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a b s t r a c t

Fat is one of the three macronutrients and a significant energy source for piglets. It plays a positive role in
maintaining intestinal health and improving production performance. During the weaning period,
physiological, stress and diet-related factors influence the absorption of fat in piglets, leading to damage
to the intestinal barrier, diarrhea and even death. Signaling pathways, such as fatty acid translocase
(CD36), pregnane X receptor (PXR), and AMP-dependent protein kinase (AMPK), are responsible for
regulating intestinal fat uptake and maintaining intestinal barrier function. Therefore, this review mainly
elaborates on the reasons for diarrhea induced by insufficient fat absorption and related signaling
pathways in weaned-piglets, with an emphasis on the intestinal fat absorption disorder. Moreover, we
focus on introducing nutritional strategies that can promote intestinal fat absorption in piglets with
insufficient fat absorption-related diarrhea, such as lipase, amino acids, and probiotics.
© 2024 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nc-nd/4.0/).
1. Introduction

Early weaned strategy has been widely applied in pig produc-
tion, contributing to the improvement the productivity and effi-
ciency of pig-farms. However, during the weaning period,
physiological, stress and diet-related changes affect the absorption
of dietary fat in piglets, leading to dysfunction of intestinal barrier
function, diarrhea, growth retardation, and even death in piglets. In
this regard, the development of the pig farming industry has been
severely hampered (Boontiam et al., 2022; Campbell et al., 2013; Liu
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et al., 2019; Yang et al., 2019). Fat, as an important source of energy,
plays a crucial role in maintaining animal intestinal health and
promoting growth. In livestock and poultry, lipids are generally fed
piglets to provide energy and improve fat absorption. Triglycerides
are the main fat component in pig diet, and most of the fatty acids
in the feed are bound to triglycerides. However, factors, such as
carbon chain length and unsaturated fatty acid to saturated fatty
acid ratio, influence the abundance of bacteria in piglets, which
may result in inadequate fat absorption, even worsen piglet diar-
rhea, and diminishing growth (Mehta et al., 2021). To address such
issues, feed additives such as lipase, functional amino acids, and
probiotics, are widely used to regulate digestion, absorption, and
metabolism of fat and other nutrients, which prevent piglet diar-
rhea and promote growth (Asadi Shahmirzadi et al., 2020;
Martinez-Guryn et al., 2018; Xu et al., 2021). In this review, we first
describe the absorption process of fat in intestinal epithelial cells
and its related disorders. Secondly, we discuss molecular mecha-
nisms that regulate intestinal fat absorption, and nutritional solu-
tions that assist in maintaining the intestinal health of weaned
piglets, such as lipase, amino acids, and probiotics.
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2. The absorption process of fat and reasons of fat absorption
disorders in piglets

2.1. The absorption process of fat in intestinal epithelial cells

Fat is a concentrated source of energy, providing more than
twice the calories per gram compared to carbohydrates and pro-
teins. In terms of its composition, fat is composed of triglycerides,
which consist of glycerol and fatty acids. Fat absorption mainly
occurs in the small intestine (Shao et al., 2022; Zhang, 2022). Me-
dium- and short-chain triglycerides have a low esterification rate
and stronger affinity for water than long-chain triglycerides. Most
of them are directly absorbed without undergoing hydrolysis by
lipase, and enter into blood circulation through intestinal epithelial
cells. However, long-chain triglycerides require emulsification by
bile salts in the intestine, transport into the intestinal epithelial
cells by fatty acid transporters, and then resynthesize into tri-
glycerides in the cells before entering the circulation system
(Abumrad and Davidson, 2012; Hussain, 2014). Fatty acid translo-
case (CD36) is responsible for transferring long-chain fatty acids to
fatty acid transporter 4 (FAFT4), which then conducts trans-
membrane transport of long-chain fatty acids by FAFT4 (Abumrad
and Davidson, 2012).

2.2. The connection between insufficient fat absorption and
diarrhea

In pig production, early weaning strategy is typically applied to
improve the breeding efficiency of pigs. However, piglets have
underdeveloped intestinal systems before and after weaning, with
low activity of enzymes such as lipase, which results in poor
digestion, absorption, wastage of nutrients and diarrhea (Fig. 1). In
addition, weaning stress damages the intestinal barrier function of
piglets and affects their physiological functions, especially their
digestive and absorptive functions, and thus lowering the absorp-
tion of fat. The integrity of intestinal morphology and structure is
the basis for the digestion and absorption of nutrients in the in-
testine. Stress and inadequate energy intake induce intestinal bar-
rier damage in piglets, leading to intestinal inflammation, a
reduction in the effective absorption area of nutrients,
Fig. 1. Reasons of fat absorption
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malabsorption of nutrients and poor growth performance (Kwak
et al., 2022; Liu et al., 2019; Yamamoto et al., 2018). Weaning
stress can also increase the risk of diseases caused by bacteria such
as Escherichia coli and Salmonella, disrupt the gut microbiota,
reduce the digestion and absorption of fat, and cause post-weaning
diarrhea (Gresse et al., 2017; Liu et al., 2019; Yang et al., 2019).
Furthermore, diarrhea activates the NF-kB signaling pathway,
which regulates the inflammatory response and markedly di-
minishes the absorption of intestinal fatty acids in piglets, partic-
ularly medium-chain fatty acids (Zong et al., 2019). Under stress,
the activity of lipase is significantly decreased, with pancreatic
lipase activity at weaning only 1/300 of that at 8 weeks of age
(Corring et al., 1978). After weaning, lipase activity reaches its
lowest point on day 5 and then begins to rise from day 7 to 9, but it
still does not reach the pre-weaning levels (Hedemann and Jensen,
2004). The abundance of small intestine fatty acid transport protein
also significantly decreases on day 3 and 7 after weaning, which
weaken the digestion and absorption of lipids in the intestine (He
et al., 2022). Moreover, piglet diet changes from liquid milk,
which is rich in easily digested and absorbed fat (with an apparent
digestibility rate of 96%) to solid feedwith less fat content, causing a
decrease in feed and energy intake after weaning (Lall�es et al.,
2007). Fat is one of nutrients that has the greatest change in the
weaning period and the damage to intestinal function significantly
affected the absorption and metabolism of nutrients such as fat,
carbohydrates and proteins after weaning (Shao et al., 2022; Yang
et al., 2019). These all seriously affect the digestion, absorption
and utilization of lipid substances in piglet feed, leading to insuf-
ficient energy intake and intestinal barrier dysfunction, exacer-
bating the weaning stress of piglets (Capurso et al., 2019;
Hedemann and Jensen, 2004). When piglets cannot obtain suffi-
cient energy from feed, they can only mobilize the body fat to meet
their energy needs. However, the host fat reserves of weaning
piglets cannot provide sufficient energy to meet their survival and
growth needs (de Albuquerque Maia et al., 2014; He et al., 2018).
Furthermore, during rapid growth and development stage after
weaning, the increase in fat absorption of piglet can provide
enough energy to improve improving piglets' stress resistance and
later-stage fat deposition (Luo et al., 2018; Sarr et al., 2010; Yu et al.,
2017).
disorders in weaned piglets.
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3. Signaling pathways promoting intestinal fat absorption

In the gut, fatty acids promote lipid uptake through CD36,
pregnane X receptor (PXR), and AMP-dependent protein kinase
(AMPK) signaling pathways, delivering energy to cells and pro-
moting gut health. When CD36 and PXR are knocked out, the in-
testine barrier is impaired and increased susceptibility to
inflammation (Fig. 2).
3.1. CD36 signaling pathway

In the small intestine, dietary fat is digested by pancreatic lipase
to produce fatty acids, which are then transported to intestinal
epithelial cells and extra intestinal tissues by CD36, fatty acid
transport proteins (FATPs), and fatty acid binding proteins (FABPs).
CD36, which is located on the cell membrane, is a scavenger re-
ceptor expressed in multiple cell types (Li et al., 2022b). It primarily
transports fatty acids and low-density lipoprotein, and mediates
immune recognition, inflammation, molecular adhesion, and cell
apoptosis (Son et al., 2018; Wang and Li, 2019). CD36 absorbs fatty
acids in an endocytosis manner. Palmitoyl transferases (DHHC4 and
DHHC5) palmitoylate CD36 on the Golgi apparatus and cytoplasmic
membrane, respectively, to maintain its plasma membrane locali-
zation and promote its fatty acid absorption activity (Wang et al.,
2019). Furthermore, during the process of fatty acid absorption,
CD36 requires to undergo depalmitoylation for endocytosis to
transport fatty acids into cells (Hao et al., 2020). Dysfunction of
CD36 in intestine leads to abnormalities in fat absorption, which
increases susceptibility to inflammation (Drover et al., 2005). CD36
knockout mice exhibits chronic neutrophil infiltration, inflamma-
tion, barrier dysfunction, reduced fat uptake, impaired lipid secre-
tion, and chylomicron clearance in the intestine (Cifarelli et al.,
2017; Drover et al., 2005). When the expression of CD36 in the
intestine increases, it can promote the absorption of fatty acids and
intestinal development, especially arachidonic acid and linoleic
acid, increase intramuscular fat content in lean pigs, and improve
meat quality (Guo et al., 2013; Ma et al., 2022). In addition, CD36
binds fatty acids and enters cells to transport them tomitochondria,
converting anaerobic metabolism into aerobic metabolism,
providing energy to cells and promoting immunity in Salmonella-
Fig. 2. Fatty acids uptake through CD36, PXR, and AMPK signaling pathways. CD36 ¼ fatty a
FATPs ¼ fatty acid transport proteins; FABPs ¼ fatty acid binding proteins.
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infected mice (Mistry et al., 2021). Inhibition of CD36 expression
reduces the uptake of fatty acids, resulting in insufficient energy
supply and increased mouse mortality (Mistry et al., 2021).

3.2. PXR signaling pathway

The PXR is a xenobiotic sensor that acts as a transcription factor
in the nucleus to protect cells from toxic damage. PXR is highly
expressed in the liver and intestine, where it activates transcription
factors such as CD36, increases lipid uptake and reduces fatty acid
oxidation. Moreover, PXR inhibits inflammatory signaling path-
ways, such as NF-kB, regulates immune responses, and improves
intestinal mucosal damage (Bautista-Olivier and Elizondo, 2022; He
et al., 2017; Zhou et al., 2008). Studies have demonstrated that PXR
is a regulator of intestinal homeostasis, and its deficiency is a pre-
liminary driving factor for inflammation-induced intestinal barrier
damage and increased permeability (Sun et al., 2022). When PXR is
knocked out systemically or specifically in the intestine in mice,
hyperlipidemia does not occur, and lipid uptake is absent (Sui et al.,
2021). PXR activation regulates the gene expression of CD36 and
cholesterol biosynthesis enzyme squalene epoxidase, leading to an
increase in lipid uptake and cholesterol biosynthesis in cells (Gwag
et al., 2019). In addition, the down-regulation of PXR reduces the
expression of fatty acid binding protein 4 (FABP4) and the accu-
mulation of cellular lipids, while overexpression of PXR promotes
lipid accumulation and FABP4 expression. FABP4, also known as
adipocyte fatty acid binding protein, belongs to a family of intra-
cellular lipid transport proteins that reversibly bind to lipids and
transport them to specific areas within cells, such as lipid droplets,
endoplasmic reticulum, mitochondria or peroxisomes, as well as
the cytoplasm or other enzymes (Yan et al., 2021).

3.3. AMPK signaling pathway

AMPK is a critical energy sensor, involving in multiple physio-
logical processes (O'Neill, 2013). The demand for energy in the host
activates AMPK, which induces the recruitment of CD36, leading to
an increase in fatty acid absorption and b-oxidation (Balamurugan
et al., 2022). Therefore, AMPK promotes the uptake of long-chain
fatty acids by intestinal epithelial cells, and its absence impairs
cid translocase; PXR ¼ pregnane X receptor; AMPK ¼ AMP-dependent protein kinase;
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the uptake of fatty acids in the intestine. The mechanism involves
up-regulation of CD36 expression and promotion of CD36 trans-
location to the plasma membrane to facilitate the uptake of intes-
tinal fatty acids (Wu et al., 2020). On the other hand, CD36 inhibits
the expression of AMPK, and releases this inhibition by binding
with fatty acids, thereby maintaining the cellular fatty acid ho-
meostasis (Samovski et al., 2015).

4. Nutritional regulation

4.1. Fat

As one of three macronutrients, fat is an important energy
source in pig diets due to its high energy content. Fatty acids are
also important components of physiological activities such as in-
flammatory response, hormone synthesis, and cell membrane
structure, which have a positive effect on maintaining intestinal
health and improving production performance (Jolazadeh et al.,
2019; Xu et al., 2021). Dietary supplementation of an appropriate
amount of fat promotes feed intake and improves energy di-
gestibility in weaned piglets. However, with increasing amounts of
fat, feed intake and fat digestibility decreases (Adeola et al., 2013).
This is because different sources of fat result in differences in car-
bon chain length, saturation, unsaturated fatty acid to saturated
fatty acid ratio, and free fatty acid content, leading to significant
differences in fat absorption and digestion by piglets. Medium-
chain triglycerides have a low esterification rate and are directly
absorbed without enzymatic hydrolysis, thus are easily oxidized to
provide energy and pass through the mitochondrial membrane
(van de Heijning et al., 2017). Lipase has a slower hydrolysis rate for
long-chain triglycerides than that for medium-chain triglycerides
(Hedemann et al., 2001). Therefore, the absorption rate of fatty
acids is negatively correlated with carbon chain length, and shorter
chains are more easily absorbed (Straarup et al., 2006). In addition,
both short-chain and medium-chain fatty acids have antibacterial
properties, which prevent pathogenic bacteria from overgrowing in
the gastrointestinal tract (Jiao et al., 2023; Lauridsen, 2020).
Generally, unsaturated fatty acids are more easily digestible than
saturated fatty acids, which can be attributed to unsaturated fatty
acid bonds have higher energy than saturated fatty acids, pro-
moting the metabolism of saturated fatty acids (Lauridsen, 2020).
Weng (2017) revealed that a mixture of lard, soybean oil, and co-
conut oil was preferred by weaned piglets soon after weaning, and
feed conversion efficiency was better than that of a single oil. The
mechanism is because the proportion of unsaturated fatty acids to
saturated fatty acids is higher in this blend, and the proportion of
medium- and short-chain fatty acids is more easily absorbed,
similar to the composition of breast milk fatty acids (Ren et al.,
2020). Therefore, during the weaning piglet stage, it is generally
necessary to mix several types of lipids to approximate the
composition of breast milk fatty acids as much as possible, in order
to improve fat absorption in piglets and be better adapt to weaning.

4.2. Lipase

Lipase, also known as lipid degrading enzyme, can gradually
hydrolyze triglycerides into glycerol and fatty acids for absorption
and utilization by the body (Liu et al., 2020). Weaned piglets have a
low fat digestion and absorption rate due to weaning stress and
physiological factors that lead to insufficient secretion of endoge-
nous lipases, such as pancreatic lipase and gastric lipase. Theoret-
ically, dietary supplementation of exogenous lipase can supply the
deficiency of endogenous lipase, alleviate weaning stress in piglets,
and improve their fat absorption disorders (Liu et al., 2018; Portillo
et al., 2021). At the same time, exogenous lipase can lower the
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incidence of intestinal diseases, especially nutrition-related diar-
rhea caused by poor fat digestion. Some studies found that lipase
enhanced growth performance, digestive enzyme activity, nutrient
digestibility and intestinal morphology in weaned piglets (Chen
et al., 2014; Yang et al., 2017). However, compared with studies
on phytase and other enzymes, the application research of lipase in
weaned piglets is relatively rare.

4.3. Emulsifier

There is a significant difference in the apparent digestibility of
fat between breast milk and feed for piglets, with one important
reason being that breast milk fat is extensively emulsified. How-
ever, weaned piglets may not fully emulsify the fat in their feed due
to insufficient bile secretion caused by weaning stress (Bach
Korsholm Knudsen et al., 2021). Bile salts are excellent emulsi-
fiers that can emulsify fat and form lipid particles, which increases
the contact area between pancreatic lipase and fat, facilitates the
action of lipases, and promotes fat digestion and absorption
(Higuchi et al., 2020; Liu et al., 2022a). Exogenous addition of bile
salts improves the growth performance, liver glucose and lipid
metabolism, intestinal epithelial integrity and regulates the redox
status of weaned piglets (Liu et al. 2022b, 2023).

4.4. Amino acids and their metabolites

Weaned piglets have reduced feed intake and weakened ability
to digest and absorb fat, leading to inadequate energy supply in the
intestine. Amino acids are important nutrients, which are prefer-
entially used by the small intestine and are the main source of
energy for intestinal mucosa (Zhou et al., 2018). For instance,
ornithine enters the urea cycle in the body and is a precursor of
arginine, citrulline, and proline, as well as a direct precursor of
polyamines (spermidine, spermine, and putrescine), which can
promote growth hormone secretion and young animal growth.
Polyamines are momentary sources of cellular energy that reduce
intestinal damage and lower inflammation, thereby alleviating
weaning stress (Pruss et al., 2022; Wang et al., 2021). In addition,
ornithine significantly increases the gene expression of CD36 in the
liver, which alleviates chronic inflammation induced by obesity
(Park et al., 2020). Supplementation of arginine in the diet improves
pregnancy-induced insulin resistance, increases maternal concen-
trations of arginine and ornithine, placental glucose and fatty acid
transport-related gene expression (including CD36), and promotes
offspring growth and health (Robles et al., 2019). Alpha-
ketoglutarate is a central molecule in the tricarboxylic acid cycle
and a precursor of glutamate and glutamine, which is an important
source of energy for intestinal cells. It plays an important role in
regulating lipid metabolism and protecting the intestinal mucosal
barrier. Studies have revealed that alpha-ketoglutarate activates the
PXR signaling pathway, inhibits the NF-kB signaling pathway, re-
pairs damaged intestinal mucosa, and exerts immune functions in
the intestine (Bautista-Olivier and Elizondo, 2022; He et al., 2015,
2017). Alpha-ketoglutarate also increases intracellular levels of
alpha-ketoglutarate, restores the function of aging stem cells,
promotes the generation of brown and beige adipocytes in elderly
mice, maintains the health of adipose tissue, suppresses chronic
inflammation, and extends lifespan (Asadi Shahmirzadi et al., 2020;
Tian et al., 2020). In our previous studies, we confirmed that
ornithine-alpha-ketoglutarate, a complex salt of amino acids
formed by the ionic bonding of ornithine and a-ketoglutarate,
promoted the expression of CD36 and fat deposition in intestinal
organoids, alleviated diarrhea and chronic oxidative stress (some of
the data has not been published yet) (Li et al., 2020, 2022a). Based
on the above, amino acids can maintain intestinal barrier function,
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thereby promoting intestinal fat absorption and growth in weaned
piglets.

4.5. Probiotics

Microbes play a vital role in the absorption of dietary fat in the
gut, especially in the small intestine where they regulate host fat
digestion and transportation (Chang and Martinez-Guryn, 2019;
Coelho et al., 2019; Sato et al., 2016; Tang et al., 2020). Germ-free
mice fed a high-fat diet exhibits higher fecal lipid levels
compared to normal mice (Rabot et al., 2010). Martinez-Guryn et al.
(2018) found that providing a high-fat diet resulted in fat malab-
sorption, particularly impairing lipid digestion and absorption in
the small intestine of germ-free mice. High-fat diet in mice pro-
motes the growth of specific microbial families such as Clos-
tridiaceae and Streptococcaceae, which enhances fat absorption.
Introducing microbes that aid in fat digestion to germ-free mice
results in increased fat absorption even when fed a low-fat diet
again (Martinez-Guryn et al., 2018). Mechanistically, gut bacteria
promote fat absorption by activating adipocytes, producing chylo-
microns, and emulsifying lipids (Sato et al., 2016). Lactobacilli and
their metabolites also promote intestinal lipid absorption, decrease
fat oxidation, and increase host fat (Zhong et al., 2022). However,
some probiotics like Lactobacillus rhamnosus GG compete with host
fatty acids for intestinal absorption, and inhibit the metabolism and
absorption of fatty acids in the intestine of mice, thereby prevent-
ing fatty acid uptake and obesity (Jang et al., 2019). Propionibacte-
rium freudenreichii subsp. shermanii enhances intestinal cell fat
uptake and storage, while E. coli aids in lipid breakdown and re-
duces chylomicron circulation (Tazi et al., 2018).

Native pig breeds exhibit better fat absorption and diarrhea
resistance abilities. For instance, Shaziling pigs have high levels of
Lactobacillus reuteri, Bifidobacterium adolescentis, and Butyrivibrio
fibrisolvens, especially L. reuteri, which increases CD36 and perox-
isome proliferator activated receptor g expression and promotes
lean pig fat deposition while improving meat quality (Ma et al.,
2022). Tibetan pigs possess high levels of Lactic acid bacteria, Bifi-
dobacteria, and Solobacterium, promoting fat deposition, disease
resistance, and stress tolerance (Shang et al., 2022). Fecal trans-
plantation of Laiwu pigs into Duroc � Landrace � Yorkshire pigs
increase Bacteroides uniformis, Treponema_pectinovorum, Sphaer-
ochaeta globosa, Hydrogenoanaerobacterium saccharovorans, and
Pyramidobacter piscolens in the gut, and consequently promoting
fat deposition in the gut and liver (Xie et al., 2022).

5. Concluding remarks

Fat absorption alleviates intestinal barrier dysfunction and
diarrhea in weaned piglets. In this review, we summarize the rea-
sons for intestinal fat absorption disorders in weaned piglets and
discuss the regulatory mechanisms of CD36, PXR, and AMPK
signaling pathways. In addition, dietary fats, lipases, amino acids,
and probiotics can regulate intestinal fat absorption and intestinal
barrier function, reducing the occurrence of diarrhea. The review
mainly describes a theoretical basis for regulating intestinal fat
absorption in weaned piglets and elaborates nutritional regulation
methods to prevent diarrhea induced by insufficient fat absorption
disorders.
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