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Abstract: China’s economy in recent decades has developed at a very rapid speed, as evidenced by
its GDP jumping to second place in the world. Although utilization of domestic water resources has
helped spur economic development, sewage discharge as an undesirable output has unfortunately
caused many negative effects on human health, causing concern from all walks of life. Therefore,
governments in China at all levels are committed to urban sewage treatment policies in order to
reduce the negative impact of water pollution on society. While most existing studies have targeted
the macro-level modes of economic development and environmental pollution, their selection of
research objects is too narrow by failing to adequately consider China’s water pollution and the
consequential national health crisis. This study takes cities in 30 provinces of China as the research
objects and applies various influencing factors of urban wastewater treatment and health (as two
stages) to the modified two-stage dynamic Slacks-Based Measures (SBM) Data Envelopment Analysis
(DEA) model. The results reveal that the overall efficiency of each province is increasing and that
the efficiency of the wastewater treatment stage is greater, thus contributing to overall efficiency.
Conversely, the health stage’s efficiency is far lower than the wastewater treatment stage’s efficiency,
which has a notably adverse effect on overall efficiency. In addition, most input-output variables need
much improvement. Based on the findings herein, we offer specific suggestions to each province for
improving sewage treatment capacity, the level of medical care, and the quality of national health.

Keywords: wastewater treatment; health efficiency; two-stage dynamic SBM DEA; heavy metal
concentration

1. Introduction

China’s economy has developed very rapidly to become the second largest one in the world
ever since it opened itself up and initiated widespread reforms. However, at the same time,
an increasingly prominent conflict has arisen between its economic development and ecological
environment. Especially in the rapid development of urbanization in recent years, domestic water
resources are becoming heavily polluted and a major health hazard. The problem of urban water
pollution is now gravely restricting the sustainable development of the country’s economy.

With the dramatic development of the urban economy and the rising urban population year
by year, water pollution caused by manufacturing and basic living needs has turned increasingly
serious. Industrial areas are typically concentrated in the suburbs, and the large-scale machinery and
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equipment are discharging high amounts of sewage. Moreover, the sewage treatment efficiency of
enterprises is low, which leads to secondary water pollution. The daily lifestyles of urban residents
also produce large amounts of domestic wastewater, and hence, urban water pollution problems need
to be urgently solved. Considering the above situations, the aim of this paper is to improve China’s
urban sewage treatment capacity and the health of its residents.

In the existing research on environmental pollution, most scholars study the macro-level
perspective of the relationship between the environment and the economy, but the economic impacts
of environmentally friendly innovation and its knowledge externalities on productivity have attracted
increasing attention from the research community. Aldieri et al. (2019) [1] presented empirical
evidence of public policy strategies that support the dissemination of environmentally friendly
technologies. The results of a systematic literature review showed that innovation activities on
environmental issues can produce important knowledge spillovers. Aldieri et al. (2019) [2] discussed
the relationship between enterprises’ knowledge resource strategy and green innovation. The results
showed that the emphasis of environmental innovation has shifted from internal knowledge to external
knowledge. Government policies that promote complementary and coordinated knowledge in
the environmental field are able to contribute to greater knowledge transfer and more sustainable
development. Studies have thus demonstrated the role of innovation in sustainable development
from various perspectives.

Data envelopment analysis (DEA) is an important and widely used analytical method. Its basic
idea is to determine the best practice boundary of effective decision-making units (DMUs) to cover all
inefficient DMUs. The greatest advantage of using DEA is that there is no need to specify a production
function, and that DEA can consider multiple inputs and outputs at the same time. Based on a modified
two-stage dynamic Slacks-Based Measures (SBM) model, we study 30 provincial-level administrative
units in China (not including Hong Kong, Macao, Taiwan, and Tibet autonomous region) and their
overall efficiency, two-stage efficiency, and the efficiencies of the variables wastewater treatment and
health (as two stages) from 2014 to 2017, employing scientific data that reflect their sewage treatment
and health situation.

The contributions of this paper are mainly the following two aspects. First, we target the
national level for the first time to study completed investments into wastewater treatment projects,
sewage treatment plants, municipal sewage treatment capacities, and other indicators of specific
dynamic efficiency in the 30 provinces. Accordingly, the paper provides reference data for the country
and the provinces from the macro-level and microlevel aspects. Second, the research’s innovation is
evaluating “wastewater treatment” and “health” in two stages. In the first stage, wastewater treatment
efficiency, completed investments into wastewater treatment projects, and sewage treatment plants
are the input variables, while municipal sewage treatment capacity is the desirable output variable,
and total wastewater discharge, chemical oxygen demand (COD) concentration, and heavy metal
pollutants’ equivalent concentration are undesirable output variables. On this basis, we can measure
the efficiency of health in the second stage. In this stage, the number of health technicians and local
fiscal medical and health expenditures are taken as input variables, while average life expectancy and
carcinogenic risk are desirable and undesirable output variables, respectively. By comparing overall
efficiency, two-stage efficiency, each component’s efficiency of 30 provinces in China, and combining
them with China’s specific national conditions and regional economic differences such as human
geography, we are able to observe the variables’ volatility, analyze the input-output efficiency values
in greater detail, and put forward corresponding proposals to the provinces, which should provide a
scientific basis for urban sewage treatment in the country.

2. Literature Review

According to previous references, the majority of scholarly research on urban sewage generated
by firms’ production and humans’ lifestyles and their treatment can be carried out from the following
three aspects.
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2.1. The Impact of Water Pollution Caused by Urban Production and Living

Water pollution has negative impacts on the environment. Using a drink-y reservoir and an
irrigation-t reservoir as research subjects, Deng et al. (2020) [3] found that metals can precipitate from
water into sediment in 10–15 days, and both reservoirs are heavily contaminated with heavy metals
(chromium, manganese, copper, zinc, Cd, mercury, and lead), which can be harmful to human health.
The major anthropogenic sources of pollution are fuel mix and industrial mills (6.4%) and agricultural
activities (38%) used for drinking; and fuel mix and industrial mills (4.9%), agricultural activities
(32.9%), and mines and quarries used for irrigation (62.1%). Therefore, to reduce human health risks,
freshwater should be stored 10–15 days before drinking or irrigation. Wojtkowska and Bojanowski
(2018) [4] analyzed the impact of sewage and sewage management on the water quality of rivers
by evaluating their eutrophication level. The research objects were the waterways of the Dluga,
Pisia Gagolina, and Utrata rivers and the Srebrna stream. The results showed that the total phosphorus
concentration in Utrata’s water is the lowest (mean 0.38 mg P/L), and the total phosphorus concentration
in Diuga’s water is the highest (mean 2.8 mg P/L). The average concentration of orthophosphate is
between 0.23 mg P/L (Dluga) and 0.45 mg P/L (Pisia Gqgolina). Moreover, the degree of phosphate
pollution in the four river channels and the degree of eutrophication in their water are relatively high
because the main sources of pollution in all rivers are wastewater from sewage treatment plants,
leakage (damage or deliberate leakage) from septic tanks, surface runoff from agricultural areas
and roads, and landfill leachate. According to the regional environmental protection watchdog,
all watercourses are in poor ecological condition. The object of municipal sewage treatment has an
important influence on water quality, and its pollutants can be carried from the sewage discharge place
for a long distance.

Shi et al. (2019) [5] used a two-stage dynamic DEA model to study the impact of water pollution on
the environment and national health. The authors divided variables into two stages. In the first stage
(production), labor, energy, and water consumption were the input variables, and GDP was the desired
output variable, while COD, CO2, and chromium emissions were undesired output variables. In the
second stage (health), the local financial health expenditure, and the number of health technicians were
input variables. The health index and the population mortality rate were the desired output and the
undesired output variables, respectively. Fixed asset investment was selected as the carryover indicator
in both stages. The findings showed that urban sewage damaged the sustainable development of the
environment and economy to a certain extent and also dragged down the degree of national health.

Domestic and foreign scholars have conducted extensive research on the negative effects of urban
sewage. Ho and Goethals’s (2019) [6] critical analysis of the contributions of individuals and subsets of
sustainable development goals (SDGs) points to the global problem of lake and pond eutrophication
caused by massive sewage discharge. Looking at sewage indicators, benthic cover measurements,
macroalgae biometrics, and pollution scoring tools, Abaya et al. (2018) [7] studied Hawaiian coral reefs
and detected that effluent from production may have contributed to the decline. Xin et al. (2019) [8]
studied the impact of complex pollution sources on water quality in the Dengsha River basin of the city
of Dalian, pointing out that the deterioration of water quality caused by excessive nutrient emissions
from various point and non-point sources has been a global challenge. Li et al. (2019) [9] used the green
bias technology progress model derived on the directional distance function to measure technology
progress and its determinants obtained on inputs and outputs in 30 provinces and regions of China
from 1999 to 2015. The results demonstrated that most of China’s provinces and regions overuse water
in industrial production, and that output-oriented technological advances exacerbate the discharge
of water pollutants which affect the green and sustainable development of the economy prior to the
implementation of the 11th Five-year Plan (2006–2010).

Many scholars have taken sewage treatment plants (WWTPs) as the research object, finding that
the carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), hydrogen sulfide (H2S), and other
gases generated by WWTPs in the sewage treatment process also have many negative effects. Hu et al.
(2019) [10] took 344 centralized sewage treatment plants out of 152 typical national industrial parks
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(NIPs) as the research target and established a set of calculation methods to measure the three main
greenhouse gases of CO2, CH4, and N2O emitted by WWTPs in NIPs. Their main results are as follows:
5.64 million tons of CO2 equivalent (CO2-eq) were emitted, including 1.63 Mt CO2-eq on-site, 1.45 Mt
CO2-eq off-site, and 2.56 Mt CO2-eq off-site related to sludge disposal. It can be seen that sewage
treatment produced a large amount of greenhouse gases, causing a certain degree of impact on the
environment and human health.

2.2. Municipal Sewage Treatment Methods

An et al. (2019) [11] discovered that national environmental laws and regulations to curb
industrial wastewater came directly from the source and the structural impact because stringent
environmental regulations can offset to some extent the inflow of the foreign direct energy-induced
effect brought by the scale effect. In addition, the study also highlighted the increasing environmental
investment and trade liberalization to improve the management of important industrial wastewater.
Linge et al. (2012) [12] used datasets of 375 chemicals measured in reverse osmosis (RO) treated
by WW (secondary wastewater), finding that dissolved organic carbon (DOC) in RO osmosis was
between 3.7 and 10.7 mu g/L, attributable to at least one detected chemical, most of which was due to
chemicals detected in less than 25% of samples. In conclusion, RO-treated WW is highly safe and can
be regarded as an indirect source of drinking water.

Chen et al. (2020) [13] proposed a new method called water splitting coagulation (WSC),
which synchronizes the treatment of wastewater containing both metal and organic pollutants.
WSC uses water splitting in the bipolar membrane (BM) to constructively generate flocculation
components (Ni (OH)(x)(2-x) +) by controlling the hydroxide transfer and cation transfer within BM
and on the cation exchange membrane. Through using water cracking in BM, metal ion contaminants
(Mn+, i.e., Ni2+, Fe3+, Cr3+/Cr6+, Co2+) in electroplating wastewater are combined with free hydroxide
ions and form a structure of controllable flocculation. Due to the water splitting in BM and the transition
of metal ions on the cation exchange membrane, the water decomposition in BM and the transfer
of metal ions across the cation exchange membrane is precisely controlled by adjusting the relevant
parameters. Active ion migration during the WSC process follows a delivery mechanism, and it
constructively results in a flocculating constituent (M(OH)x

(n-x)+) by controlling the hydroxide delivery
and cation delivery inside a BM and across a cation exchange membrane. Sure enough, the metal
hydroxide is capable of absorbing textile dyes in (Dye)yM(OH)x

(n-x)+ form following the interaction
as that in an electro-coagulation process. Results manifesting this technology have great potential in
complex industrial wastewater treatment. Membrane technology has become one of the important
technologies for wastewater treatment in the printing and dyeing industry. Using literature metrology
with National Knowledge Infrastructure (CNKI) and Web of Science (TM) (SCI), Liu et al. (2017) [14]
studied the application status and prospect of membrane technology in wastewater treatment of
printing and dyeing industry. The results showed that by 2015, the total capacity of the membrane
technology in dyeing wastewater treatment in China was about 662,000 m(3).d(-1) and the number of
applications was 128 (with capacity >= 500 m(3).d(-1)). Besides, “Ultrafiltration (UF) + ‘reverse osmosis’
(RO)” was the most widely applied process of membrane technologies in dyeing wastewater treatment,
and the “membrane bioreactor (MBR) + RO” and “Continuous Membrane Filtration (CMF) + RO”
were closely behind. Membrane technology is a promising and important technology in the wastewater
treatment of the printing and dyeing industry.

The use of plants and natural processes to treat wastewater is an issue of interest to technicians
and scientists around the world. Taking a southwestern sewage treatment plant in Poland as the
research project, Bawiec et al. (2018) [15] analyzed the effects of temperature and sunlight on
nitrate removal from hydroponic wastewater under greenhouse conditions. The findings denoted
under mild climate conditions that the amount of solar radiation reaching the earth’s surface is not
enough to ensure an effective year-round wastewater treatment process for hydroponic systems.
Traditional wastewater treatment procedures are often insufficient to remove emerging contaminants
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such as PhACs (pharmaceuticals). Photocatalysis is an advanced oxidation process (AOP) that has
been widely used in the removal of PhACs from wastewater due to its low operating cost. However,
the problem of photocatalytic complete mineralization of PhACs is still a challenge. Based on the above
background, Akpotu et al. (2019) [16] reviewed photocatalytic degradation, biodegradation, and the
mechanism of degradation of phenolic compounds in wastewater and introduced the application of
photocatalytic biodegradation system to degradation of PhACs in wastewater. The results deemed
that a complete photocatalytic/biodegradation system is the key to complete mineralization of
PhACs. Aerated wetland is an increasingly recognized natural wastewater treatment technology
that relies heavily on mechanical aeration, but the relationship between volume oxygen mass
transfer coefficient of wastewater in aerated wetland and organic carbon concentration remains
unacquainted. Boog et al. (2020) [17] used clean water and pilot horizontal flow aerated wetland
wastewater to treat domestic sewage and conducted oxygen migration experiments in laboratory-scale
gravel columns. By increasing soluble CODs, the factor describing the ratio of volumetric oxygen
transfer coefficient to clean water in wastewater was reduced. The derived regression equation
alpha = 1.066− 1.372× 10−3 mg CODs l-1 was incorporated into the numerical process model to simulate
the effect of reduced oxygen migration on the hypothetical HF aerated wetland. Simulation results
revealed that a high concentration of organic carbon will reduce oxygen migration in HF aerated
wetland systems, thus reducing the treatment effect. Abbasi and Tauseef (2018) [18] reported a novel
plate-flow-root horizontal bioreactor (SHEFROL (R)) on their own earlier development for the first
time, hinting that the use of artemisoma annua can be used to treat wastewater quickly and efficiently.
In addition to extensive primary and secondary treatments in the removal of suspended solids,
chemical oxygen demand, and biological oxygen demand, E. prostrata is capable of substantially
removing excess nutrients and heavy metals such as copper, nickel, and manganese leading to
eutrophication (nitrogen and phosphorus); the system is expected to yield significant results in sewage
treatment. Using the example of Cape Cod, Massachusetts, U.S.A., Perry et al. (2020) [19] detected
that biofiltration and biofiltration systems can be used to treat sewage to reduce the pollutant load in
sewage pipes and receiving water because they are highly efficient at removing pollutants and can
adapt to different field conditions. Retained soil filters (RSFs) for a vertically flowing constructed
wetland have been successfully tested as a form of continuous post-treatment of sewage from sewage
treatment plants, however, RSFs cannot be used in dry weather conditions. Given that, Brunsch et al.
(2020) [20] brought up a new method that uses a double retained soil filter. In dry weather, RSFs can be
used to polish sewage from sewage treatment plants, and in overflow events can help retain soil filters
to treat combined sewage overflow. The study was conducted in two pilot cities, which identified
dual-use RSF is a promising approach to wastewater treatment that can be expanded and employed.

The difficulty of dewatering residual sludge is the main problem of sewage treatment.
Zhang et al. (2019) [21] employed chitosan (CTS), an organic polymer flocculant widely used
in water and sewage treatment, in sludge treatment. After CTS treatment, the moisture content
of sludge cake decreased from 85.9% to 83.0%, SV30 to about 1/2, the volume of sludge decreased
to 82.9%, and the precipitation and dehydration performance of sludge were greatly improved.
Abu Qdais (2019) [22] also took an in-depth look at sludge treatment by using the multi-criteria
analytic hierarchy process (AHP) to build an AHP model for optimal sludge management to help
Jordan’s water authorities deal with sludge from sewage treatment plants. The AHP model included
three main standards, nine sub-standards, and five sludge management alternatives. The analysis
implicated that the priority of the sludge management scheme is as follows: recovery of energy from
sludge is the highest priority option, followed by composting, untreated disposal, and evaporation
tanks, and finally the least priority option is the production of building materials from sludge.

2.3. Health Effects of Municipal Sewage Treatment Residues

Volker et al. (2019) [23] quantitatively evaluated in vitro (100 species) and in vivo (20 species)
data, respectively. To sum up, the results demonstrated that while traditional treatment methods can
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effectively reduce toxicity, residual effects in wastewater may pose a risk to the ecosystem based on
effect trigger values. Lopes et al. (2020) [24] detected bacterial community structure by denatuated
gel gradient electrophoresis (DGGE) and evaluated antibiotic resistance genes (ARG) by polymerase
chain reaction (PCR). ARG has been detected in sludge samples after alkalization treatment, which
may have an impact on human health. Current technologies used in sewage treatment plants (STPs)
and WWTPs do not completely eliminate pollutants such as non-steroidal anti-inflammatory drugs
(NSAIDs). Almeida et al. (2020) [25] indicated NSAIDs have been found in a variety of environmental
water samples, with concentrations ranging from ng/L to mu g/L, causing serious environmental and
public health problems. Assress et al. (2020) [26] conducted seasonal measurements of incoming
and effluent water samples from three sewage treatment plants and one drinking water treatment
plant in South Africa for eight commonly used azole antifungal agents. Moreover, the risk quotient
(RQ) method was used to investigate human health risks associated with wastewater and drinking
water. Human health risk assessments validated that fluconazole poses a high risk in wastewater and
drinking water and may cause harm to human health and safety.

Metals and chemicals in wastewater undoubtedly have special toxicity. Bozecka and
Sanak-Rydlewska (2018) [27] pointed out that metals interfering with the natural biological balance
and inhibiting self-cleaning processes in water have particular toxic effects, such as cobalt, which enter
the environment from industrial wastewater from electrochemical plants and metallurgical industries.
Supporting this notion, Alharbi and El-Sorogy (2019) [28] collected 27 samples of coastal seawater
and analyzed Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Sr, Cd, Hg, and Pb using an inductively coupled
plasma mass spectrometer. The results exhibited that the concentration order of bb3 is: Sr > Ni >

V > Cu > Zn > Al > Fe > Cr > Mn > Pb > 0 Co > 1 Cd > 2 Hg. This proved that the harmful
substances in sewage do great harm to the human body. Ma et al. (2020) [29] validated that the
heavy metal particles in acid industrial wastewater seriously harm the environment and public health.
The effect of pH on the detection of toxic metals in wastewater was also studied by laser-induced
breakdown spectroscopy and phase transition. The findings validated that the sensitivity of heavy
metal elements in acidic wastewater could be significantly improved by optimizing the pH value
of libs-pt solution. Wierzbicka (2020) [30] argued that nitrates and nitrites in sewage are harmful to
human health when the concentration of them exceeds the safe level. In the end, the study provided a
way to measure the concentration of these compounds by using electrochemical sensors to determine
nitrates, thereby reducing the human impact of nitrates and nitrites in sewage.

Many studies have demonstrated that people who frequently touch wastewater or live near
sewage treatment plants are susceptible to disease. Alawi et al. (2018) [31] measured the concentration
of polycyclic aromatic hydrocarbons (PAHs) in inlet, outlet, and sludge samples from five sewage
treatment plants in Jordan. They found that the total concentration of PAHs in the inlet samples is
1.163~2.866g/mL, the total concentration of PAHs in the outlet samples is 0.518~1.635g/mL, and the
total concentration of PAHs in the sludge samples is 2.430~5.020g/g. In the studied sludge samples,
the total cancer risk of exposure to PAHs is between 3.25 × 10(−5) and 7.43 × 10(−5). In Jordan,
the number of people suspected of developing cancer from exposure to sewage treatment plant sludge
ranges from 33 to 74 per million. This suggests that people exposed to wastewater have an increased
risk of cancer.

Dehghani et al. (2018) [32] explored the concentration of bacteria and fungi in the air at a sewage
treatment plant in southwestern Iran between September 2015 and May 2016. In total, 600 samples
of bacteria and fungi were collected from around the operation unit and compared spatially and
seasonally, indicating that bioaerosols produced by sewage treatment plants pose a threat to the health
of factory workers and nearby residents. Brisebois et al. (2018) [33] assessed the presence of 11 viral
pathogens in four wastewater treatment centers (WTCs) and used a metagenomic approach to describe
the viral community in the air of one WTC. The presence of viruses in WTCs’ aerosols at different
locations was evaluated, and the results of four common air samplers were compared. The study
examined 4 of 11 viruses, including human adenovirus, rotavirus, hepatitis a virus, and herpes simplex



Healthcare 2020, 8, 119 7 of 26

virus type 1. The results of metagenic analysis revealed rare viral RNA sequences in the WTC aerosol,
while the sequences from human DNA viruses are relatively much richer. WTC staff may be susceptible
to viral diseases such as the common cold, influenza, and gastrointestinal infections.

3. Research Method

Efficiency mainly describes the relationship between input and output factors. Through efficiency
measurement, we can understand the performance of a group of input factors in the output process.
Based on the concept of Farrell (1957) [34], Charnes et al. (1978) [35] extended his theory to establish a
generalized mathematical linear programming model, called the CCR (abbreviations of Charnes, A.C.;
Cooper, W.W.; Rhodes, E.L.) model, that can measure multiple inputs and multiple outputs of fixed
returns to scale. In 1984, Banker et al. (1984) [36] proposed the BCC model and revised variable return
to scale (VRS) assumed by the CCR model to VRS. The CCR model and the BCC model measure radial
efficiency—that is, they assume that the input or output terms could increase or decrease in equal
proportion. In 2001, Tone (2001) [37] proposed the difference variable model (Slacks-Based Measure,
SBM), which uses the difference variable as the measurement basis, while considering the slack between
input and output and presenting SBM efficiency in a non-radial estimation and scalar value.

Färe et al. (2000) [38] came up with Network Data Envelopment Analysis (Network DEA),
which states that the production process is composed of many secondary production technologies,
and the secondary production technologies are regarded as Sub-DMUs. Aside from these, the optimal
solution is obtained by using the traditional CCR and BCC models. Compared with the traditional
DEA model, these secondary production technologies are identified as “black boxes”. Moreover,
the Network DEA model applies these secondary production technologies to explore the impact of
input allocation and intermediate wealth on the production process. Following Färe et al., Tone and
Tsutsui (2009) [39] put forward the weighted SBM Network DEA model, whereby the linkage among
various departments of the decision-making unit is taken as the analysis basis of the Network DEA
model, and each department is regarded as a Sub-DMU. In the network DEA model, a dynamic
approach is allowed, in which the DMU is evaluated at different time periods and cargos are introduced
to connect the stages that make up the DMU in different periods (Tone and Tsutsui (2010) [40]).
Dynamic DEA has developed because Kloop (1985) [41] proposed Window analysis in 1985. Using the
dynamic analysis model in the first place, Färe and Grosskopf (1996) [42] were the first to put interlinked
activities into dynamic analysis, with Kao and Hwang (2008) [43], Nemoto and Goto (1999, 2003) [44,45],
Chang et al. (2009) [46], and other scholars publishing relevant analysis models successively.

Tone and Tsutsui (2014) [47] proposed the weighted SBM Dynamic Network DEA model with
the linkage among various departments of the decision-making unit taken as the analysis basis of the
Network DEA model and each department regarded as a Sub-DMU. Carryover activities are taken
as the linkage, but Tone and Tsutsui’s dynamic network DEA model does not consider undesirable
output. Because the dynamic network DEA model does not consider undesirable factors, in order to
solve the problem of the undesirable factors and a multi-stage process, this paper proposes a modified
two-stage dynamic data envelopment analysis model that combines the dynamic network DEA model
and undesirable factors in order to evaluate the two stages of China’s urban sewage treatment and
health from 2014–2017. The target is to avoid an underestimation or overestimation of efficiency value
and improvement.

3.1. Modified Two-Stage Dynamic Data Envelopment Analysis Model

Suppose there are n DMUs (j = 1, . . . ,n), with each having k divisions (k = 1, . . . ,K), and T time
periods (t = 1, . . . ,T). Each DMU has an input and output at time period t and a carryover (link) to the
next t+1 time period.

Set mk and rk to represent the inputs and outputs in each division K, with (k,h)i representing
divisions k to h and Lhk being the k and h division set. The inputs, outputs, links, and carryover
definitions are outlined in the following paragraphs.
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3.1.1. Wastewater Treatment Stage

Xt
1: Sewage treatment plants as input.

Yt
1good: Total wastewater discharge.

Yt
1bad: Municipal sewage treatment capacity and COD concentration.

Zt
(12)in(link between wastewater treatment stage and health stage): Heavy metal pollutant

equivalent concentration.

3.1.2. Health Stage

Xt
2: Number of health technicians as input and local fiscal medical and health expenditure as input.

Yt
2good: Average life expectancy.

Yt
2bad: Carcinogenic risk.

Z(t,(t+1))
oklinput (Carryover): Completed investments in wastewater treatment projects.

The following is the non-oriented model:

(a) Objective function

Overall efficiency: θ∗0 = min

∑T
t=1 Wt

∑K
k=1 Wk

1− 1
mk+linkink+ninputk

(
∑mk

i=1

St−
iok

xt
iok

+
∑linkink

(kh)l=1

st
o(kh)lin

zt
o(kh)lin

+
ninputk∑

kl

s(t,t+1)
oklinput

z(t,t+1)
oklinput

)




∑T
t=1 Wt

∑K
k=1 Wk

1+ 1
r1k+r2k

(
∑r1k

r=1

st+
rokgood

yt
rokgood

+
∑r2k

r=1

st−
rokbad

yt
rokbad

)




Subject to:

Production stage

xt
o1 = Xt

1λ
t
1 + st−

1o(∀t) ;

yt
o1good = Yt

1goodλ
t
1 − st+

1ogood(∀t)

yt
o1bad = Yt

1badλ
t
1 + st−

1obad(∀t)

λt
1 ≥ 0,st−

1o ≥ 0,st+
1ogood ≥ 0,(∀t)

Zt
o(12)in = Zt

(12)inλ
t
1 + St

o(12)in((1, 2)in)

Health stage

xt
o2 = Xt

2λ
t
2 + st−

2o(∀t)

yt
o2good = Yt

2goodλ
t
2 − st+

2ogood(∀t)

yt
o2bad = Yt

2badλ
t
2 + st−

2obad(∀t)

λt
2 ≥ 0,st−

2o ≥ 0,st+
2ogood ≥ 0,st−

2obad ≥ 0,(∀t)

eλt
k =1(∀k,∀t)

Zt
o(kh)in = Zt

(kh)inλ
t
k + St

o(kh)in((kh)in = 1, . . . , linkink)
∑n

j=1 z(t,(t+1))
jk1α

λt
jk =
∑n

j=1 z(t,(t+1))
jk1α

λt+1
jk

(∀k;∀kl; t = 1, . . . , T − 1)

Z(t,(t+1))
oklinput =

n∑
j=1

z
(t,(t+1))

jklinput

λt
jk + s(t,(t+1))

oklinput kl = 1, . . . , ngoodk;∀k;∀t) (1)

(b) Period and division efficiencies
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(b1) Period efficiency:

∂∗0 = min
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(b2) Division efficiency:
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s(t,t+1)
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(
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+
∑r2k

r=1
st−
rokbad
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(b3) Division period efficiency:

ρ∗0 = min

1− 1
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(
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ninputk∑
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)

1 + 1
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(
∑r1k

r=1

st+
rokgood

yt
rokgood

+
∑r2k

r=1
st−
rokbad

yt
rokbad

+)

(4)

3.2. Input, Desirable Output, and Undesirable Output Efficiency

Hu and Wang’s (2006) [48] total-factor energy efficiency index can be used to overcome any
possible biases in the traditional energy efficiency indicators, for which there are eleven key efficiency
models here in this present study: sewage treatment plants as input, total wastewater discharge,
municipal sewage treatment capacity, municipal sewage treatment capacity, COD concentration,
heavy metal pollutant equivalent concentration, number of health technicians as input, local fiscal
medical and health expenditure as input, average life expectancy, carcinogenic risk, and investment in
fixed assets.

The efficiency models are defined as Formula (5)–(7):

Inpute f f iciency =
Targetinput
Actualinput

(5)

Undesirableoutpute f f iciency =
TargetUndesirableoutput
ActualUndesirableoutput

(6)

Desirableoutpute f f iciency =
TargetDesirableoutput
ActualDesirableoutput

(7)

If the target inputs equal the actual inputs, then the efficiencies are 1, which indicates overall
efficiency; however, if the target inputs are less than the actual inputs, then the efficiencies are less than
1, which indicates overall inefficiency.

If the target desirable outputs are equal to the actual desirable outputs, then the efficiencies are 1,
indicating overall efficiency; however, if the target desirable outputs are more than the actual desirable
outputs, then the efficiencies are less than 1, indicating overall inefficiency.

If the target undesirable outputs are equal to the actual undesirable outputs, then the efficiencies
are 1, indicating overall efficiency; however, if the target undesirable outputs are less than the actual
undesirable outputs, then the efficiencies are less than 1, indicating overall inefficiency.



Healthcare 2020, 8, 119 10 of 26

4. Empirical Analysis

4.1. Data Description

4.1.1. Explanation of Variables

This paper evaluates the wastewater treatment efficiency and health efficiency of 30 provincial
administrative units based on the two-stage dynamic DEA model. As the focus of the study is on
the provinces in China, Taiwan and Hong Kong and Macao special administrative regions are not
analyzed. In addition, due to limited data of Tibet autonomous region, it is also not included.

In the wastewater treatment stage, completed investment in wastewater treatment project and
sewage treatment plants are adopted as the input variables. Municipal sewage treatment capacity is
the desirable output, while total wastewater discharge, COD concentration, and heavy metal pollutant
equivalent concentration are undesirable output variables. Among them, completed investment
in wastewater treatment project is selected as the carryover indicator, and heavy metal pollutant
equivalent concentration is an intermediate variable. In the health stage, number of health technicians
and local fiscal medical and health expenditure are taken as input variables. Average life expectancy
and carcinogenic risk are agreed and not agreed outputs, respectively. See Table 1 for details.

Table 1. Input and Output Variables.

Stage Variable Unit

Wastewater
Treatment Stage

Input Sewage treatment plants Number

Output

Total wastewater discharge 10,000 tons
Municipal sewage treatment capacity 10,000 CBM
COD concentration %�
Heavy metal pollutant equivalent concentration (intermediate) —

Carryover Completed investment in wastewater treatment project 10,000 CNY

Health Stage
Input Number of health technicians 10,000 people

Local fiscal medical and health expenditure 100 million
CNY

Output Average life expectancy —
Carcinogenic risk —

The data on completed investment in wastewater treatment project, total wastewater discharge,
COD concentration, number of health technicians, local fiscal medical and health expenditure,
and average life expectancy are from the provincial annual data of the National Bureau of Statistics
from 2014 to 2017. Data on sewage treatment plants and municipal sewage treatment capacity are
obtained from China Environmental Statistics Yearbook 2014–2017. Heavy metal pollutant equivalent
concentration and carcinogenic risk are calculated on the basis of different heavy metal concentrations
from China Environmental Statistics Yearbook. The specific variables are described as follows.

1O Completed investment in wastewater treatment project (investment). It refers to the investment
that has been completed in a project to treat wastewater.

2O Sewage treatment plants. It refers to the number of sewage treatment plants in a province
(municipality directly under the central government, autonomous region).

3O Total wastewater discharge. It refers to the sum of industrial wastewater discharge and domestic
sewage discharge.

4OMunicipal sewage treatment capacity. It is defined as the total amount of sewage treated in a
province (municipality directly under the central government, autonomous region) in a year.

5O COD concentration. It is defined as the concentration of oxygen required to oxidize organic
pollutants in water with chemical oxidants. COD refers to the use of chemical oxidants (such as
potassium dichromate) in water reducing substances (such as organic matter) and the oxidation
decomposition of oxygen consumption, reflecting the extent of water pollution by reducing substances.
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The reducing substances can reduce the content of dissolved oxygen in the water, leading to the death
of organisms in the water due to hypoxia and the deterioration of water quality. A higher COD denotes
a higher content of reducing substances in the water and the more serious pollution. Since organic
matter is the most common reducing substance in water, COD is an important parameter to measure
organic pollution.

6O Heavy metal pollutant equivalent concentration. It is calculated on the basis of different heavy
metal concentrations from China Environmental Statistics Yearbook. It refers to the degree of harm to
the environment. The higher the equivalent concentration of pollution is, the greater is the degree
of harm to the environment. According to China’s environmental quality standard for surface water
GB3838-2002, the heavy metal index includes 6 items: cadmium (Cd), lead (Pb), chromium (Cr),
nickel (Ni), zinc (Zn) and copper (Cu). However, there are some essential elements to support life,
such as Zn, Cu and so on. No matter the lack or surplus of these elements, they will affect human
health. There are other heavy metal elements, such as cadmium, chromium, etc., which have obvious
toxic effects. No matter how they get into the body, they will cause poisoning, leading to serious illness
and even death. Based on the existing literature [49,50] and the quality monitoring data of Dalian’s key
drinking water sources [51], chemical carcinogens include hexavalent chromium, cadmium and arsenic.
So in this paper, hexavalent chromium, cadmium and arsenic are used as the indexes affecting health.

7O Number of health technicians. Health Technicians includes practicing doctors,
assistant practicing doctors, registered nurses, pharmacists (judges), test technicians (judges),
image and trainee medical technicians, hygiene supervisors (medicine, nursing, skills) and other
health professionals.

8O Local fiscal medical and health expenditure. It refers to the medical and health expenditure
items in the general budget of the local government. It includes expenditure on medical and health
management affairs, expenditure on medical services, expenditure on medical security, expenditure on
disease prevention and control, expenditure on health supervision, expenditure on maternal and child
health care, expenditure on rural health, etc.

9O Average life expectancy. It refers to the number of years that people can continue to live after
the exact age of X at a certain age-specific mortality level. It is an indicator to measure the health level
of residents in a country, a nation, or a region and can reflect the quality of life in a society.

10O Carcinogenic risk. It calculates the carcinogenic risk value of total chromium emission,
arsenic emission, and cadmium emission. The health risks of individual carcinogenic pollutants in
multiple exposure pathways are as follows:{

Ri = CDI × S f , R < 0.01
Ri = 1− exp[−(CDI × S f )], R > 0.01

(8)

In the formula, Ri represents the health risk value of a single pollutant under various exposure
pathways, CDI represents the exposure dose, Sf represents the carcinogenic slope factor of the pollutant,
and the unit is mg·kg−1

·d−1. The higher the Ri value is, the greater is the health risk of a carcinogen—that
is, the higher the cancer probability of the pollutant. In concrete analysis, the maximum acceptable
risk level of the International Council on Cancer (ICRP), 5×10−5, is usually taken as a reference value,
which is interpreted as no more than five people per 10,000 are affected by the chemical with a new
disease or cancer. The formula for calculating the total risk of various carcinogens is shown below.

Rt
i =

j∑
i=1

Ri (9)

Here, Rt
i represents the total health risk of all pollutants in all exposure pathways.

Figure 1 illustrates the flow structure of this paper by using a flow chart. See Figure 1 for details.



Healthcare 2020, 8, 119 12 of 26

Healthcare 2020, 8, x 12 of 27 

 





j

i
iR

i
t

R
1  

（9） 

Here, Rti represents the total health risk of all pollutants in all exposure pathways. 
Figure 1 illustrates the flow structure of this paper by using a flow chart. See Figure 1 for details. 

 
Figure 1. Network Dynamic Model. 

4.1.2. Data Description 

This study selects the input and output data of 30 provinces in China from 2014 to 2017 to 
calculate the average, the maximum, the minimum, and the standard values of completed investment 
in wastewater, treatment project, sewage treatment plants, total wastewater discharge, municipal 
sewage, treatment capacity, COD concentration, heavy metal pollutant equivalent concentration, 
number of health technicians, local fiscal medical and health expenditure, average life expectancy, 
and carcinogenic risk. See Table 2 for details. 

Table 2. Descriptive Statistics of Inputs and Outputs. 

Variable Average Maximum Minimum Std. Dev. 
Investment 34,779.3333 151,037.0000 697.2500 36,582.7239 
Sewage treatment plants 66.5250 252.2500 10.2500 52.3666 
Total wastewater discharge 238,315.7487 909,221.5500 25,263.5425 192,271.1729 
Municipal sewage treatment capacity 145,230.0167 636,730.0000 12,268.2500 126,412.0661 
COD concentration 0.2722 0.6708 0.0760 0.1348 
Heavy metal pollutant equivalent concentration 10.3559 69.7938 0.1652 14.8889 
Number of health technicians 27.4513 64.8700 3.7000 16.0865 
Local fiscal medical and health expenditure 409.0873 1031.3250 79.8475 207.4266 
Average life expectancy 75.7869 82.4363 70.1982 2.6148 
Carcinogenic risk 56.8171 354.6568 1.1537 82.1253 

4.2. Overall Efficiency Analysis 

This section calculates the overall efficiency of each province from 2014 to 2017 and ranks the 30 
provinces in descending order according to their overall efficiency. From 2014 to 2017, the total 
efficiency values of DEA in the two stages from wastewater treatment input to health output of 30 

Figure 1. Network Dynamic Model.

4.1.2. Data Description

This study selects the input and output data of 30 provinces in China from 2014 to 2017 to calculate
the average, the maximum, the minimum, and the standard values of completed investment in
wastewater, treatment project, sewage treatment plants, total wastewater discharge, municipal sewage,
treatment capacity, COD concentration, heavy metal pollutant equivalent concentration, number of
health technicians, local fiscal medical and health expenditure, average life expectancy, and carcinogenic
risk. See Table 2 for details.

Table 2. Descriptive Statistics of Inputs and Outputs.

Variable Average Maximum Minimum Std. Dev.

Investment 34,779.3333 151,037.0000 697.2500 36,582.7239
Sewage treatment plants 66.5250 252.2500 10.2500 52.3666
Total wastewater discharge 238,315.7487 909,221.5500 25,263.5425 192,271.1729
Municipal sewage
treatment capacity 145,230.0167 636,730.0000 12,268.2500 126,412.0661

COD concentration 0.2722 0.6708 0.0760 0.1348
Heavy metal pollutant
equivalent concentration 10.3559 69.7938 0.1652 14.8889

Number of health technicians 27.4513 64.8700 3.7000 16.0865
Local fiscal medical and
health expenditure 409.0873 1031.3250 79.8475 207.4266

Average life expectancy 75.7869 82.4363 70.1982 2.6148
Carcinogenic risk 56.8171 354.6568 1.1537 82.1253

4.2. Overall Efficiency Analysis

This section calculates the overall efficiency of each province from 2014 to 2017 and ranks the
30 provinces in descending order according to their overall efficiency. From 2014 to 2017, the total
efficiency values of DEA in the two stages from wastewater treatment input to health output of
30 provinces in China reveal that the overall efficiency of Ningxia and Qinghai is 1 for all four years,
reaching the optimal state. See Table 3 for details.
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Table 3. Overall Efficiency by Provinces from 2014 to 2017.

Rank DMU Overall 2014 2015 2016 2017

1 Ningxia 1.0000 1.0000 1.0000 1.0000 1.0000
1 Qinghai 1.0000 1.0000 1.0000 1.0000 1.0000
3 Hainan 0.7792 1.0000 1.0000 0.6728 0.6566
4 Tianjin 0.7221 0.4940 0.7298 1.0000 0.7880
5 Beijing 0.6995 0.6128 0.6246 1.0000 0.6897
6 Hunan 0.6881 0.6261 0.7270 1.0000 1.0000
7 Gansu 0.6819 0.6800 0.7212 0.7447 0.8294
8 Inner Mongolia 0.5990 0.7142 0.6840 0.6338 0.6289
9 Liaoning 0.5811 0.5005 0.4266 1.0000 0.5220
10 Shanghai 0.5659 0.6057 0.6119 0.6299 0.6285
11 Guangxi 0.5068 0.4722 0.8034 0.4483 0.4770
12 Heilongjiang 0.4862 0.4012 0.4492 0.6608 0.4207
13 Fujian 0.4814 0.6681 0.6465 0.6293 0.3519
14 Jiangxi 0.4807 0.3937 0.9707 0.4845 0.3273
15 Anhui 0.4454 0.3629 0.4198 0.4054 0.7646
16 Yunnan 0.4446 0.5005 0.5450 0.5184 0.5070
17 Shanxi 0.4291 0.3487 0.3600 0.7558 0.2920
18 Xinjiang 0.4170 0.3664 0.3989 0.4379 0.4565
19 Zhejiang 0.4162 0.6225 0.6191 0.6424 0.4910
20 Chongqing 0.3815 0.3205 0.3154 0.5248 0.4011
21 Guangdong 0.3644 0.5815 0.5866 0.5653 0.6149
22 Jilin 0.3587 0.3512 0.3055 0.3664 0.3939
23 Hubei 0.3487 0.4796 0.3866 0.4494 0.3819
24 Jiangsu 0.3477 0.3888 0.4970 0.5555 0.6052
25 Guizhou 0.3374 0.2534 0.6627 0.2668 0.2346
26 Shaanxi 0.3267 0.3064 0.3522 0.3100 0.2972
27 Henan 0.3218 0.3008 0.3363 0.2895 0.6852
28 Shandong 0.2708 0.3005 0.3319 0.3552 0.3122
29 Hebei 0.2580 0.2551 0.2553 0.2797 0.2592
30 Sichuan 0.2575 0.2655 0.3647 0.2958 0.2397

The total efficiency of Hunan is 0.6261 in 2014, 0.7270 in 2015, and 1 in both 2016 and 2017,
meaning the resource utilization efficiency is at the optimal state. On the contrary, Hainan, where the
overall efficiency of the four years is the third highest, has an efficiency value of 1 in 2014 and 2015,
but then the total efficiency value of the following two years falls to 0.6728 and 0.6566, indicating a
deterioration of resource integration there. In total, the overall efficiencies of Gansu, Jiangsu, Xinjiang,
Anhui, and Henan advance steadily in these four years, while Inner Mongolia displays a slow decline,
and the overall efficiency of Fujian plummets to 0.3519 in 2017.

The highest value of overall efficiency for many provinces appears in 2016, such as Liaoning,
Zhejiang, Heilongjiang, Shanxi, and Chongqing. The total efficiencies of Tianjin and Beijing increase
steadily in the first three years and reach 1 in 2016, but then these two municipalities directly under
central government control plummet to approximately 0.6 in 2017 and fail to maintain an optimal state.
The highest value of Guangxi’s overall efficiency is 0.8034 in 2015, and then its overall efficiency in
the other three years is about 0.4. The efficiency values of Shanghai, Guangdong, Yunnan, and Hubei
change little in these four years, while those of Guizhou, Jilin, Shandong, Shaanxi, Sichuan, and Hebei
change slightly, but their overall efficiency values are still at a low level.

Figure 1 compares the distribution of total efficiency in the 30 provinces from 2014 to 2017. The gap
in total efficiency can be clearly seen through the radar chart. See Figure 2 for details.
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4.3. Efficiency Comparison of the Two Stages

The efficiency of the wastewater treatment stage is visibly higher than that of the health stage,
and many provinces reach the optimal state in the first stage. For example, the efficiencies of the
wastewater treatment stage of Beijing, Guangdong, Hunan, and Shanghai are 1 from 2014 to 2017,
and the efficiency values of Fujian and Gansu are 1 for three consecutive years. On the whole, the two
stages illustrate a steady but slow growth trend, indicating that the five development concepts of
“innovation, coordination, green development, openness, and sharing” have been deeply rooted in
the hearts of the country’s citizens. As for the wastewater treatment stage, the efficiencies of Beijing,
Guangdong, Hunan, Qinghai, Ningxia, and Shanghai are 1 from 2014 to 2017, and those of Gansu,
Fujian, Inner Mongolia, and Zhejiang reach 1 for three years. However, there are still many provinces
with low efficiency values. Guizhou, Hebei, Jilin, and Chongqing all have efficiency values below 0.5
in the four years. These provinces should take sewage treatment into account and make the best use of
capital and personnel. See Table 4 for details.

The efficiency of the wastewater treatment stage has an obvious promoting effect on the total
efficiency of each province, while the health stage to some extent inhibits the continuous growth of the
total efficiency value of each province. For the four years, the efficiency of wastewater treatment in
Beijing is 1. However, since the efficiency value of the second stage reaches an optimal state only in
2016, while it is around 0.3 in the other three years, bringing the total efficiency of Beijing to around 0.7
and ranking seventh in China. The efficiency of wastewater treatment in Guangdong is 1 for the four
years, and that of the health stage is 0.1630, 0.1731, 0.1305, and 0.2297 from 2014 to 2017. The total
efficiency is about 0.6, indicating that the health stage clearly is below total efficiency.

The efficiency of each province is closely related to geographical location, economic development,
government policies, and other factors. The efficiencies of Ningxia and Qinghai in the two stages from
2014 to 2017 are 1, which is the top in China, thanks to their superior geographical location and the
implementation of environmental protection concepts as well as due to the small number of factories
and economic backwardness there. For Hunan and Shanghai, their efficiencies of wastewater treatment
are 1 in each of the four years because of their developed economies and advanced wastewater
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treatment equipment. In these four years, the efficiencies of the two stages for Shaanxi and Chongqing
are relatively low, rarely exceeding 0.5. In 2015, the efficiency of the health stage in Shaanxi is only
0.1531, or far behind other provinces. Both Shaanxi and Chongqing are heavily industrialized cities
with severe pollution and have poor environmental protection awareness. Therefore, they must balance
the relationship between economic development and environmental protection.

Table 4. Comparison of Two-stage Efficiency Scores from 2014–2017.

DMU 2014S_1 2014S_2 2015S_1 2015S_2 2016S_1 2016S_2 2017S_1 2017S_2

Anhui 0.4169 0.3090 0.4739 0.3657 0.5501 0.2607 0.5293 1.0000
Beijing 1.0000 0.2256 1.0000 0.2493 1.0000 1.0000 1.0000 0.3794
Fujian 1.0000 0.3363 1.0000 0.2930 1.0000 0.2587 0.4576 0.2462
Gansu 0.8924 0.4675 1.0000 0.4424 1.0000 0.4894 1.0000 0.6589

Guangdong 1.0000 0.1630 1.0000 0.1731 1.0000 0.1305 1.0000 0.2297
Guangxi 0.5987 0.3457 0.6067 1.0000 0.5336 0.3629 0.5708 0.3833
Guizhou 0.2783 0.2284 0.3253 1.0000 0.3300 0.2035 0.2595 0.2098
Hainan 1.0000 1.0000 1.0000 1.0000 0.3455 1.0000 0.3132 1.0000
Hebei 0.4109 0.0992 0.4059 0.1048 0.4275 0.1319 0.3973 0.1210
Henan 0.3998 0.2018 0.4776 0.1950 0.4686 0.1104 0.3705 1.0000

Heilongjiang 0.4976 0.3048 0.5962 0.3021 0.5402 0.7813 0.3743 0.4670
Hubei 0.7229 0.2362 0.5582 0.2151 0.6015 0.2974 0.6306 0.1333
Hunan 1.0000 0.2522 1.0000 0.4540 1.0000 1.0000 1.0000 1.0000

Jilin 0.4095 0.2930 0.3904 0.2207 0.4718 0.2609 0.4988 0.2891
Jiangsu 0.5649 0.2127 0.7894 0.2046 1.0000 0.1110 1.0000 0.2104
Jiangxi 0.4727 0.3147 0.9413 1.0000 0.6525 0.3166 0.4790 0.1756

Liaoning 0.6086 0.3925 0.6550 0.1983 1.0000 1.0000 0.7582 0.2858
Inner Mongolia 1.0000 0.4285 1.0000 0.3680 1.0000 0.2676 0.5394 0.7185

Ningxia 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Qinghai 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Shandong 0.4066 0.1944 0.4737 0.1900 0.5940 0.1164 0.5025 0.1219
Shanxi 0.4125 0.2849 0.5179 0.2020 0.5115 1.0000 0.3468 0.2372

Shaanxi 0.4268 0.1860 0.5514 0.1531 0.4201 0.1998 0.3648 0.2296
Shanghai 1.0000 0.2113 1.0000 0.2237 1.0000 0.2598 1.0000 0.2571
Sichuan 0.3844 0.1467 0.5509 0.1785 0.4416 0.1499 0.3469 0.1324
Tianjin 0.5261 0.4618 1.0000 0.4597 1.0000 1.0000 0.5761 1.0000

Xinjiang 0.4921 0.2407 0.5268 0.2710 0.4771 0.3988 0.3848 0.5282
Yunnan 0.7433 0.2576 0.8036 0.2863 0.7000 0.3369 0.6452 0.3687
Zhejiang 1.0000 0.2450 1.0000 0.2383 1.0000 0.2847 0.7205 0.2616

Chongqing 0.4047 0.2362 0.4165 0.2143 0.3804 0.6692 0.4042 0.3981

S_1 refers to wastewater treatment stage in DEA analysis; S_2 refers to health stage in DEA analysis.

The average efficiency of the wastewater treatment stage is 0.6837, and that of the health stage is
0.4243 by calculation. We observe that the efficiency of the first stage is obviously higher than that
of the second stage. Based on the average efficiency of each province, we divide the studied areas
into four parts: high-high, low-low, high-low, and low-high. Among them, eight provinces including
Beijing, Gansu, Hunan, Liaoning, Inner Mongolia, Ningxia, Qinghai, and Tianjin have higher values
than the average efficiency in the two stages, while ten provinces including Hebei, Henan, Hubei,
Jilin, Shandong, Shaanxi, Sichuan, Chongqing, Xinjiang, and Guizhou have lower values than the
average efficiency in the two stages. Anhui, Guangxi, Hainan, Heilongjiang, Jiangxi, and Shanxi have
efficiencies in the second stage that are higher than the average level, but their efficiencies in the first
stage are lower than the average level. Fujian, Guangdong, Jiangsu, Shanghai, Yunnan, and Zhejiang
have higher efficiencies than the average level in the first stage, but lower than average efficiencies in
the second stage. Therefore, the health stage needs great improvement. See Figure 4 for details.
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4.4. Itemized Efficiency Analysis

4.4.1. Sewage Treatment Plants’ Efficiency Analysis

The efficiency value of many provinces reflects a trend of steadily increasing, with Gansu rising
from 0.8586 in 2014 to 1 in 2015, 1 in 2016, and 1 in 2017. Jiangsu goes from 0.4809 in 2014 to 0.6838 in
2015, reaching 1 in both 2016 and 2017. Beijing, Guangdong, Hunan, Ningxia, Qinghai, and Shanghai all
have an efficiency value of 1 for the four years, while Gansu, Zhejiang, Fujian, and Inner Mongolia have
an efficiency value of 1 for three consecutive years. We see that these provinces attach great importance
to the sewage treatment problem and have invested manpower, material resources, and financial
resources to treat sewage and achieve outstanding results. However, in some provinces, the efficiencies
do not increase significantly or even decline. The efficiency value of Guizhou is at a low level of
0.2–0.4. Shandong has a small range of 0.4–0.5. Jilin has a four-year efficiency value of about 0.5.
Guangxi decreases from 0.9211 in 2014 to 0.7581 in 2017. Heilongjiang decreases from 0.6638 in 2014 to
0.3511 in 2017. See Table 5 for details.

Table 5. Sewage Treatment Plants’ Efficiency of Each Province from 2014 to 2017.

DMU 2014 2015 2016 2017 DMU 2014 2015 2016 2017

Anhui 0.5628 0.6014 0.6694 0.6872 Jiangxi 0.5653 0.9913 0.8502 0.6205
Beijing 1.0000 1.0000 1.0000 1.0000 Liaoning 0.7596 0.7956 1.0000 0.8886
Fujian 1.0000 1.0000 1.0000 0.7105 Inner Mongolia 1.0000 1.0000 1.0000 0.6029
Gansu 0.8586 1.0000 1.0000 1.0000 Ningxia 1.0000 1.0000 1.0000 1.0000

Guangdong 1.0000 1.0000 1.0000 1.0000 Qinghai 1.0000 1.0000 1.0000 1.0000
Guangxi 0.9211 0.8265 0.6874 0.7581 Shandong 0.4602 0.5384 0.4618 0.4015
Guizhou 0.3814 0.4183 0.4008 0.2806 Shanxi 0.5484 0.6583 0.6146 0.4570
Hainan 1.0000 1.0000 0.4100 0.4163 Shaanxi 0.6087 0.8278 0.5847 0.5386
Hebei 0.5463 0.5268 0.4774 0.4541 Shanghai 1.0000 1.0000 1.0000 1.0000
Henan 0.6306 0.7306 0.5659 0.4441 Sichuan 0.5128 0.6876 0.4716 0.3640

Heilongjiang 0.6638 0.7223 0.4984 0.3511 Tianjin 0.5720 1.0000 1.0000 0.7542
Hubei 0.7274 0.6477 0.6297 0.6698 Xinjiang 0.4714 0.5270 0.4761 0.4152
Hunan 1.0000 1.0000 1.0000 1.0000 Yunnan 0.8410 0.9539 0.8767 0.6917

Jilin 0.4999 0.4613 0.4424 0.5850 Zhejiang 1.0000 1.0000 1.0000 0.8071
Jiangsu 0.4809 0.6838 1.0000 1.0000 Chongqing 0.5088 0.5022 0.4813 0.5381
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4.4.2. Total Wastewater Discharge Efficiency Analysis

Beijing, Gansu, Guangdong, Hunan, Ningxia, Qinghai, and Shanghai have total wastewater
discharge efficiencies of 1 for all four years. The efficiencies of Inner Mongolia, Fujian, and Zhejiang for
2014–2016 are 1. The efficiencies of Jiangsu, Tianjin, Heilongjiang, and Hainan are 1 for two consecutive
years. Nonetheless, this efficiency variable generally presents a slight downward trend. The efficiencies
of Inner Mongolia, Fujian, and Zhejiang in the first three years are 1, but then drop to 0.8934, 0.8082,
and 0.6339 in 2017, respectively. Tianjin falls from 0.9004 in 2014 to 0.7884 in 2017, or down by 0.1120.
Xinjiang falls from 0.8954 in 2014 to 0.6342 in 2017, or down by 0.2612. Hainan owns the biggest drop
from 1 in 2014 and 2015 to 0.5048 in 2014, or down by 0.4952. Guizhou and Henan exhibit a slight
change, fluctuating between 0.4 and 0.5 and ranking lower in efficiency. See Table 6 for details.

Table 6. Total Wastewater Discharge’ Efficiency of Each Province from 2014 to 2017.

DMU 2014 2015 2016 2017 DMU 2014 2015 2016 2017

Beijing 1.0000 1.0000 1.0000 1.0000 Hainan 1.0000 1.0000 0.6088 0.5048
Gansu 1.0000 1.0000 1.0000 1.0000 Xinjiang 0.8954 0.7470 0.8145 0.6342

Guangdong 1.0000 1.0000 1.0000 1.0000 Yunnan 0.6456 0.9542 0.8504 0.6157
Hunan 1.0000 1.0000 1.0000 1.0000 Jilin 0.6642 0.6635 0.8353 0.7531
Ningxia 1.0000 1.0000 1.0000 1.0000 Guangxi 0.5940 0.7070 0.7588 0.7427
Qinghai 1.0000 1.0000 1.0000 1.0000 Anhui 0.5530 0.6569 0.7742 0.7511

Shanghai 1.0000 1.0000 1.0000 1.0000 Shanxi 0.6257 0.7676 0.7299 0.5125
Inner Mongolia 1.0000 1.0000 1.0000 0.8934 Shandong 0.5837 0.6572 0.7338 0.6225

Fujian 1.0000 1.0000 1.0000 0.8082 Jiangxi 0.3800 0.9412 0.6872 0.4948
Tianjin 0.9004 1.0000 1.0000 0.7884 Shaanxi 0.5889 0.7590 0.6177 0.5168

Liaoning 0.8744 0.9935 1.0000 0.7823 Hebei 0.5927 0.6104 0.6099 0.6282
Zhejiang 1.0000 1.0000 1.0000 0.6339 Sichuan 0.5218 0.7266 0.6250 0.5342
Jiangsu 0.6556 0.8949 1.0000 1.0000 Chongqing 0.6350 0.6824 0.5389 0.5452

Heilongjiang 0.7443 1.0000 1.0000 0.7075 Henan 0.4487 0.5329 0.5254 0.4463
Hubei 0.7184 0.7522 0.8531 0.8781 Guizhou 0.4134 0.5202 0.5381 0.4614

4.4.3. COD Concentration Efficiency Analysis

The efficiency value of the COD concentration variable is relatively high, reaching 1 in about 10%
of the provinces every year, but showing a downward trend. Fujian drops from 1 in 2014 to 0.4024 in
2017, or down 0.5976; Hainan falls by 0.9411 from 1 in 2014 to 0.0589 in 2017, and Jiangsu decreases
by 0.8115 from 0.9882 in 2014 to 0.1767 in 2017. The situation is improving, and the pollutants in the
water gradually decrease. All provinces should still attach great importance to the harmful substances
in the water to the human body and strengthen scientific and technological investment or introduce
professional equipment to degrade harmful substances in water. See Table 7 for details.

Table 7. COD Concentration Efficiency of Each Province from 2014 to 2017.

DMU 2014 2015 2016 2017 DMU 2014 2015 2016 2017

Beijing 1.0000 1.0000 1.0000 1.0000 Tianjin 0.2015 1.0000 1.0000 0.3223
Gansu 1.0000 1.0000 1.0000 1.0000 Liaoning 0.3153 0.2683 1.0000 0.7960

Guangdong 1.0000 1.0000 1.0000 1.0000 Hainan 1.0000 1.0000 0.0514 0.0589
Hunan 1.0000 1.0000 1.0000 1.0000 Henan 0.3001 0.3544 0.6712 0.5966
Ningxia 1.0000 1.0000 1.0000 1.0000 Sichuan 0.3083 0.4328 0.5171 0.4110
Qinghai 1.0000 1.0000 1.0000 1.0000 Guangxi 0.4695 0.4724 0.2896 0.3706

Shanghai 1.0000 1.0000 1.0000 1.0000 Anhui 0.3235 0.3445 0.4537 0.4187
Zhejiang 1.0000 1.0000 1.0000 1.0000 Xinjiang 0.2224 0.5815 0.2950 0.2729
Jiangsu 0.9882 1.0000 1.0000 1.0000 Hebei 0.2284 0.1980 0.4570 0.2761

Inner Mongolia 1.0000 1.0000 1.0000 0.5132 Shanxi 0.1538 0.2468 0.3714 0.2040
Fujian 1.0000 1.0000 1.0000 0.4024 Chongqing 0.1737 0.1559 0.3182 0.3197
Jiangxi 1.0000 1.0000 0.6437 0.6717 Jilin 0.1574 0.1188 0.2918 0.3171
Yunnan 1.0000 0.6255 0.5327 0.9736 Heilongjiang 0.1700 0.1112 0.2263 0.1722

Shandong 0.4330 0.4760 1.0000 0.9622 Shaanxi 0.1937 0.1221 0.1380 0.1066
Hubei 1.0000 0.4921 0.5347 0.5454 Guizhou 0.1442 0.1152 0.1547 0.1403
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4.4.4. Number of Health Technicians’ Efficiency Analysis

The efficiency values in the four years for Hainan, Ningxia, and Qinghai are 1, reaching the
optimal state. Numerous provinces register their highest efficiency in 2016, including Heilongjiang,
Beijing, Chongqing, Shanghai, Shanxi, and Liaoning, while those hitting their lowest are Anhui, Henan,
Guangxi, Inner Mongolia, Gansu, Jiangsu, and Guangdong. The efficiency values of most provinces
decrease, including Fujian, Jiangxi, Hubei, Shandong, and Liaoning, which fall significantly from
0.8530, 0.7321, 0.7001, 0.5785, and 0.6105 in 2014 to 0.3135, 0.2042, 0.1299, 0.1001, and 0.2188 in 2017,
respectively. A few provinces see slow or no distinct changes in efficiency. The efficiency values of
Anhui and Henan are 0.9169 and 0.7007 in 2014, but they plunge in 2015 and 2016. Anhui drops to
0.6647 in 2015 and to 0.3336 in 2016, while Henan drops to 0.5977 in 2015 and to 0.1168 in 2016. In 2017,
both provinces increase by 0.0831 and 0.2993, respectively. The efficiency of Hebei in the four years is
about 0.1, while Shaanxi’s efficiency is about 0.2, with little change and always lower than the national
average. See Table 8 for details.

Table 8. Number of Health Technicians’ Efficiency of Each Province from 2014 to 2017.

DMU 2014 2015 2016 2017 DMU 2014 2015 2016 2017

Hainan 1.0000 1.0000 1.0000 1.0000 Jiangsu 0.7048 0.7366 0.1228 0.6248
Ningxia 1.0000 1.0000 1.0000 1.0000 Liaoning 0.6105 0.1801 1.0000 0.2188
Qinghai 1.0000 1.0000 1.0000 1.0000 Hubei 0.7001 0.7722 0.3714 0.1299
Hunan 0.6707 0.6566 1.0000 1.0000 Beijing 0.3041 0.2387 1.0000 0.4180
Tianjin 0.6125 0.5881 1.0000 1.0000 Guizhou 0.2356 1.0000 0.2545 0.2444
Gansu 0.8962 0.9333 0.4810 0.6639 Shanxi 0.2283 0.1997 1.0000 0.2495

Guangxi 0.7723 1.0000 0.3741 0.8207 Chongqing 0.2930 0.3010 0.6643 0.4077
Anhui 0.9169 0.6647 0.3336 1.0000 Heilongjiang 0.2365 0.2478 0.7185 0.4254
Jiangxi 0.7321 1.0000 0.7362 0.2042 Shandong 0.5785 0.6212 0.1031 0.1001
Yunnan 0.4186 0.9861 0.8880 0.3739 Sichuan 0.2507 0.8140 0.1501 0.1523
Zhejiang 0.6708 0.6606 0.6407 0.6008 Xinjiang 0.2521 0.2485 0.3394 0.4666
Henan 0.7007 0.5977 0.1168 1.0000 Shanghai 0.2727 0.2919 0.3621 0.3575

Inner Mongolia 0.6201 0.7951 0.2425 0.7468 Jilin 0.2698 0.2692 0.2766 0.3520
Fujian 0.8530 0.7627 0.3297 0.3135 Shaanxi 0.1588 0.1581 0.2336 0.2395

Guangdong 0.5961 0.8107 0.1775 0.6058 Hebei 0.1152 0.1448 0.1580 0.1382

4.4.5. Local Fiscal Medical and Health Expenditure Efficiency Analysis

The efficiency values of Hainan, Hunan, Ningxia, Qinghai, and Zhejiang in the four years are 1,
and about 10% of the provinces reach the optimal state every year. This expenditure reveals a slow
increasing trend. For example, Tianjin rises from 0.5638 in 2014 and 0.4998 in 2016 to 1 in 2016 and
2017, Heilongjiang increases from 0.3731 in 2014 to 0.5918 in 2017, and Xinjiang goes from 0.3322 in
2014 to 0.5897 in 2017. There is still great improvement in this variable. See Table 9 for details.

Table 9. Local Fiscal Medical and Health Expenditure Efficiency of Each Province from 2014 to 2017.

DMU 2014 2015 2016 2017 DMU 2014 2015 2016 2017

Anhui 1.0000 0.6330 0.3453 1.0000 Jiangxi 0.7481 1.0000 0.7528 0.2652
Beijing 0.3516 0.2649 1.0000 0.4331 Liaoning 1.0000 0.3057 1.0000 0.3909
Fujian 1.0000 0.8257 0.3525 0.3393 Inner Mongolia 0.9177 1.0000 0.3558 0.6901
Gansu 1.0000 1.0000 0.4978 0.6539 Ningxia 1.0000 1.0000 1.0000 1.0000

Guangdong 0.7814 1.0000 0.2045 0.5836 Qinghai 1.0000 1.0000 1.0000 1.0000
Guangxi 1.0000 1.0000 0.3832 1.0000 Shandong 1.0000 1.0000 0.1586 0.1669
Guizhou 0.2212 1.0000 0.2704 0.2731 Shanxi 0.3415 0.2626 1.0000 0.3904
Hainan 1.0000 1.0000 1.0000 1.0000 Shaanxi 0.2170 0.2087 0.3302 0.3448
Hebei 0.1496 0.1801 0.2178 0.2068 Shanghai 0.2788 0.2950 0.3292 0.3384
Henan 1.0000 0.7914 0.1561 1.0000 Sichuan 0.3181 1.0000 0.1750 0.1836

Heilongjiang 0.3731 0.3565 0.8442 0.5918 Tianjin 0.5638 0.4998 1.0000 1.0000
Hubei 1.0000 1.0000 0.3797 0.2104 Xinjiang 0.3322 0.3215 0.4581 0.5897
Hunan 1.0000 1.0000 1.0000 1.0000 Yunnan 0.4538 1.0000 1.0000 0.3635

Jilin 0.3348 0.3166 0.3157 0.4565 Zhejiang 1.0000 1.0000 1.0000 1.0000
Jiangsu 1.0000 1.0000 0.1711 0.9140 Chongqing 0.3110 0.2912 0.6741 0.4235
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4.4.6. Average Life Expectancy Efficiency Analysis

We note that the efficiency value of average life expectancy increases rapidly. Anhui, Beijing,
Gansu, and Fujian rise to 1 in 2017 from 0.1921, 0.8226, 0.3367, and 0.2326 in 2014, respectively,
increasing by 0.8079, 0.1774, 0.6633, and 0.7674. By the end of 2017, 26 provinces reach the optimal
state. Guizhou, Hainan, Jilin, Heilongjiang, Ningxia, Qinghai, Shaanxi, Shanghai, Tianjin, Xinjiang,
Chongqing, and other provinces all have an efficiency value of 1 in the four years, which hints that
national health awareness has been enhanced and the happiness of urban residents has been improved.
See Table 10 for details.

Table 10. Average Life Expectancy Efficiency of Each Province from 2014 to 2017.

DMU 2014 2015 2016 2017 DMU 2014 2015 2016 2017

Anhui 0.1921 0.3924 1.0000 1.0000 Jiangxi 0.2701 1.0000 0.2700 1.0000
Beijing 0.8226 1.0000 1.0000 1.0000 Liaoning 0.3222 1.0000 1.0000 1.0000
Fujian 0.2326 0.2640 1.0000 1.0000 Inner Mongolia 0.3863 0.3183 1.0000 1.0000
Gansu 0.3367 0.3272 1.0000 1.0000 Ningxia 1.0000 1.0000 1.0000 1.0000

Guangdong 0.1458 0.1066 0.5191 0.2394 Qinghai 1.0000 1.0000 1.0000 1.0000
Guangxi 0.2423 1.0000 1.0000 0.2667 Shandong 0.1405 0.1346 1.0000 1.0000
Guizhou 1.0000 1.0000 1.0000 1.0000 Shanxi 1.0000 0.9895 1.0000 1.0000
Hainan 1.0000 1.0000 1.0000 1.0000 Shaanxi 1.0000 1.0000 1.0000 1.0000
Hebei 1.0000 0.7839 1.0000 1.0000 Shanghai 1.0000 1.0000 1.0000 1.0000
Henan 0.1398 0.1633 1.0000 1.0000 Sichuan 0.3579 0.1100 1.0000 1.0000

Heilongjiang 1.0000 1.0000 1.0000 1.0000 Tianjin 1.0000 1.0000 1.0000 1.0000
Hubei 0.1709 0.1486 1.0000 1.0000 Xinjiang 1.0000 1.0000 1.0000 1.0000
Hunan 0.1778 0.3775 1.0000 1.0000 Yunnan 0.4190 0.1733 0.2172 1.0000

Jilin 1.0000 1.0000 1.0000 1.0000 Zhejiang 0.1931 0.1833 0.2200 0.2219
Jiangsu 0.1530 0.1338 1.0000 0.1767 Chongqing 1.0000 1.0000 1.0000 1.0000

4.4.7. Carcinogenic Risk Efficiency Analysis

The efficiency value of the carcinogenic risk variable decreases on the whole. Jiangxi, Shanxi,
Guizhou, and Heilongjiang decrease from 1 in 2014 to 0.3264, 0.3023, 0.5330, and 0.8218 in 2017,
respectively, by falling in a range of 0.6736, 0.6977, 0.467, and 0.1782. Fujian decreases from 0.7877
in 2014 to 0.3487 in 2017, Hebei from 0.3306 in 2014 to 0.1492 in 2017, Hubei from 0.6554 in 2014 to
0.4459 in 2017, Jilin from 0.9362 in 2014 to 0.2030 in 2017, and Sichuan from 0.9168 in 2014 to 0.4633 in
2017. Among them, Jiangxi, Shanxi, and Jilin have a relatively large decline of about 0.7. To conclude,
the medical treatment level has been enhanced. See Table 11 for details.

Table 11. Carcinogenic Risk Efficiency of Each Province from 2014 to 2017.

DMU 2014 2015 2016 2017 DMU 2014 2015 2016 2017

Anhui 1.0000 1.0000 0.3958 1.0000 Jiangxi 1.0000 1.0000 1.0000 0.3264
Beijing 0.3093 0.9799 1.0000 0.7569 Liaoning 1.0000 0.5499 1.0000 0.8666
Fujian 0.7877 0.3660 0.3629 0.3487 Inner Mongolia 1.0000 0.2633 0.7644 1.0000
Gansu 0.9143 0.6865 1.0000 1.0000 Ningxia 1.0000 1.0000 1.0000 1.0000

Guangdong 0.4110 0.9185 1.0000 1.0000 Qinghai 1.0000 1.0000 1.0000 1.0000
Guangxi 1.0000 1.0000 0.9134 1.0000 Shandong 1.0000 0.8995 0.7511 0.8108
Guizhou 1.0000 1.0000 0.4215 0.5330 Shanxi 1.0000 0.7226 1.0000 0.3023
Hainan 1.0000 1.0000 1.0000 1.0000 Shaanxi 0.9800 0.6032 0.1785 0.4552
Hebei 0.3306 0.1751 0.1507 0.1492 Shanghai 0.3903 0.3766 0.3392 0.2928
Henan 0.7261 1.0000 0.5265 1.0000 Sichuan 0.9168 0.9280 0.8317 0.4633

Heilongjiang 1.0000 1.0000 1.0000 0.8218 Tianjin 0.4525 0.6332 1.0000 1.0000
Hubei 0.6554 0.4917 0.4740 0.4459 Xinjiang 0.5720 0.8965 1.0000 1.0000
Hunan 1.0000 1.0000 1.0000 1.0000 Yunnan 1.0000 0.8333 1.0000 1.0000

Jilin 0.9362 0.3451 0.7298 0.2030 Zhejiang 0.3591 0.4854 0.7831 0.3870
Jiangsu 0.5214 0.9871 0.3526 0.3436 Chongqing 0.4435 0.2358 1.0000 0.9119
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5. Conclusions

According to the two-stage (wastewater treatment stage and health stage) dynamic SBM DEA
model, this research analyzes the input and output efficiencies of 30 provinces in China, obtaining the
following conclusions.

(1) The efficiency values of each province in China are influenced by geographical location,
urban development, and pillar industries of each region’s economy. Ningxia, Qinghai, Beijing,
and Hainan have higher efficiency values of various indicators that are close to or at the optimal
state and are among the top in China. Located in the northwest inland arid region, Ningxia’s water
environmental problems come mainly from agricultural water pollution, soil erosion, and water supply
and demand imbalances, while its urban industrial and living wastewater is not serious. Moreover,
the development of Ningxia’s urbanization is unbalanced with a smaller population and less domestic
sewage, and so its efficiency is higher. Qinghai is located in the northeast of the Qinghai-Tibet Plateau,
and due to its remote geographical location, its population is sparse. In addition, its economy is
dominated by agriculture and animal husbandry, and so urban sewage is less. As the capital of China,
Beijing is the political center, cultural center, and scientific research center, which is not based on
the development of industry. Hainan is located in the southernmost part of China. Its economy is
dominated by tourism, housing industry, agriculture, and low-carbon manufacturing industry. It also
has a small resident population, and so it has less urban industrial wastewater and domestic sewage.
Sichuan, Chongqing, Hebei, Shandong, Guizhou, and Shaanxi have lower efficiency values because
the cities of Deyang and Panzhihua in Sichuan, Jinan, Weifang, and Zibo in Shandong, Handan and
Tangshan in Hebei, Liupanshui in Guizhou, and Baoji in Shaanxi are all famous heavy industry cities
with extremely serious industrial water pollution. Sichuan has a basin topography, Chongqing is
mountainous, Guizhou is located in the southwest hinterland, and Hebei, Shandong, and Shaanxi
are located in north China. Therefore, the pollutants are not easy to diffuse, and thus, the provinces
mentioned above have low efficiency values.

(2) The efficiency value in the health stage is distinctly lower than that in the wastewater treatment
stage, which puts a drag on the total efficiency of each province, and so there is more room to enhance
efficiency. In the health stage, the efficiency of number of health technicians is significantly lower (by
0.2) than that of local fiscal medical and health expenditure. The efficiency values of number of health
technicians in Hebei, Shaanxi, Jilin, Shanghai, and Xinjiang are relatively low at less than 0.5 in the four
years. Shaanxi, Jilin, and Xinjiang have low efficiency values because of their remote geographical
location and the gap between remuneration and workers’ treatment to the more developed areas
of China. Hebei has low efficiency because of the siphon effect, thus presenting that high-quality
resources are greatly concentrated in Beijing and Tianjin. Conversely, Shanghai has low efficiency
values because of fierce competition and insufficient government input. The efficiency of carcinogenic
risk is higher than the efficiency of average life expectancy, but the gap is narrowing. It means that
carcinogenic risk efficiency is declining year by year and average life expectancy is increasing because
26 provinces in 2017 are at a level of 1, reflecting improved medical levels and the enhancement of
national health consciousness. We can see that improving the efficiency of health stage mainly helps
the efficiency of number of health technicians. One problem that every province should overcome is
how to retain talents and give full play to the advantages of those talents.

(3) Each province should choose the best economic development mode according to its own
situation to pursue a balance between economic development and environmental protection. Cities in
Ningxia and Qinghai have relatively light water pollution, but the economic development of these two
provinces is relatively backward. They can thus combine the original pillar industries, agriculture and
animal husbandry, with “Internet +” to monitor the growth of crops or animals through artificial
intelligence in real time. They may also consider simultaneously using the Internet to promote
products more efficiently and cheaply, thus helping to boost sales and accelerate the development
of their digital economy. At the same time, Ningxia and Qinghai could set up policies to attract
investment (except for projects with high energy consumption and high pollution) and develop their
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own brand of special tourism. Sichuan, Chongqing, Hebei, Shandong, Guizhou, and Shaanxi should
optimize their industrial structure. First, in response to the national call for mass entrepreneurship
and innovation, they must gradually abandon heavy industry and develop high-tech enterprises to
alleviate environmental problems such as water pollution. In addition, they can vigorously develop
tourism and other service industries and go deeper into the excavation of the regional characteristics
of specific investment projects. For example, Zunyi in Guizhou, Yan’an in Shaanxi, and Baiyang Lake
in Hebei can develop the red tourism (taking the memorial sites and markers formed by the great
achievements made by the people under the leadership of the communist party of China in the period
of revolution and war as the carrier, and taking the revolutionary history, revolutionary deeds and
revolutionary spirit as the connotation, we organize thematic tourism activities to remember and learn
revolutionary martyr) industry and promote revolutionary traditional education.

(4) Provinces should retain health professionals in order to maintain the health of their citizens.
For example, Hebei, Shaanxi, Jilin, and Xinjiang should establish a talent incentive model to improve
the salary and welfare of health technicians, so that they are more willing to stay in their hometown
and make contributions to medical and health care. Furthermore, each province could attract academic
medical personnel to obtain employment and feasibly improve the level of local medical practices.
In first-tier cities, like Shanghai, they should put people first, provide more jobs for health technicians,
reduce the intensity of competition for jobs, and improve the happiness and sense of belonging of
health technicians from all aspects so as to give take advantage of the personnel team.

(5) All provinces should place great importance to sewage treatment. First, enterprises and
governments should target to increase technological input and introduce advanced sewage treatment
equipment from abroad, or develop high-tech products independently, which would be beneficial for
reaching the target of reducing the harm from chromium, arsenic, cadmium, and other substances
in sewage to the human body. Second, another option is to set up efficient sewage treatment plants
to prevent the secondary harm of sewage to humans and promote the recycling of water resources.
Economically developed provinces such as Beijing, Shanghai, Guangdong, Zhejiang, and Jiangsu
should make the best use of their economic, geographical, and talent advantages and take the lead
in developing fruitful sewage treatment plants. Third, backed by national enforcement, laws and
regulations should be enacted to curb the arbitrary discharge of urban production and domestic sewage
and to reduce the quantity of sewage at the source. Finally, governments can strengthen environmental
protection education, raises people’s environmental protection consciousness, and allow people to
participate in social supervision.

(6) The central government can promote coordinated regional development. For instance, in terms
of coordinated development in the Beijing-Tianjin-Hebei region, Beijing should gradually relieve itself
of non-capital functions, optimize the urban layout, and expand the ecological space of environmental
capacity. Hebei and Tianjin then can actively undertake the non-capital functions of Beijing, such as
transforming Hebei from heavy industry to green coordinated development and initiating high-quality
development of Tianjin’s economy. Coordinated development in the Yangtze River Delta can give full
play to the leading role of Shanghai by sharing sewage treatment experience and technology with other
cities. Jiangsu, Zhejiang, and Anhui should accept and actively learn advanced technology and give full
play to their respective advantages, so as to achieve the goal of narrowing their economic development
gap and to set up rational industrial division and green and sustainable economic development in
the Yangtze River Delta. All provinces in China deserve to speed up the flow of factors, narrow the
economic gap between regions, and finally, realize common prosperity.

The data of urban sewage treatment from 2014 to 2017 are selected in this paper. The research
period is relatively short and the situation of sewage treatment in rural China isn’t taken into account.
We will continue to follow up China’s sewage treatment situation in the following period.
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