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Abstract: Exploiting excellent photocatalytic activity and stable heterostructure composites are
of critical importance for environmental sustainability. The spherical Bi2WO6/Bi2S3/MoS2 n-p
heterojunction is first prepared via an in situ hydrothermal method using Bi2WO6, Na2MoO4·2H2O,
and CH4N2S, in which the intermediate phase Bi2S3 is formed due to chemical coupling interaction
of Bi2WO6 and CH4N2S. Scanning electron microscopy indicates that the compactness of the sample
can be easily adjusted by changing the contents of S and Mo sources in the solution. The results of
ultraviolet–visible (UV–vis) diffuse reflectance spectra, photoluminescence, transient photocurrent
response, and electrochemical impedance spectra indicate that the formation of heterojunctions
contributes to enhancing visible-light utilization and promoting photogenerated carrier separation
and transfer. The composite material is used as a catalyst for the visible light photocatalytic reduction
of Cr(VI). Remarkably, the optimal Bi2WO6/Bi2S3/MoS2 n-p heterojunction achieves the greatest
Cr(VI) reduction rate of 100% within 75 min (λ > 420 nm, pH = 2); this rate is considerably better
than the Cr(VI) reduction rate of pure Bi2WO6. The recycling experiment also reveals that the
photocatalytic performance of the n-p heterojunction toward Cr(VI) is still maintained at 80% after
three cycles, indicating that the n-p heterojunction has excellent structural stability. The capture
experiment proves that the main active species in the system are electrons. The reasonable mechanism
of Bi2WO6/Bi2S3/MoS2 photocatalytic reduction Cr(VI) is proposed. Our work provides new research
ideas for the design of ternary heterojunction composites and new strategies for the development of
photocatalysts for wastewater treatment.
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1. Introduction

With the rapid development of industrial production, the pollution of water and land resources
by heavy metals is becoming increasingly serious [1–3]. Water-soluble, non-biodegradable hexavalent
chromium Cr(VI), which easily penetrates through food chain enrichment, can induce cellular oxidative
stress, leading to DNA damage, gene mutation, fetal malformation, and carcinogenesis, is one of the
most dangerous heavy metals [4,5]. Cr(VI) is widely applied in smelting, electroplating, painting,
chemical manufacturing, and tanned leather [6–8]. The World Health Organization stipulates that the
maximum limit of pollutants in surface water is 0.1 mg L−1. However, the concentration of Cr(VI) in
sewage is usually higher than 100 mg L−1 [9]. Therefore, the development of economical and efficient
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wastewater chromium removal technology is significant. At present, the methods for reducing the
Cr(VI) concentration in aqueous solutions mainly include electrochemical precipitation, ion exchange,
membrane filtration, photocatalytic degradation, and adsorption [10–14]. The reduction of Cr(VI)
to less toxic Cr(III) by semiconductor photocatalytic technology is considered an effective, low-cost
method that generates no harmful substances [15–17].

Bismuth-based photocatalysts have always been a research hotspot in the field of photocatalysis.
Bismuth tungstate (Bi2WO6) has been widely studied for its safety, cheap, proper band gap
(~2.8 eV), high stability, and excellent photocatalytic activity [18–20]. However, bare Bi2WO6 has the
disadvantages of high photo-generated electron-holes recombination efficiency, narrow light absorption
range, small specific surface area, and weak surface adsorption capacity, which makes it exhibit poor
photocatalytic performance [21–23]. Therefore, a scientific strategy that enhances the performance of
photocatalysts in practical applications must be developed.

At present, the methods used to improve the photocatalytic activity of semiconductors are as
follows: nanostructure modification [24], surface engineering, and homojunction/heterostructure
construction. Among these methods, the construction of heterojunctions is considered the most
simple and efficient [25–27]. The reason is that the establishment of heterojunction cannot only
effectively broaden the range of light response and enhance the light absorption of catalyst but
also achieve the effective separation of photo-generated carriers under the action of internal
electric field and improve the catalytic activity [28,29]. Many Bi2WO6-based heterojunction
photocatalysts, such as Bi2WO6/MoS2 [30], Bi2WO6/Fe2O3 [25], Bi2WO6/Bi2S3 [31], CdS/Bi/Bi2WO6 [32],
meso-tetra (4-carboxyphenyl) porphyrin/rGO/Bi2WO6 [33], and Co3O4/Ag/Bi2WO6 [34], have been
used to improve the performance of pure Bi2WO6. Huang et al. successfully prepared a new
flower-shaped AgBr/Bi2WO6 catalyst, which showed good catalytic performance in the degradation of
tetracycline (TC) under visible light (vis-light) irradiation [35]. Wan et al. prepared Au/Bi2WO6–MoS2

heterojunction photocatalysts, which exhibited excellent vis-light photocatalytic activity in Cr(VI) and
tetracycline hydrochloride degradation [23]. Xue et al. synthesized new g-C3N4/Bi2WO6/AgI catalyst
by a hierarchical assembly method. Compared with bare Bi2WO6, the ternary heterojunction composite
has stronger redox capacity and exhibits better catalytic activity during the photodegradation of organic
pollutants such as TC [36]. Long et al. prepared 3D flower-like MoS2/Bi2S3 heterostructures with
excellent photocatalytic activity toward the photodegradation of low concentrations of organic
pollutants [37]. The above results show that the successful construction of multi-component
heterostructure can effectively improve the photocatalytic activity compared with a single component.
However, the Bi2WO6-based photocatalysts still have disadvantages, including a complex preparation
method, narrow light response range, and rapid photogenerated charge carrier recombination. In recent
years, the use of MoS2 and Bi2S3 coupled with other semiconductors for boosted photocatalytic
performance has been widely investigated. To our knowledge, the preparation and application in
photocatalysis of the Bi2WO6/Bi2S3/MoS2 ternary heterojunction has not been reported. Hence, seeking
a facile and controllable preparation method to fabricate ternary heterojunctions containing Bi2WO6,
Bi2S3, and MoS2 is of great importance for improving the photocatalytic performance of Bi2WO6 in
environmental purification.

Based on the above considerations, in the present work, Bi2WO6/Bi2S3/MoS2 heterojunction
ternary composite materials are prepared via hydrothermal method using the synthesized Bi2WO6

microspheres as substrate (Scheme 1) and which are used for photocatalytic reduction of Cr(VI) to Cr(III).
Importantly, the formation of Bi2S3 does not require an additional Bi source, and S2− partially replaces
WO6

6− in Bi2WO6. This process maintains a superior spherical structure and is beneficial to the uniform
distribution of Bi2S3 in the composite. The compactness of composite nanoflakes can be easily adjusted
by changing the content of sodium molybdate dihydrate (Na2MoO4·2H2O) and thiourea (CH4N2S) in
the solution during the hydrothermal process. To the best of our knowledge, the Bi2WO6/Bi2S3/MoS2

heterojunction for Cr(VI) photocatalytic reduction under vis-light irradiation is investigated for the first
time. The composites have higher adsorption capacity and photocatalytic activity than pure Bi2WO6 in
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terms of Cr(VI) reduction due to the successful construction of heterojunction structure. The synergistic
effect among the three components enhances light absorption and realizes the effective separation and
transmission of photogenerated carriers. The Cr(VI) reduction rate of Bi2WO6/Bi2S3/MoS2 reaches
100% within 75 min (λ > 420 nm, pH = 2) and is considerably better than that of the pure Bi2WO6.
These results provide new research ideas for the design of ternary heterojunctions to develop highly
efficient vis-light-driven photocatalysts for wastewater treatment.
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Scheme 1. Schematic diagram of preparing Bi2WO6/Bi2S3/MoS2 heterojunction ternary composites.

2. Experimental Section

2.1. Materials and Chemicals

All chemicals and materials in this work were of analytical grade and purchased from commercial
suppliers, which could be directly utilized without any further purification. Sodium tungstate
dihydrate (Na2WO4·2H2O, AR, 99.5%), Na2MoO4·2H2O (AR, 99.0%), bismuth(III) nitrate pentahydrate
(Bi(NO3)3·5H2O, AR, 99.0%), and CH4N2S (AR, 99.0%) were acquired from Sigma-Aldrich (St. Louis,
MO, USA). Absolute ethanol (C2H5OH, AR, ≥99.7%), glacial acetic acid (CH3COOH, AR, ≥99.5%),
polyvinyl pyrrolidone K30 (PVP K30, AR), and other chemicals used in the experiments were bought
from Shanghai Chemical Reagent Co., Ltd. (Shanghai, China). Ultrapure water (18.2 MΩ cm−1) was
served throughout the study and acquired from the Milli-Q water purifying system (Millipore Corp.,
Bedford, MA, USA).

2.2. Synthesis of Spherical Bi2WO6 Nanostructures

Solutions A and B were prepared in the synthesis of Bi2WO6 precursor. In solution A, 2 mmol
Bi(NO3)3·5H2O and 4 g PVP K30 were added to a mixed solution of 50 mL ultrapure water, absolute
ethanol, and glacial acetic acid with a 3:1:1 volume ratio and then stirred at room temperature for
60 min. In solution B, 1 mmol Na2WO4·2H2O was added to 20 mL H2O for 30 min of ultrasonication.
After the solutions were clarified, solution B was dropped to solution A under agitation and stirred
continuously for 60 min to obtain a white uniform suspension. The suspension was transferred to
a Teflon-sealed autoclave (100 mL) for a solvothermal reaction at 180 ◦C for 18 h. After cooling,
the light-yellow product was collected, washed thrice with absolute ethanol and ultrapure water in
sequence, and finally dried overnight and ground for reserves.

2.3. Synthesis of Bi2WO6/Bi2S3/MoS2 n-p Heterojunction Photocatalyst

Bi2WO6/Bi2S3/MoS2 n-p heterojunction nanocomposites were prepared by a simple hydrothermal
reaction. First, 200 mg Bi2WO6 was dispersed in 40 mL water with ultrasonic treatment for 10 min.
Further 1 h stirring treatment was needed after the addition of 200 mg Na2MoO4·2H2O and 400 mg
CH4N2S as an ion source. Second, the dispersion was transferred to 100 mL Teflon-sealed autoclave
for hydrothermal reaction at 200 ◦C for 24 h. Wait for cooling, the obtained sample (named as product
BBM-3) was rinsed with ultrapure water and anhydrous ethanol for thrice and then dried overnight at
60 ◦C in a vacuum oven. As a control, the addition amount of Na2MoO4·2H2O:CH4N2S was adjusted
(80 mg:160 mg, 120 mg:240 mg, 300 mg:600 mg), and the corresponding products with BBM-1, BBM-2,
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and BBM-4 were expressed. In addition, the preparation method of pure MoS2 nanosheets was similar
to the above process except that Bi2WO6 was not added.

2.4. Characterization

Powder X-ray diffraction (XRD) patterns were obtained on a SmartLab SE X-ray diffractometer
(Rigaku Corp., Tokyo, Japan) with Cu Kα (λ = 1.5046 Å) radiation. Raman spectra were measured
using a Renishaw in Via9 Raman microscope system (Renishaw, London, UK) with a 50× objective
and a 532 nm laser irradiation to focal point the laser beam into a spot with a diameter of
approximately 1 µm. The morphology and energy-dispersive spectra (EDS) of the samples were
tested and characterized by a field-emission scanning electron microscope (FESEM, Regulus 8220,
Hitachi, Tokyo, Japan). The microstructure and lattice fringe of the samples were examined by
a transmission electron microscope (TEM, JEM-2100, JEOL, Tokyo, Japan) and high-resolution
TEM (HRTEM, JEM-2100). The elemental composition and chemical state of the samples were
determined by X-ray photoelectron spectroscopy (XPS) (Perkin-Elmer PHI5300 spectrometer, Perkin
Elmer, Waltham, MA, USA). The specific surface areas of the samples were obtained based on the N2

adsorption–desorption isotherm tested on a Micromeritics ASAP 2460 system (ASAP, Norcross, GA,
USA). The ultraviolet–visible (UV–vis) diffuse reflectance spectra (DRS) were tested within a 200 nm
to 800 nm wavelength range using a spectrometer (UV-2600, Shimadzu, Kyoto, Japan) with BaSO4

as a reference. A Hitachi F4500 fluorescence spectrophotometer (Hitachi, Tokyo, Japan) was used
to test the photoluminescence (PL) measurements (λexcitation = 300 nm). The Mott–Schottky curves,
electrochemical impedance spectra (EIS), and photocurrent response experiments were carried out
using the electrochemical workstation (PARSTAT 4000, Ametec, Berwyn, PA, USA) with a conventional
three-electrode configuration (working electrode: fluorine-doped tin oxide conducting glass; counter
electrode: platinum plate; reference electrode: Ag/AgCl electrode) and Na2SO4 aqueous solution as
the electrolyte (0.1 mol L−1).

2.5. Photocatalytic Activity Experiments

The specific operational steps of the prefabricated catalysts for photocatalytic reduction of Cr(VI)
(Cr(VI) source: K2Cr2O7) were as follows: Cr(VI) solution with concentration of 40 mg L−1 was
prepared using ultrapure water as solvent. Then, 50 mL of this initial solution was accurately measured
and placed in the reaction vessel. Next, the initial solution pH to 2 was adjusted with HCl solution
(1 mol L−1). Afterward, the 20 mg as-synthesized catalysts were evenly dispersed in the solution by
ultrasonication. Before vis-light irradiation, the suspension was stored in the dark place and stirred for
60 min to reach equilibrium of adsorption and desorption. Under the irradiation by Xe lamp (300 W,
100 mW cm−2, λ > 420 nm), 3 mL suspension was taken out in the reaction container every 15 min and
centrifuged (9000 r min−1, 10 min). Then, the supernatant was collected with microporous (0.22 µm)
membrane filter syringe to eliminate residual particles. NaOH (1 mol L−1) or HCl (1 mol L−1) solution
was used to adjust the pH of Cr(VI) solution to investigate the effect of solution pH on photocatalysis.
Finally, the Cr(VI) concentration was obtained by measuring the absorbance of the supernatant at
540 nm (UV-2600, Shimadzu) with diphenylcarbazide approach (Electronic Supplementary Materials).

3. Results and Discussion

3.1. X-ray Diffraction (XRD) and Raman Analysis

Figure 1a shows the XRD patterns of the products. For Bi2WO6, the diffraction peaks at 2θ = 28.3◦,
32.8◦, 47.1◦, 56.0◦, 58.5◦, 68.8◦, 76.1◦, and 78.5◦ correspond to the (131), (200), (202), (133), (262),
(400), (2102), and (204) crystal faces of the Bi2WO6 orthorhombic phase (JCPDS Card No.39-0256),
respectively [38,39]. The three diffraction peaks of bare MoS2 at 9.0◦, 32.0◦, and 58.0◦ correspond
to the (002), (100), and (110) crystal faces of 2H-MoS2, respectively. The peaks at 9.0◦ and 17.0◦

indicate the formation of a layered structure with enlarged interlayer spacing [40]. For heterojunction
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photocatalysts, the XRD patterns display new diffraction peaks. The diffraction peaks located at 25.0◦

correspond to the (130) crystal plane of Bi2S3 [41]. Given the strong interaction force between Bi3+

and S2−, Bi2S3 will be formed at relatively high temperatures [42]. The Bi2WO6/Bi2S3/MoS2 samples
show a discernible peak at approximately 32.0◦, which is attributed to the (100) crystal plane of MoS2,
indicating that the composite material contains MoS2 component. However, the absence of the highest
MoS2 intensity peak (~9.0◦) from the heterostructure samples indicates that MoS2 nanosheets may
contain only a few layers that are too thin to be detected by XRD [43].
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Figure 1. X-ray diffraction (XRD) patterns (a), and Raman spectra (b) of bare Bi2WO6, MoS2, BBM-1,
BBM-2, BBM-3, and BBM-4 heterojunction.

Raman measurements of the as-synthesized samples were performed in the range of 200–1200 cm−1,
and the results are shown in Figure 1b. The black, green, and red dashed lines in the figure represent
the Raman characteristic peaks of Bi2WO6, Bi2S3, and MoS2, respectively. The peaks of 308, 723, 798,
and 829 cm−1 in the Raman spectra are characteristic Raman shifts of Bi2WO6 [44]. The Raman peaks
of Bi2S3 are located at 234.8, 260, 590, and 970 cm−1, of which the peaks at 234.8 and 260 cm−1 matched
the Ag

1 and B1g vibration mode, respectively [45]. Meanwhile, the typical peaks at 383 and 408 cm−1

are ascribed to the E1
2g and A1g vibrations of MoS2, respectively [42,45]. Based on the above results,

the Bi2WO6/Bi2S3/MoS2 ternary composites are successfully prepared.

3.2. Morphology

As shown in the scanning electron microscope (SEM) images (Figure 2a), Bi2WO6 microspheres
with diameters of 2.6–3.0 µm are self-assembled from nanosheets. The SEM images in Figure 2b–e show
that the degree of looseness of the Bi2WO6/Bi2S3/MoS2 microsphere increases accordingly with the
increase in Mo and S sources concentration during the hydrothermal process. Nevertheless, with the
further increase in concentration, MoS2 agglomerates are formed on the Bi2WO6/Bi2S3/MoS2 surface,
and the corresponding results are shown in Figure 2e. This finding is consistent with the information
expressed in the TEM diagram in Figure 2f–j. The causes of these phenomenon are as follows: I. A strong
affinity exists between Bi3+ and S2−, which reacts under high temperature and pressure to form Bi2S3

(Bi2WO6 + 3S2−
→ Bi2S3 + WO6

6−) [42,45]. II. Bi2WO6 is consumed during this process, and Bi2S3

and MoS2 are generated. As the consumption of Bi2WO6 increases, the structure becomes looser.
III. The formation of MoS2 agglomerates is mainly caused by the excessively high concentration of
Mo and S sources, which promotes the nucleation speed to extreme degrees [46]. Soon afterward,
BBM-3 is used as the model, and its composition is characterized by high-resolution transmission
electron microscopy (HRTEM). Figure 2k shows the tight interface between Bi2WO6, Bi2S3, and MoS2

in the BBM-3. The measured interplanar distances of 0.315, 0.360, and 0.620 nm belong to the (131)
crystal plane of orthorhombic Bi2WO6, the (130) plane of Bi2S3, and the (002) lattice plane of MoS2,
respectively [47–49]. The high-magnification TEM of BBM-3 (Figure S1), which can intuitively illustrate
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the close interface contact between Bi2WO6, Bi2S3, and MoS2, confirms the successful construction of
the Bi2WO6/Bi2S3/MoS2 heterojunction [42]. Meanwhile, element mapping is used to analyze BBM-3
in depth to further determine the distribution of Mo, S, Bi, W, and O in the material. The results
(Figure 2l–p) coincide with the EDS characterization results (Figure S2), confirming that BBM-3 consists
of Mo, S, Bi, W, and O. The above results confirm that Bi2WO6/Bi2S3/MoS2 n-p heterojunction with
spherical structure can be synthesized by a simple in-situ hydrothermal method.
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Figure 2. Scanning electron microscope (SEM) and transmission electron microscope (TEM) images
of (a,f) bare Bi2WO6, (b,g) BBM-1, (c,h) BBM-2, (d,i) BBM-3, and (e,j) BBM-4. High-resolution TEM
(HRTEM) image (k), and energy-dispersive spectra (EDS) mapping images (l–p) of BBM-3.

3.3. X-ray Photoelectron Spectroscopy (XPS) Analysis

The survey XPS curves in Figure 3a indicate that BBM-3 is composed of Mo, Bi, S, W, and O.
Figure 3b–e shows the high-resolution spectra of Mo 3d, Bi 4f, W 4f, and O1s, respectively. The Mo 3d
(Figure 3b) shows two peaks centered at 227.6 and 230.8 eV, which correspond to Mo 3d5/2 and Mo
3d3/2 of Mo4+, respectively [50]. The satellite peak at approximately 234.7 eV represents Mo6+ [51].
In addition, the mid-strong peak at 225.4 eV can be well matched to S 2s [50]. The characteristic signal
in Bi 4f diagram (Figure 3c) is formed by Bi 4f7/2 at 157.4 eV, Bi 4f5/2 at 162.7 eV, and S 2p at 160.6 eV [52].
The difference between the binding energy of Bi 4f7/2 and Bi 4f5/2 is 5.3 eV, indicating that Bi exists in
BBM-3 as Bi3+. Figure 3d contains the peaks at 35.2 and 37.6 eV, which are characteristics of W 4f7/2

and W 4f5/2, respectively [53]. The three fitted peaks in the O 1s spectrum (Figure 3e) are located at
531.5, 530.6, and 529.7 eV, which indicates that three types of O are present in BBM-3. The peak at
531.5 eV represents the chemically adsorbed oxygen (O–H) on the surface of BBM-3, whereas the peaks
at 530.6 and 529.7 eV correspond to the O–Bi and O–W lattice oxygen in BBM-3, respectively [54].
Compared with the peaks of pure Bi2WO6, Bi2S3, and MoS2, the Mo 3d and Bi 4f peaks of BBM-3
display a shift ~1.0 eV to the lower binding energy direction. Conversely, the W 4f peak of BBM-3
shows a shift ~1.0 eV to the higher binding energy direction. These results are primarily due to strong
interactions and charge transfer among Bi2WO6, Bi2S3, and MoS2 in BBM-3 (Figure S3) [29]. The above
XPS analyses confirm again that Bi2WO6, Bi2S3, and MoS2 coexist in the Bi2WO6/Bi2S3/MoS2 ternary
heterojunction photocatalyst.
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Figure 3. X-ray photoelectron spectroscopy (XPS) analysis of BBM-3 showing (a) survey, (b) Mo 3d,
(c) Bi 4f, (d) W 4f, and (e) O 1s spectra.

3.4. Brunauer–Emmett–Teller (BET) Specific Surface Area Analysis

As shown in Figure S4, the Bi2WO6 and Bi2WO6/Bi2S3/MoS2 ternary heterojunction samples
exhibit type IV isotherms, which indicate the existence of mesoporous structures [11,22].
The Brunauer–Emmett–Teller (BET) surface area of Bi2WO6/Bi2S3/MoS2 composites is higher than that
of bare Bi2WO6 (14.7 m2 g−1). The BET surface areas of BBM-1, BBM-2, BBM-3, and BBM-4 are 16.6,
19.7, 22.7, and 19.4 m2 g−1, respectively. Compared with pure Bi2WO6, Bi2WO6/Bi2S3/MoS2 composites
have high BET surface areas and rich mesoporous structures, which facilitate the adsorption and
reduction of Cr(VI).

3.5. Ultraviolet–Visible (UV–Vis) Absorption and Band Gap Positions

The DRS of the pristine Bi2WO6, pristine MoS2, and ternary composites are recorded to investigate
the light absorption of the samples. As shown in Figure 4a, for the pristine Bi2WO6, its intrinsic light
absorption edge is at 450 nm, which means that the material has light absorption only in the UV and
partially visible regions. By contrast, pure MoS2 shows a strong absorption in the UV–vis region.
As expected, Bi2WO6/Bi2S3/MoS2 ternary heterojunction photocatalyst extends the vis-light absorption
range compared with the Bi2WO6. Thus, the good photocatalysis performance of the composite is
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predicted. Furthermore, the bandgap energy (Eg) of as-fabricated materials is obtained in accordance
with Tauc’s equation (Equation (1)) [44,55]:

(αhν) = A(hν − Eg
)n/2

, (1)

where α: absorption coefficient, h: Planck’s constant, ν: light frequency, and A: a constant.
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The value of n depends on the type of electronic transition in the semiconductor (n values of
direct/indirect transition: 1/4). According to the previous reports, the n of Bi2WO6 and MoS2 is 1,
and their Eg are determined by the extrapolation of Tauc linear region [28,56]. The Eg of pure Bi2WO6

and MoS2 are ~2.74 and 1.30 eV, respectively (Figure 4b,c), which are close to previously reported
values [30,36]. The Eg of BBM-1, BBM-2, BBM-3, and BBM-4 composites are ~1.40, 1.34, 1.15, and 1.32 eV,
respectively (Figure 4d–g).

On the above basis, the valence band (VB) and conduction band (CB) edge potentials of the
samples are calculated in accordance with the Mulliken atomic electronegativity theory (Equations (2)
and (3), respectively) [30,51]:

ECB + 0.5Eg = X − Ee, (2)

EVB = ECB + Eg, (3)

where Eg and X represent the band gap energy and absolute electronegativity, respectively. EVB and
ECB are the VB and CB edge, respectively. Ee is energy of free electrons (~4.5 eV) on the hydrogen scale.
Table 1 shows the calculation results of material-related parameters. The flat-band potentials of the
related materials are studied by using Mott–Schottky curves (Figure S5) to verify the rationality of the
calculation results. As presented in Figure S5a–c, Bi2WO6 is classified as an n-type semiconductor due
to its positive slope, whereas Bi2S3 and MoS2 are confirmed as p-type semiconductors due to their
negative slopes. When they are coupled to each other to form a n-p heterojunction (Bi2WO6/Bi2S3/MoS2),
the Mott–Schottky curve shows an inverted ‘V-shape’ characteristic (Figure S5d). Generally, EVB for
p-type semiconductors is very close to the flat-band potential, whereas ECB for n-type semiconductors
is very close to the flat-band potential [57]. The flat-band potential in the n-type semiconductor is
0.1–0.3 eV higher than ECB, whereas that in the p-type semiconductor is 0.1–0.3 eV lower than EVB [58].
Figure S5a–c shows that the flat-band potentials of pure Bi2WO6, Bi2S3, and MoS2 can be confirmed to
be 0.20 (0.40 eV vs. normal hydrogen electrode (NHE)), 1.06 (1.26 eV vs. NHE), and 1.14 (1.34 eV vs.
NHE), respectively. Therefore, ECB of pure Bi2WO6 and EVB of Bi2S3 and MoS2 can be estimated to be
0.33, 1.37, and 1.47 eV. On the basis of Equation (3), the corresponding EVB of Bi2WO6 and ECB of Bi2S3

and MoS2 can occur at approximately 3.07, 0.18, and 0.17 eV. These results are in agreement with the
result calculated in accordance with Mulliken atomic electronegativity theory.

Table 1. Summary of the band gap energy (Eg), conduction band edge (ECB), and valence band edge
(EVB) of Bi2WO6, Bi2S3, and MoS2.

Materials Eg (eV) X (eV) Ee (eV) ECB vs. NHE 1 (eV) EVB vs. NHE 1 (eV)

Bi2WO6 2.74 6.20 4.50 0.33 3.07
Bi2S3 1.19 [51] 5.27 4.50 0.18 1.37
MoS2 1.30 5.32 4.50 0.17 1.47

1 NHE: normal hydrogen electrode.

3.6. Photoelectrochemical Performance

The catalyst is further characterized by PL spectroscopy and photocurrent response to explore
its charge separation efficiency. High PL intensity indicates low charge separation efficiency and
easy electron-hole recombination, whereas the photocurrent response shows the opposite [35,59,60].
The PL spectra (Figure 5a) of Bi2WO6 and Bi2WO6/Bi2S3/MoS2 composites are obtained under the
condition of λexcitation = 300 nm. The emission intensities of all Bi2WO6/Bi2S3/MoS2 composites are
significantly lower than that of bare Bi2WO6. Based on the intensity, the composites can be sorted as
Bi2WO6 > BBM-1 > BBM-2 > BBM-4 > BBM-3. This result shows that the successful recombination of
MoS2, Bi2S3, and Bi2WO6 improves the efficiency of charge separation. The photocurrent response
(Figure S6) confirms this conclusion. In the experimental process of up to 400 s, BBM-3 consistently
shows the highest photocurrent. The EIS test can be used to explore the interface charge transfer
properties, with the small arc radius reflecting a fast charge transfer speed [61]. Figure 5b shows the



Nanomaterials 2020, 10, 1813 10 of 20

Nyquist plots of Bi2WO6 and composites. The composites exhibit a smaller Nyquist plot semicircle
radius compared with pure Bi2WO6. BBM-3 also shows a considerably smaller semicircle radius of
EIS Nyquist plots than the other composites (BBM-1, BBM-2, and BBM-4), which is highly consistent
with the PL and photocurrent test analysis results. Therefore, the following conclusions can be drawn.
First, the construction of Bi2WO6, Bi2S3, and MoS2 heterostructures can significantly improve the
charge separation efficiency. Second, only when Bi2WO6 is compounded with suitable amount of
Bi2S3 and MoS2 can n-p heterojunction photocatalysts be formed effectively. Thus, extremely high and
extremely low compounding ratios are not conducive to the formation of heterostructures and the
separation and transfer of photogenerated carriers. Third, BBM-3 is expected to have the best vis-light
catalytic activity because it enables the effective separation of photo-generated carriers.
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3.7. Photocatalytic Activity

In this working system, the catalytic reduction of Cr(VI) under vis-light irradiation is used as
the evaluation standard to evaluate the performance of the prefabricated materials. Previous reports
have shown that the initial solution pH strongly influences the photocatalytic Cr(VI) reduction.
Therefore, the pH of the initial solution is adjusted to show a linear gradient change, which is used to
investigate the effect of pH on the catalytic activity of BBM-3. The photocatalytic reduction efficiency of
BBM-3 is the highest under acidic conditions (Figure 6a). Under the condition of pH = 2.00, the Cr(VI)
reduction rate of BBM-3 is as high as 100%. With the increase in pH, the reduction rate of Cr(VI)
shows a strictly decreasing trend. When pH = 10.00, the reduction efficiency of Cr(VI) reaches 14%.
This change is confirmed by the corresponding UV–vis absorption spectra (Figure 6b–d and Figure S7).
The above situation is mainly caused by the following factors. First, Cr(VI) mainly exists in the form of
HCrO4

− and Cr2O7
2− in acidic environments and CrO4

2− in alkaline environments [62]. When the
solution environment is strongly acidic, the hydroxyl groups on the surface of the catalyst will be
protonated to become (–OH2

+), which in turn enhances the electrostatic adsorption on Cr(VI) [61].
Second, the reactions in acidic conditions are as follows (Equations (4) and (5)) [17,61,63]:

HCrO−4 + 7H+ + 3e− → Cr3+ + 4H2O, (4)

Cr2O2−
7 + 14H+ + 6e− → 2Cr3+ + 7H2O, (5)
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Figure 6. (a) Effect of pH on the catalytic activity of BBM-3. At the pH of 2.00, 6.00, and 10.00
(b–d, respectively), the UV–vis absorption spectra of Cr(VI) solution on BBM-3 sample changed.

The reaction under alkaline conditions is as follows (Equation (6)) [17,61,63]:

CrO2−
4 + 4H2O + 3e− → Cr(OH)3 + 5OH−, (6)

Equation (6) shows that Cr3+ will be converted into Cr(OH)3 and deposited on the catalyst
surface under alkaline conditions, blocking the active sites that can be used for adsorption and
photocatalytic reactions. In summary, acidic conditions are more conducive to the reduction of Cr(VI)
than alkaline conditions.

The photocatalytic activities of Bi2WO6 and different Bi2WO6/Bi2S3/MoS2 composites are evaluated
at the initial solution pH = 2.00, and the results are shown in Figure 7a. The composites exhibit high
Cr(VI) adsorption performance compared with pure Bi2WO6, which benefits from the high surface area
and abundant mesoporous structure of the composite. After 75 min of irradiation, the reduction rate
of Bi2WO6 to Cr(VI) is 5%. By contrast, all the Bi2WO6/Bi2S3/MoS2 composites manifest remarkably
high photocatalytic reduction activity under the same conditions. In particular, BBM-3 shows the
best photocatalytic performance with a corresponding Cr(VI) reduction rate of up to 100%. It is not
difficult to find that there is an optimal compounding ratio between Bi2S3, MoS2, and Bi2WO6 occurs
in the removal of Cr(VI). Extremely low or extremely high compounding ratio is not conducive to
enhancing the photoreduction activity of Bi2WO6/Bi2S3/MoS2. When the actual ratio is lower than
the optimal ratio, the number of active sites used to capture carriers increases with the increase in
recombination ratio, thus prolonging the carrier lifetime and then increasing the photocatalytic activity.
However, when the compounding ratio is higher than the optimum, excess MoS2 will agglomerate to
disrupt the effective construction of n-p heterojunction, as confirmed by the SEM result (Figure 2e).
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Issues such as photocatalysts separation, recovery, reuse, and stability, are important in 
practical applications. The stability and reusability of BBM-3 after the reaction is proven by recycling 
and reusing the same catalyst for three cycles. The photoreduction rate of Cr(VI) after three cycle 
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Figure 7. (a) Visible light (vis-light) catalytic reduction of Cr(VI) by different catalysts. (b) Corresponding
pseudo first-order kinetic curves, and (c) rate constant “k” by different catalysts. (d) BBM-3 vis-light
catalytic reduction Cr(VI) in the presence of electron scavengers (KBrO3) and hole scavengers (citric acid),
respectively. Dosages of KBrO3 and citric acid aqueous solutions: 100 µL of 50 mg mL−1.

Figure 7b shows the pseudo first-order kinetic curves of Bi2WO6, BBM-1, BBM-2, BBM-3, and
BBM-4 for the photocatalytic reduction of Cr(VI) and the apparent reaction rate constant “k” (Figure 7c).
The pseudo first-order model demonstrated here is shown by Equation (7) [41]:

ln
(C0

Ct

)
= kt, (7)

where t stands for the vis-light exposure time, C0 represents the original concentration of Cr(VI)
solution, and Ct is the concentration of Cr(VI) solution at “t” irradiation time. The “k” values
calculated by the linear fit of ln(C0/Ct) and irradiation time (min) plots are 0.037, 0.223, 0.628, 3.612,
and 1.379 × 10−2 min−1 for Bi2WO6, BBM-1, BBM-2, BBM-3, and BBM-4, respectively. BBM-3 obtains
the highest k value. Immediately afterwards, an active species capture experiment is carried out
to further explore the mechanism involved in the reaction system (hole/electron trapping agent:
citric acid/KBrO3). The obtained results are shown in Figure 7d. First, the Cr(VI) solution without
photocatalyst shows good stability under vis-light exposure. However, KBrO3 significantly inhibited
the photoreduction of Cr(VI) by BBM-3 with a final reduction rate of 75%. This finding indicates that the
main active material in the catalytic reduction of Cr(VI) process is photogenerated electrons, which is
consistent with previous reports [64]. By contrast, with the addition of citric acid, the adsorption and
reduction rate of Cr(VI) by BBM-3 are significantly improved. The factors that cause this phenomenon
are as follows: First, the surface of the catalyst becomes more positive by the addition of citric acid,
which promotes the adsorption of HCrO4

− or Cr2O7
2− ions [65]. Second, photogenerated holes can

oxidize citric acid, which is equivalent to promoting the separation of photogenerated carriers and
prolonging the lifetime of photogenerated electrons [61,66]. The above conclusion is confirmed by
the corresponding UV–vis absorption spectra in Figure S8. Finally, compared with the other reported
catalysts for vis-light reduction of Cr(VI) (Table 2), Bi2WO6/Bi2S3/MoS2 heterojunction composites
show relatively satisfactory photocatalytic activity.
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Table 2. Performance comparison with other materials used for vis-light catalytic reduction of Cr(VI).

Materials/Amount (mg) Cr(VI) Solution Volume
(mL)/Concentration (mg L−1)

Time
(min)

Photocatalytic
Removal Rate

Publication
Date Ref.

CoS2/g-C3N4-rGO/10 20/20 120 99.8 2020 [63]
MoSe2/ZnO/ZnSe/80 80/20 180 100 2020 [67]

rGO/ZnO/Au/50 50/10 40 97 2020 [68]
Bi2MoO6/ZnO/100 50/50 150 100 2019 [61]
RGO/BiOI/ZnO/100 150/10 180 92 2019 [69]
Bi2WO6+Oxalic/60 50/10 120 100 2018 [70]

CuInS2 QDs/Bi2WO6/20 40/10 300 90 2018 [71]
Bi2WO6/MoS2/RGO+Lactic acid/30 100/10 80 100 2016 [72]

Bi2WO6/Bi2S3/MoS2/20 50/40 75 100 This work

Issues such as photocatalysts separation, recovery, reuse, and stability, are important in practical
applications. The stability and reusability of BBM-3 after the reaction is proven by recycling and
reusing the same catalyst for three cycles. The photoreduction rate of Cr(VI) after three cycle tests is
80% (Figure 8a), which shows that the photocatalysts have enough stability and reusability. This is
mainly attributed to the existence of electrostatic attraction that induces a strengthened coupling
interaction among Bi2WO6, Bi2S3, and MoS2; this interaction is beneficial to improving structural
stability [51,52]. Figure S9 shows the UV–vis absorption spectra after the second and third cycles.
Furthermore, we collected composite samples after use in three photocatalytic cycles (BBM-3-a) and
further characterized them by XRD and XPS. The positions of the characteristic peaks of the samples
after circulation (Figure 8b) exhibit no change compared with the initial sample. The evident signals of
Bi, W, S, Mo, O, and Cr contaminants can be observed in the survey XPS curves of BBM-3-a (Figure 8c).
The XPS peak of 577.1 eV in the Cr 2p spectrum (Figure 8d) belongs to Cr 2p3/2, which highly matches
Cr(III) in Cr(OH)3 [73]. To sum up, Bi2WO6/Bi2S3/MoS2 heterojunction composite has high structural
stability, good reusability, and can effectively reduce the toxicity of Cr(VI) to reduce it to Cr(III).
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3.8. Possible Photocatalytic Mechanism

We can now tentatively explain the mechanism underlying heterojunctions in photocatalytic
reactions. When n-type Bi2WO6 is coupled with p-type Bi2S3 and MoS2, the n-p heterojunction is
formed among semiconductors. The formation of the n-p heterojunction results in the equalization
of their Fermi levels. This effect, in turn, induces band bending and a strong electric field at their
interface. In this case, electrons and holes are prevented from coming into contact with each other
due to the built-in electric field [74]. Meanwhile, according to the energy band structure, a type-I
straddling heterojunction forms on the interface of MoS2 and Bi2S3, whereas a traditional type-II
staggered heterojunction forms on the interface of Bi2S3 and Bi2WO6. MoS2 and Bi2S3 are excited when
type-I MoS2/Bi2S3 are exposed to vis-light. The electrons on the CB of MoS2 will quickly transfer onto
that of Bi2S3, and the holes on the VB of the MoS2 simultaneously hop onto that of Bi2S3. If no measures
are taken, the electrons and holes accumulate in the Bi2S3 semiconductor and recombine rapidly.
Interestingly, the existence of type-II Bi2S3/Bi2WO6 enables the electrons on the CB of the p-type Bi2S3

semiconductor to transfer directly onto the CB of n-type Bi2WO6, and the holes on the VB of Bi2WO6

can be spontaneously injected into the VB of Bi2S3. This phenomenon realizes the effective separation
and transfer of photogenerated electron-hole pairs. The strong electric field generated by the n-p
heterojunction further promotes this process. Compared with a single heterostructure, this system can
better realize the separation and transfer of photogenerated electron–hole pairs under the joint action of
multiple heterostructures. Given the above analysis, the proposed photocatalytic reduction mechanism
of Cr(VI) by Bi2WO6/Bi2S3/MoS2 photocatalysis under vis-light is obtained (Scheme 2). When vis-light
is irradiated on the Bi2WO6/Bi2S3/MoS2 heterojunction, electrons on the semiconductor VB are excited
to CB and the corresponding numbers of holes are retained on the VB, thus forming photogenerated
electron–hole pairs (Equations (8)–(10)). Electrons on the CB of type-p Bi2S3 and MoS2 are transferred
to CB of type-n Bi2WO6, which is finally used for Cr(VI) reduction, whereas the holes remain in the VB
of Bi2S3 (Equation (11)). Moreover, the CB edges of Bi2WO6, Bi2S3, and MoS2 are more negative than
the reduction potential of E(Cr(VI)/Cr(III)) (0.51 eV) [61,67]. Theoretically, the reduction of Cr(VI) to Cr(III)
can be feasibly achieved by this route. Eventually, the electrons in the system will reduce Cr2O7

2− to
Cr(III), and the holes will oxidize H2O to produce O2 (Equations (12) and (13), respectively).
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Bi2WO6 + hv → e−CB + h+VB, (8)

Bi2S3 + hv → e−CB + h+VB, (9)

MoS2 + hv → e−CB + h+VB, (10)

Bi2WO6(e
−CB) − Bi2S3(e

−CB) − MoS2(e
−CB) + Bi2WO6(h

+ VB) − Bi2S3(h
+ VB) − MoS2(h

+ VB)
→ Bi2WO6

(
totale−CB) + Bi2S3

(
totalh+ VB) ,

(11)

Cr2O2−
7 + 14H+ + 6e− → 2Cr3+ + 7H2O, (12)

2H2O + 4h+
→ O2 + 4H+, (13)

4. Conclusions

In summary, spherical Bi2WO6/Bi2S3/MoS2 n-p heterojunction ternary composites with vis-light
response are prepared by a hydrothermal method. The HRTEM and Mott–Schottky curves confirm
the formation of the n-p heterojunction. The XPS spectra show the existence of strong interaction
and charge transfer among Bi2WO6, Bi2S3, and MoS2 in the n-p heterojunction. The effects of various
factors on the catalytic activity of Bi2WO6/Bi2S3/MoS2 photocatalysts are investigated. For vis-light
photocatalytic reduction of Cr(VI), the composites show higher photocatalytic reduction capacity than
pure Bi2WO6, where BBM-3 exhibits the highest photocatalytic activity with a corresponding Cr(VI)
reduction rate of up to 100% within 75 min. After three cycles of experiments, XRD and XPS analyses
verify that the heterojunction possesses structural stability and can effectively reduce Cr(VI) into Cr(III).
The improvement of photocatalytic activity of composite materials mainly benefits from the following
points: First, the successful construction of a heterojunction structure forms a good interface contact,
which promotes the effective separation of photogenerated electrons and holes. Second, the effective
assembly and interfacial synergy between the three components enhance the vis-light absorption
capacity of the samples and expand their light absorption range. Third, the increased surface area
and abundant mesoporous structure endow the composites with more reactive sites and strong
adsorption capacity of pollutants. The successful construction and application of Bi2WO6/Bi2S3/MoS2

n-p heterojunction in this work provide new ideas and strategies for the development of photocatalysts
for wastewater treatment.
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