8)

which is equivalent to assuming cq = {(1 − w)cSATE
n }/{wcAMSE

n } and cn = cSATE
n /w. The weight w ∈ [0, 1]

has the role of defining the importance of the testing versus the estimation target. We propose taking
w = nSATE/(nSATE + nAMSE), under the implicit assumption that the importance of each characteristic
is reflected in the number of patients one would be willing to pay for the corresponding target. Note
that the sample size minimizing the integrated risk (3.8) will lie between nSATE and nAMSE: If the targets
specified are to be strictly satisfied, then one should adopt a pure goal sampling approach and select n as
the maximum between nSATE and nAMSE.

The derivatives of SATE(n) and AMSE(n) may not be analytically available. A numerical approx-
imation is however easily available once values for both operating characteristics are computed in a
neighborhood of their respective target sample sizes. We therefore suggest to compute SATE(n) and
AMSE(n) for increasing sample sizes under a chosen sampling prior and analysis prior; these can be
reasonably taken to be, e.g., the available informative prior and the intended analysis prior, respectively.
At this stage, the average type I and type II error rates can also be stored to simplify elicitation of a target
weighted sum of average test error rates. To simplify elicitation of a target AMSE, the average probability
of an indeterminate outcome, the average “extreme” power loss and the average “extreme” sample size
gain when θ > θR, can also be computed. Extreme power loss and sample size gain could be expressed,
for example, in terms of the (1 − ζ )% quantiles of the respective conditional distributions induced by the
data outcomes. We define the power loss and sample size gain as the difference between a target Phase
III power (0.9, for example) and corresponding sample size, and the “realized” power and sample size,
respectively. That is, they are defined based on standard frequentist sample size calculations if the posterior
mean of the current trial is taken as the “true” effect. When the trial result is not significant and/or not
relevant, the assumption is that the realized power and sample size are equal to 0, as the Phase III trial is
not taking place. The conditional probability of an indeterminate outcome, and the (1 − ζ )% quantiles of
power loss and sample size gain, are then averaged with respect to the sampling prior distribution truncated
from below at θR, i.e., we only concentrate on losses for θ > θR. Once the costs have been calculated,
the integrated risk is readily available for a grid of sample sizes, and the final optimal sample size can be
numerically identified as the one minimizing the overall risk. Alternatively, if available, actual monetary
values can be assigned to all costs.

4. EVALUATION: DESIGNING A TRIAL AND CHECKING SENSITIVITY TO PRIOR-DATA CONFLICT

To illustrate the concepts and the proposed approaches, we first focus on a normal outcome y, yi ∼
N (θ , σ 2 = 1), i = 1, . . . , n. Interest is placed on the mean parameter θ , which is assumed to follow a
N (μs, σ 2

s ) sampling prior. We test the set of hypotheses H0 : θ ≤ 0 versus H1 : θ > 0, and assume a
relevance threshold θR = 0.15. The following analysis priors are considered: (i)A vague prior πvague, which
follows a N (0, 102) distribution; (ii) an informative prior, which follows a N (0.25, 1/50) distribution; (iii)
a robust mixture prior (see, e.g., Berger and Berliner, 1986; Schmidli and others, 2014), which is a
mixture of the informative prior and a vague N (0.25, 102) prior distribution, with mixture weight equal
to 0.5; and (iv) an empirical Bayes (EB) power prior πpow. The EB power prior can be interpreted as a
posterior arising from a historical study which collected n0 observations, of which a0n0 are accounted for
in the analysis, where the parameter a0 ∈ [0, 1] is selected by maximization of the marginal likelihood
m(y) = ∫

f (y|n, θ)π(θ |a0, y0, n0)dθ , where π(θ |a0, y0, n0) denotes the power prior with parameter a0,
and y0 and n0 are the historical outcome and sample size, respectively (Gravestock and Held, 2017). Here,
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Fig. 1. Decision threshold γ π for different prior specifications (left), and BF (right), on the logarithmic scale. The
sample size is assumed equal to 100 in both plots. For the test decision threshold plot, the sampling prior variance is
fixed at σ 2

s = 1/50. The dashed vertical line corresponds to the point at which the sampling prior and the informative
prior coincide. In the BF plot, the dashed horizontal line corresponds to log(c′

0/c′
1), c′

0 = 0.05, and c′
1 = 0.95, i.e.,

the log- (BF) threshold for rejection, see Equation (2.6).

the historical outcome is summarized by the mean ȳ0 = 0.25, and the historical sample size is n0 = 50.
When a0 = 1, the EB power prior coincides with the informative prior. Note that the EB commensurate
prior (Hobbs and others, 2012) for normal outcomes coincides with the EB power prior (see Appendix
C.1 of Wiesenfarth and Calderazzo, 2020), and therefore all results for the EB power prior directly apply
also to the EB commensurate prior in this set-up.

We assume that type I error is 19 times more costly than type II error, thus we take c′
0 = 0.05 and

c′
1 = 0.95 . To gain further insight into the analysis prior decision thresholds and test decisions, Figure 1

provides an illustration of each decision threshold γ πprior for varying sampling prior mean μs (σ 2
s = 1/50),

and of the BF for varying data mean outcomes ȳ, assuming n = 100. The decision thresholds of all analysis
priors tend to differ more from the sampling prior optimal threshold for negative values of μs (values are
plotted on the logarithmic scale for ease of representation), which is indeed the region where the historical
information differs most from the sampling prior; the EB power prior threshold depends also on the data
ȳ and varies, as expected, between the vague and the informative prior ones, depending on the degree of
conflict. Note that for the vague prior Pπvague(θ ≤ θ0) ≈ 0.5, thus γ πvague ≈ c′

0/(c
′
0 + c′

1). Moreover, as
σvague → ∞, d

πvague
c0,c1 approaches the usual frequentist test decision at level 5%. As for the BF, it is of interest

to note that, in the region close to the threshold c′
0/c′

1, the EB power prior BF behaves very similarly to
the informative prior one, while the mixture prior BF is closer to the vague prior BF. This has to be partly
attributed to the shape of the corresponding null and alternative hypothesis truncated densities. Sensitivity
of the BF to the location of historical information and weight and vague component of the robust mixture
prior is investigated in Section S2 and Figure S2 of the supplementary material available at Biostatistics
online.

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa027#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa027#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa027#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa027#supplementary-data


336 S. CALDERAZZO AND OTHERS

Prior πa:EB power πa:Informative πa:Robust mixture πa:Vague πs:Sampling
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Fig. 2. Operating characteristics related to testing and estimation for the normal outcome simulation example. The
extreme power loss and extreme sample size gain in a subsequent Phase III trial, are defined as the 80% quantile of
the respective distributions induced by the data outcomes. The probability of an indeterminate outcome, the extreme
power loss and extreme sample size gain are averaged with respect to the sampling prior N (0.25, 1/50) truncated
from below at θR = 0.15. The remaining operating characteristics are averaged with respect to the whole sampling
prior distribution. The dashed vertical lines represent the sample sizes identified for cost elicitation with respect to
the vague analysis prior, and, independently, for testing (upper panels, nSATE = 160) and estimation (lower panels,
nAMSE = 180). Such sample sizes allow to maintain an average type I and type II error rate below 0.05 and 0.2,
respectively, as well as an average probability of an indeterminate outcome, average extreme power loss and average
extreme sample size gain below 0.1, 0.3, and approximately 50, respectively. Note that the informative prior results
exactly overlap with the sampling prior ones.

The costs cSATE
n and cAMSE

n are derived as described in Section S1 of the supplementary material available
at Biostatistics online, where nSATE = 160 and nAMSE = 180 are elicited through inspection of Figure 2 as
follows. The sampling prior is assumed to coincide with the informative prior specification. Further we
assume, e.g., that the vague prior was selected as analysis prior. Assume that, to reach an average type
II error rate below 0.2 under the vague analysis prior specification, one is willing to “pay” the required
nSATE = 160 samples. The average type I error rate is in this case always below 0.05, so we assume
it does not contribute to the sample size requirement. This sample size corresponds to a weighted sum
of average test error rates of 0.027, therefore we have cSATE

n = 8.511 · 10−5. Analogously, suppose the
required nAMSE = 180 samples are deemed acceptable to reach an average probability of an indeterminate
outcome under θ > θR below 0.1 and an average extreme power loss (we take the 1 − ζ = 0.8 quantile

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa027#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa027#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa027#supplementary-data
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of the data induced distribution) and average extreme sample size gain (again for 1 − ζ = 0.8) below 0.3
and approximately 50, respectively. This would correspond to an AMSE equal or lower than 0.006, and
cost cAMSE

n = 3.098 · 10−5. Finally, the weight w = nSATE/(nSATE + nAMSE) results in 0.471. In principle, a
different choice of costs can be associated with each analysis prior. This would however result in integrated
risks which are no longer directly comparable across different analysis priors. Therefore, to simplify our
exposition, we retain the costs elicited under the vague analysis prior for all comparisons. Note, also, that
the probability of an indeterminate outcome is not monotone for the vague and robust mixture analysis
priors: this is due to the fact that, for low sample sizes, relevance can be achieved without significance;
as the sample size increases, relevance tends to be achieved whenever also significance is observed; the
probability of an indeterminate outcome slightly rises again as the sample size becomes large enough to
allow significance without relevance, to then decrease again for larger sample sizes as a relevant outcome
becomes more likely. Such potentially non-monotonic behavior makes the probability of an indeterminate
outcome not ideal for the purposes of defining our costs, but we still regard it as of general interest for the
design of the trial, and thus we believe it should be additionally monitored at the cost elicitation stage.

Once costs have been selected, the sample size is selected through minimization of the integrated
risk, and sensitivity analyses can be carried out by varying the sampling prior specification. Figure 3
shows how each of the considered operating characteristics, the costs, and the integrated risk behave when
σ 2

s = 1/50, while varying μs. As a consequence of the BF behavior illustrated in Figure 1, the EB power
and the informative prior tend to attain very close average test error rates; the same can be observed to
a lesser extent for the vague and robust mixture prior. The AMSE tends to be lower when the historical
information and the sampling prior agree, for all priors incorporating historical information. The vague
prior shows a decreased AMSE, coupled with an increased sample size, in a nearby region close to 0.
This is induced by the fact that in this region it is harder to discriminate between the two hypotheses.
Focusing on the costs, when μs << 0, the cost of a type II error is higher than the cost of a type I
error, as the sampling prior is placing a low probability on the alternative hypothesis. We stress again
that this slightly counter-intuitive cost definition is effectively aimed at basing the test choice only on the
comparison between c′

0/c′
1 and the BF, as shown in Equation (2.6). As μs increases, the cost of a type II

error decreases, while the cost of a type I error increases. The imbalance in the maximum cost of each
error is due to the fact that we have specified c′

1 to be much larger than c′
0. The overall integrated risk shows

non-robustness of the informative prior, reflecting the high sample size requirement and a steep increase
in AMSE. The EB power prior reaches a remarkably small integrated risk when μs >> 0, due to the fact
that it achieves average test error rates close to the informative prior, while constraining losses in term of
AMSE. On the negative support of μs this behavior is reversed, i.e., the EB power prior shows the highest
integrated risk after the informative prior one, although less strikingly so, due to the imbalance in the test
error costs. In terms of overall integrated risk, the robust mixture prior appears less robust than the EB
power prior; this is also reflected in the sample size requirement and is mostly induced by the behavior
of the average test error rates. Note that the result is influenced by the choice of the mixture weight, the
vague component, and the location of historical information. We refer again to Section S2 and Figure S2
of the supplementary material available at Biostatistics online for sensitivity of the BF to such factors.

For comparison, Section S3 of the supplementary material available at Biostatistics online focuses on
an analogous design, but one in which the sample size is fixed at 100 observations. In Figure S3 of the
supplementary material available at Biostatistics online, the integrated risk and the operating characteristics
are shown, providing overall a very similar picture to the one just described. In the same context, further
insight into the behavior of the sampling prior average test error rates is obtained through visualization of
the underlying conditional test error rates and truncated sampling prior distributions, shown in Figure S4
of the supplementary material available at Biostatistics online. Additionally, if it is required that specific
targets for both testing and estimation are strictly controlled under the elicited sample size, then the goal
sampling approach would be the method of choice. In Section S4 and Figure S5 of the supplementary

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa027#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa027#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa027#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa027#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa027#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa027#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa027#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa027#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa027#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa027#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa027#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa027#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa027#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa027#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa027#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa027#supplementary-data
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Prior πa:EB power πa:Informative πa:Robust mixture πa:Vague πs:Sampling
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Fig. 3. Integrated risk, costs, and operating characteristics for different analysis prior specifications and for varying
sampling prior means μs. The sampling prior variance is fixed at σ 2

s = 1/50, and the sample size is optimized to
minimize the integrated risk. Costs are elicited as follows: c0 = c′

0(1 − Pπ [θ ≤ θ0])−1, c1 = c′
1(P

π [θ ≤ θ0])−1, cq =
{(1−w)cSATE

n }/{wcAMSE
n }, and cn = cSATE

n /w (see Equation (3.8)), where c′
0 = 0.05, c′

1 = 0.95, cSATE
n = 8.511 ·10−5,

cAMSE
n = 3.098 · 10−5, and w = 0.471. Note that test error log costs refer to the sampling prior specification. The

dashed vertical line corresponds to the point at which the sampling prior and the historical information coincide. The
maximum sample size is truncated at n=300.
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material available at Biostatistics online, we thus illustrate the results of the sensitivity analyses for a goal
sampling approach with target weighted sum of average error rates and AMSE equal to 0.027 and 0.006,
respectively, i.e., the targets specified above to elicit the costs. Note that explicitly targeting alternative
operating characteristics not included in the integrated risk definition may lead to sub-optimality of the
sampling prior.

In Section S5 of the supplementary material available at Biostatistics online, we compare our results
to the ones induced by the approach in which the test error costs do not include the prior normalizing
constants, and thus the rejection threshold is defined as γ πa = c′

0/(c
′
0 + c′

1), i.e., it is the same irrespective
of the analysis prior specification. For the vague prior, the test decisions, and therefore the average test
error rates of Figure S6 of the supplementary material available at Biostatistics online, are approximately
equivalent to those in Figure 3, although weighted differently in the integrated risk. The remaining analysis
priors tend to be less conservative than observed in Figure 3, although it is important to stress that this is
induced by the fact that the trade-off between average type I and type II error rates is not optimized. The
EB power prior and the mixture prior provide a compromise on the integrated risk, which is bounded and
close to the one of the best performing analysis prior under each scenario.

Finally, Section S6 and Figures S7–S10 of the supplementary material available at Biostatistics online
provide analogous comparisons for binomial outcomes. Key differences are introduced by the discrete-
ness of the binomial distribution, which induces unsmooth declines of the operating characteristics for
increasing sample sizes, and by the bounded parameter space, which leads, e.g., to a lower AMSE close
to the boundaries.

5. DATA APPLICATION

We focus on the single-arm proof-of-concept trial with binomial outcome reported in Roychoudhury
and others (2018). The trial was aimed at testing statistical significance and clinical relevance of an
experimental drug for non-small-cell lung cancer and focused on objective response rate as a primary
outcome. The threshold for significance θ0 was set at 0.075, while the threshold for relevance θR was
identified as 0.175. The chosen analysis prior was a Beta(0.0811, 1) (hereafter denoted RSN prior), which
has mean equal to 0.075. The sample size of the trial was set at n = 25, implying a conditional power
at 0.275 equal to 0.858, which was regarded as acceptable. Following common practice, we assume that
a relatively high confidence was therefore set on 0.275, and we assume a Beta(11, 29) informative prior.
We also assume that such prior is motivated by a historical study which observed 10 successes and 28
failures, and adopted a uniform prior specification. The EB power and the robust mixture priors are taken
to be Beta(a010 + 1, a028 + 1), and 0.5 · Beta(11, 29) + 0.5 · Beta(1, 1), respectively.

Figure 4 shows the operating characteristics related to testing and estimation. Focusing on the RSN
prior, inspection of the weighted sum of average test error rates indicates that, for sample sizes larger than
nSATE = 21, the average type I error rate remains below 0.15 and the average type II error rate below
0.2. The weighted sum of average test error rates at nSATE = 21 equals 0.058, and the derivative at this
point (after local polynomial regression smoothing) gives approximately cSATE

n = 2.04 · 10−4. Focusing
on the AMSE target, we observed that, for sample sizes larger than nAMSE = 74, the average probability
of an indeterminate outcome remains below 0.1, the average extreme power loss (1 − ζ = 0.8) below
0.3 and the average extreme sample size gain (1 − ζ = 0.8) below 10. If this is deemed acceptable for
nAMSE = 74, then the target AMSE is 0.0026, inducing cAMSE

n = 3.421 · 10−5. The weight w is then taken
to be nSATE/(nSATE + nAMSE) = 0.221. The EB power and robust mixture prior are in this case much closer
to the assumed sampling prior than the RSN prior, leading to an overall smaller weighted sum of average
test error rates and AMSE.

Optimization of the integrated risk is then carried out with the selected costs, and sensitivity analyses are
shown in Figure 5 for varying sampling prior Beta(as, bs) means, under the constraint that as + bs = 40.

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa027#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa027#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa027#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa027#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa027#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa027#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa027#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa027#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa027#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa027#supplementary-data
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Fig. 4. Operating characteristics related to testing and estimation for the single-arm proof-of-concept trial with bino-
mial outcome reported in Roychoudhury and others (2018). The extreme power loss and extreme sample size gain
in a subsequent Phase III trial, are defined as the 80% quantile of the respective distributions induced by the data
outcomes. The probability of an indeterminate outcome, the extreme power loss and extreme sample size gain are
averaged with respect to the sampling prior Beta(11, 29) truncated from below at θR = 0.175. The remaining operating
characteristics are averaged with respect to the whole sampling prior distribution. The dashed vertical lines represent
the sample sizes identified for cost elicitation with respect to the RSN analysis prior, and, independently, for testing
(upper panels, nSATE = 21) and estimation (lower panels, nAMSE = 74). Such sample sizes allow to maintain an
average type I error rate and type II error rate below 0.15 and 0.2, respectively, as well as an average probability of
an indeterminate outcome, average extreme power loss, and average extreme sample size gain below 0.1, 0.3, and 10,
respectively. Note that the informative prior results exactly overlap with the sampling prior ones.

The RSN analysis prior is, as expected, robust with respect to different sampling prior specifications,
leading to sample sizes in the range [22, 64]. The decrease near the boundaries is mainly induced by a
lower sample size requirement for the MSE in these regions of the parameter space. Note that the sample
size selected under the sampling prior with mean 0.275, 64, is relatively high if compared to the sample
size originally elicited, 25. This increase is mostly induced by the estimation error component and, in turn,
by the desire to limit the chance of incurring an extreme power loss in a Phase III study. The EB power
and robust mixture prior show a better behavior, which is reflected in a globally lower integrated risk at
the cost of a moderate increase in sample size; the only exception is for the region close to 0, where most
of the RSN prior mass is concentrated.
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Fig. 5. Integrated risk, costs, and operating characteristics for different analysis prior specifications and for varying
sampling prior Beta(as, bs) means as/(as +bs), as +bs = 40. The sample size is optimized to minimize the integrated
risk. Costs are elicited as follows: c0 = c′

0(1−Pπ [θ ≤ θ0])−1, c1 = c′
1(P

π [θ ≤ θ0])−1, cq = {(1−w)cSATE
n }/{wcAMSE

n },
and cn = cSATE

n /w (see Equation (3.8)), where c′
0 = 0.05, c′

1 = 0.95, cSATE
n = 2.04 · 10−4, cAMSE

n = 3.421 · 10−5, and
w = 0.221. Note that test error log costs refer to the sampling prior specification. The dashed vertical line corresponds
to the point at which the sampling prior and the historical information coincide, i.e., here we assume at 0.275 based
on power calculations in Roychoudhury and others (2018).
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6. CONCLUSIONS

In this work, we have explored different Bayesian procedures of sample size selection based on decision-
theoretic considerations. In particular, we have defined an integrated risk which incorporates losses arising
from testing, estimation, and sampling. We have related the loss arising from estimation to the probability
of an indeterminate trial outcome as well as the potential power loss in a consequent Phase III trial, both
aspects being of relevance in particular in the context of Phase II proof-of-concept trials. Furthermore,
we have explored two possible elicitations of the test error costs, leading to test decisions based either
on posterior probabilities or solely on BFs. The latter specification has the advantage of minimizing the
weighted sum of the average type I and type II error rates, which may be appealing both in terms of
optimization target and cost interpretability.

Skepticism about the historical information can be formally taken into account by performing sensitivity
analyses based on the distinction between sampling and analysis prior. In particular, in the approach
adopted here, decisions are based on the analysis prior, while uncertainty about θ is summarized by the
sampling prior distribution. Frequentist operating characteristics are thus easily obtained by assuming a
point-mass sampling prior.

We have illustrated the approach and compared different analysis prior specifications in a simulation
example. Interestingly, in the set-up considered, when test decisions are based solely on the BF, the EB
power prior induces test decisions which closely resemble the informative prior ones while retaining
advantages in terms of AMSE robustness. The application of the methodology to a real proof-of-concept
trial shows additionally that, if not only testing but also estimation is taken into account, particularly in
view of a reduced potential for power loss in a subsequent Phase III trial, a higher Phase II sample size
may be required.

We have focused on the commonly relevant targets in clinical trial design, i.e., test error rates and MSE,
but of course alternative specifications of the loss function can be investigated (e.g., taking into account
the distance of the true parameter value from θ0, see e.g., Lewis and others, 2007; Parmigiani and Inoue,
2009). Alternative specifications of the set of hypotheses, e.g., a simple null versus a composite alternative
(see, e.g., Berger and Sellke, 1987, and references therein), as well as different, more complex, designs,
can definitely be of interest for further research. A caveat in this direction is related to the dimensionality
of the parameter space, due to the need to compute multiple integrals in the integrated risk, and to the
availability of analytical forms for the posterior, due to the need to otherwise resort to, e.g., Markov Chain
Monte Carlo.

One general criticism of decision-theoretic approaches in the clinical trial context is that different
interests may be at stake, inducing a lack of consensus about the costs and losses (see Spiegelhalter and
others, 2004, and references therein). We have outlined a “simplified” approach to cost elicitation, linked
to the implicit cost elicitation of “goal sampling” approaches. However, we stress that actual costs of
test and estimation errors should be adopted whenever available. An interesting proposal moving in the
direction of a more objective cost elicitation is provided in Isakov and others (2019), where the definition
of type I and type II error costs is based on disease prevalence, severity, and cost of adverse events. The
authors also follow a decision-theoretic approach for optimal sample size elicitation; one key difference
from our work is the focus on a two-point mass prior and on conditional error rates at each of these two
points.

We believe that our study can be of particular interest in view of an increased need for rationales of
type I error rate inflation when incorporation of historical information is desired. Moreover, both a test
decision based on the principle of comparing evidence in favor of the alternative versus the null hypoth-
esis, as a BF thresholding implies, and the monitoring of a relevance threshold, move in the direction
of abandoning a purely significance target. More broadly, interest in alternatives to p-values and signifi-
cance testing is now on the rise, as shown by the ASA statement on p-values and Statistical Significance
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(Wasserstein and Lazar, 2016), and the recent issue of the American Statistician “Statistical Inference in
the 21st Century: A World Beyond p < 0.05.” The article by Ruberg and others (2019) contained in this
issue indeed supports a broader use of the Bayesian paradigm and of relevant external information in drug
development and approval. A formal decision-theoretic approach additionally allows adopting test and
estimation decisions which reflect an explicit elicitation of the targets to be optimized, and depend on the
“actual costs, benefits, and probabilities” (Gelman and Robert, 2014).

7. SOFTWARE

R code for reproduction of all simulations and figures is available online at
https://github.com/BDTTrialDesigns/BDT_CombIRSens.

SUPPLEMENTARY MATERIAL

Supplementary material is available online at http://biostatistics.oxfordjournals.org.
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