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ABSTRACT

The metagenomic paradigm allows for an under-
standing of the metabolic and functional potential
of microbes in a community via a study of their
proteins. The substrate for protein identification
is either the set of individual nucleotide reads
generated from metagenomic samples or the set
of contig sequences produced by assembling
these reads. However, a read-based strategy using
reads generated by next-generation sequencing
(NGS) technologies, results in an overwhelming
majority of partial-length protein predictions. A nu-
cleotide assembly-based strategy does not fare
much better, as metagenomic assemblies are typic-
ally fragmented and also leave a large fraction of
reads unassembled. Here, we present a method
for reconstructing complete protein sequences
directly from NGS metagenomic data. Our frame-
work is based on a novel short peptide assembler
(SPA) that assembles protein sequences from their
constituent peptide fragments identified on short
reads. The SPA algorithm is based on informed
traversals of a de Bruijn graph, defined on an
amino acid alphabet, to identify probable paths
that correspond to proteins. Using large simulated
and real metagenomic data sets, we show that our
method outperforms the alternate approach of iden-
tifying genes on nucleotide sequence assemblies
and generates longer protein sequences that can
be more effectively analysed.

INTRODUCTION

Metagenomics pertains to the study of the genomic
content of microbial communities using cultivation-inde-
pendent techniques and has revolutionized the field of
microbial ecology (1,2). A fundamental computational
problem in metagenomic analysis is assembly, where the

goal is to infer from the input set of nucleotide sequence
reads, complete or near-complete genome sequences of
the microbial species present in the sample. Assembled
sequences serve as substrates for gene identification
and annotation, and thus form the basis for taxonomic
and functional analysis of the community.
Metagenomic projects now routinely use next-gener-

ation sequencing (NGS) technologies (3–5) for generating
nucleotide sequence data from DNA samples; however,
those NGS technologies that allow for a cost-effective
and deep sequencing of metagenomic samples, currently
generate short reads (75–150 bp). Although nucleotide
assembly benefits from the deep coverage afforded
by NGS data, other factors like genomic variations
at the strain level and differential abundance of the organ-
isms in the community confound de novo reconstruction
of genomes.
Published metagenomic studies illustrate the challenge

in assembling even medium complexity communities, with
assemblies resulting in short contig lengths and leaving
a large fraction of the input reads unassembled. For
instance, assembly of 6.6 Gb of Sanger data (7.7 million
reads of length 850 bp) generated from metagenomic
samples collected as part of the Global Ocean Sampling
expedition studying surface ocean microbial communities
(6) resulted in a contig size (N50) of 1.6 kb with 53%
of the reads unassembled. The MetaHIT project (7)
generated 576.7 Gb of Illumina GA data (8 billion reads
of length 75 bp) and an assembly of these data resulted in
a contig size (N50) of 2.2 kb with 57% of the reads
unassembled. Metagenomic assembly remains an active
area of research with several recently proposed assemblers
that have been designed specifically to assemble data
generated from mixtures of genomes (8–11). These
methods vary in their scalability (to handle large data
sets with 10 to 100 million reads) and also in their
overall assembly quality.
A consequence of poor nucleotide sequence assemblies

is that a vast majority of the gene sequences identified
from these data are fragmentary. Annotations of these
fragmentary sequences can suffer from a lack of
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accuracy and specificity. In addition, if annotation and
analysis are limited to the assembled data, then a large
fraction of the input data can remain unanalysed,
leading to an incomplete picture of the community.
Although a read-based analysis strategy, involving identi-
fication of genes on reads and their subsequent annota-
tion, can be used for data sets containing tens of millions
of reads, this strategy becomes computationally prohibi-
tive on data sets containing a few billion (or even
hundreds of millions of) reads.
As the availability of long protein sequences is extremely

beneficial to any metagenomic data analysis and de novo
nucleotide assembly remains a challenge, in this article, we
describe an alternate approach to analyse proteins in
metagenomic data. We address the problem of assembling
complete protein sequences directly from their constituent
peptide fragments identified on short reads and without
the need for nucleotide assembly. Inference of complete
protein sequences from metagenomic data sets will
provide a more accurate picture of the functional and
metabolic potential of the microbial community. We are
motivated by the following observations:

(i) Prokaryotic and viral genomes have high gene
coding density. In these genomes, �90% of the
sequence codes for genes (12). Consequently, a
majority of the sequence reads generated by
random samplings of these genomes will contain
at least part of a protein-coding gene.

(ii) Amino acid conservation extends over a larger taxo-
nomic range compared with nucleotide conservation.
This follows from redundancy in the genetic code
whereby the 64 codons (nucleotide triplets) code
for only 20 amino acids, thus allowing for different
nucleotide sequences to code for the same protein
sequence. The implication of this redundancy is that
nucleotide polymorphisms, a striking feature of
natural microbial populations (6) and a major con-
founding factor in nucleotide assembly of related
strains, will not be an obstacle when the assembly is
carried out at the amino acid level, as there is a high
degree of protein sequence conservation across strains
from the same species. In fact, if there is conservation
in the function of a protein across a wide taxonomic
range, there will also be a high degree of similarity
in its sequence across this range. This means that
the sequence coverage for this protein can be high if
that protein is present in many genomes, even if the
individual abundances of those genomes are low.
The use of amino acid substitution matrices (13,14)
will allow for the identification and grouping of frag-
ments belonging to such a protein.

(iii) There are de novo gene finders for metagenomic data
that can predict genes on short reads with high
accuracy and are computationally efficient (15–17).
These gene finders can be used to predict fragmentary
protein sequences (short peptides) from reads.

We present an assembly framework and describe short
peptide assembler (SPA)—a new algorithm for protein
reconstruction that can deal with large short-read NGS

data sets. Although, in principle, our approach can use
data from any of the NGS technologies, we test and
evaluate our approach on paired-end short reads from
Illumina’s sequencing technology (4). To our knowledge,
MetaORFA (18) remains the only publication to-date ad-
dressing the problem of protein reconstruction from frag-
mentary peptide sequences in metagenomic data. This
approach, which used a modified version of the EULER
algorithm (19) for nucleotide assembly, was demonstrated
on metagenomic data generated using the early releases of
454’s pyrosequencing technology.

MATERIALS AND METHODS

Assembly framework

The input to our framework is the set of short nucleotide
reads generated from a metagenomic sample. Our
assembly framework has three stages—Gene-Finding
(GF), Short Peptide Assembler (SPA) and Post
Processing (PP). In the GF stage, a metagenomic gene
finder is used to identify protein-coding genes from the
reads; given the nature of the reads, these predictions
will almost exclusively be fragmentary protein sequences
(short peptides). The resulting set of short peptides
(denoted by S) is the input to the SPA stage. A set of
paths corresponding to amino acid sequences is identified
by SPA, and this set is further refined in the PP stage to
output protein sequences.

Our SPA algorithm uses the concept of a de Bruijn
graph (20,21) defined on an amino acid alphabet. A de
Bruijn graph G is a directed graph and is constructed
from S as follows: the vertices in G denote the distinct
k-mers (that is, substrings of length k) present in sequences
in S, and the (directed) edges in G represent the distinct
(k+1)-mers present in sequences in S. An edge exists
from vertex vi to vertex vj if S has a (k+1)-mer whose
length k prefix corresponds to vi and whose length k suffix
corresponds to vj. With this definition, it can be seen that
every path traversal in G generates an amino acid
sequence, and this sequence has the following property:
the prefix (k+1)-mer of the sequence corresponds to the
first edge in this path, and subsequent consecutive (k+1)-
mers in the sequence correspond to consecutive adjacent
edges in the path.

Notation
Here, we define the various terms and concepts used in the
SPA algorithm description. For vertex v in G, we use
mer(v) to denote the k-mer associated with v; similarly,
for edge e in G, we use mer(e) to denote the (k+1)-mer
associated with e. For vertex v, we define coverage(v) as
the total number of occurrences of mer(v) in sequences in
S; we note that multiple occurrences of mer(v) in a protein
sequence each contribute to the total count. Similarly, we
define coverage(e) for an edge e, as the total number of
occurrences of mer(e) in sequences in S. For a vertex v, we
define seq(v) to be the subset of sequences in S that
contain mer(v). Let P be a path of length l, with the
sequence of vertices <v1,v2, . . . ,vl>, where v1 and vl are
the source and sink vertices, respectively, in P. For sink
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vertex vl, we define n_pred(vl)=vl-n, if l> n, and
n_pred(vl)=v1, otherwise (where n is a natural
number). For source vertex v1, we define n_succ(v1)=
vn + 1, if l> n, and n_succ(v1)=vl, otherwise. We define
n_overlap(vl)= jseq(vl)\seq(n_pred(vl))j and
n_overlap(v1)= jseq(v1)\seq(n_succ(v1))j.

SPA strategy
The assembly process involves traversals of the graph G to
identify a set of initial paths. These paths, which are not
necessarily edge-disjoint, are seeded by vertices chosen
based on their coverage and are constructed using a
greedy strategy that chooses the next vertex in the path
based on the number of sequences in S that it shares with
its neighbours. The initial paths are then merged and
extended using their pairwise similarity. Finally, sequences
inS that are as-yet unassigned to paths are used to latch and
extend these paths. The various merging and latching steps
involve the use of paired-end information. Our objective is
to identify paths corresponding to full-length true protein
sequences while avoiding paths that produce chimeric
protein sequences or random amino acid sequences.

SPA algorithm

The graph G is first pre-processed by removing vertices
and edges that have low coverage (below a preset thresh-
old), and then re-computing coverage for the neighbours
of the removed vertices and edges. The algorithm has the
following stages:

Stage 1. Identification of initial path set (IPS): paths
that constitute the IPS are identified in greedy traversals
of G. The vertices that seed these paths are chosen based
on their coverage. To increase the chance of identifying
sufficiently long paths (while keeping in mind computa-
tional efficiency considerations), we consider only vertices
with high coverage as seeds; let C denote this set of seed
candidates. It is also desirable to defer selecting as seeds
those vertices with high coverage and high degrees, as their
associated k-mers may correspond to repeat regions. To
implement this, we rank the vertices in C using a function
F that takes into account their coverage as well as their
in-degree and out-degree; our choice is an exponential
weighted function F vð Þ ¼ coverageðvÞ

expðindegree vð Þ+outdegree vð ÞÞ, where v is
a vertex in G.

The vertices in C are considered for seeding paths in the
order of decreasing F values. For a seed vertex, we extend
its path first by adding a new sink vertex in each step until
one of the stopping rules is satisfied. Subsequently, we
extend this path by adding a new source vertex in each
step until one of the stopping rules is satisfied. When
adding a new sink or source vertex to the path, that
vertex u is chosen that has a maximum value for
n_overlap(u), for a preset value of n. Path extension for
a new sink (source) stops when one of the following rules
is satisfied: (i) the current sink (source) is a terminal vertex
in G; (ii) the n_overlap(u) value for the current sink
(source) is below a preset threshold; (iii) any potential
new sink (source) is such that the edge connecting it has
coverage below a preset threshold; or (iv) repeat handling
fails. Repeats manifest themselves as cycles in the graph.

Our repeat handling essentially involves keeping track of
cycles during graph traversal and continuing extension of
the current path as long as a cycle has not been traversed
twice in succession.
When a stopping rule has been encountered during

the extension of a path, this path is added to IPS.
Subsequently, the graph G is updated as follows: first,
the sequences in S that contribute to this path are
identified and assigned to it. This is done by keeping
track of those sequences that contain k-mers contributing
to this path. For a path P, let S(P) denote this set of
sequences. Each s 2 S(P) is aligned to the sequence
generated by traversing P and is assigned to P if the align-
ment match score is high and covers nearly the full length
of s. These sequences are removed from further consider-
ation, and graph G is subsequently updated by trimming
low-coverage vertices and edges. Second, the F values for
the vertices in C are also updated, although no re-ranking
is done. After these updates to G, the next highest ranked
vertex in C is considered for seeding a new path.
Stage 2. Clustering of paths in IPS: highly similar path

sequences are merged by a greedy clustering procedure
similar to the approach in (22). Briefly, the paths in IPS
are processed in order of longest to shortest. A path in
IPS that is being processed is compared with existing
cluster representatives. If this path sequence is within a
preset similarity threshold of a cluster representative, it
is aligned to that representative and added to the repre-
sentative’s cluster; otherwise, this path starts a new cluster
(with it being the cluster’s representative). The alignments
are carried out using a substitution matrix. Let CPS
denote the set of paths constituting the cluster representa-
tives at the end of stage 2.
Stage 3. Recruitment of unassigned sequences in S: se-

quences in S that do not belong to any paths as yet are
compared with the paths in CPS and merged with a path if
they are determined to have a high similarity match over
most of their length. For computational efficiency, this
process is accomplished by anchoring candidate pairs
(a read sequence and a path) using their shared k-mers,
and then computing the similarity score of the inferred
alignment; no indels are allowed in this stage. Let RPS
denote the set of paths at the end of this step.
Stage 4. Extension and merging of paths in RPS: pairs

of paths that are linked by paired-end reads and either
have short overlaps or do not overlap but are bridged
by multiple reads are identified and merged. In addition,
single paths are extended in one direction if they have
multiple reads that support the extension. Subsequently,
pairs of paths that have a long overlap (regardless of
paired read support) are merged. The alignments in this
stage also use a substitution matrix. The resulting set of
path sequences constitutes the input to the post-processing
step.

Post-processing (PP)
Over-prediction of genes by gene finders can affect the
specificity of SPA. We address this issue by re-calling
genes on sequences generated by SPA. For a path
sequence, the multiple sequence alignment (MSA) of its
constituent peptide sequences induces an MSA of their
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corresponding nucleotide reads. This nucleotide MSA is
essentially an assembly of the nucleotide reads. We use the
same gene finder that was used in the GF stage, to verify
that this stretch of DNA sequence codes for the same
amino acid sequence as the original path sequence. The
set of paths produced by the last stage of SPA is filtered
using this process, and only paths longer than a preset
value are output. The resulting set of paths, denoted by
P, constitutes the output of the assembler.

SPA output
The assembly output consists of two representations of a
path—(i) the sequence that is generated by traversing the
vertices of the path and (ii) MSA of its constituent peptide
fragments. Various statistics on the path, including path
length, depth of coverage at each alignment column and
the entropy of each column, are also output.

Implementation
We implemented a prototype of the SPA algorithm in
C++(Supplementary Data SA). In addition to data struc-
tures for graph G, we implemented auxiliary data struc-
tures for efficient querying. This includes an inverted index
using a hash table to store the list of sequences in S for a
given k-mer. A path P is implemented using a C++object
and contains identifiers of the sequences in S that belong
to P along with their alignment information. The MSA
for path P is obtained by aligning the constituent peptide
sequences to the path sequence for P.
Our program is available for download at sourceforge

(http://sourceforge.net/projects/spa-assembler/).

Data sets used for the evaluations

We used several simulated and real data sets described
later in the text to evaluate our approach. Data sets DS1
and DS2 are amino acid sequence sets and were used to
evaluate the SPA algorithm alone (without the GF and PP
stages of the assembly framework). Data sets DS3, DS4,
DS5 and DS6 are nucleotide sequence sets derived from
collections of genomes and were used to evaluate the per-
formance of the SPA algorithm in conjunction with the
GF and PP stages.

DS1 (individual genomes)
We downloaded protein sets of 1165 (complete) prokary-
otic genomes available in GenBank and generated peptide
fragments of length 33 amino acids via random sampling,
such that each protein sequence had a coverage depth of
100. Each of these 1165 peptide fragment sets was given
as input to SPA. Each genome’s protein set was clustered
at 95% identity using cd-hit (23), and the resulting set of
non-redundant sequences constituted the reference set R
for that genome.

DS2 (protein fragments from a collection of genomes)
This data set was created by combining the peptide
fragment sets, generated as described for DS1, from
genomes of all sequenced Lactobacillus and Streptococcus
strains. This combined set consisted of 53 663 385 peptide
fragments and was the input to SPA. The reference protein
set R consisted of the non-redundant sequences obtained

by clustering the full set of proteins from the chosen
genomes using cd-hit at 95%.

DS3 (simulated oral metagenome)
We simulated a human oral microbiome community
starting with a collection of 25 genomes sequenced from
microbes isolated from this environment. This collection
included sequenced genomes of Lactobacillus (strains
of acidophilus, brevis, casei, fermentum, gasseri, rhamnosus
and salivarius), Prevotella melaninogenica,
Propionibacterium (strains of acnes), Streptococcus
(strains of agalactiae, gordonii, mitis, mutans, pneumonia,
pyogenes and sanguinis), Treponema denticola, Veillonella
parvula and Fusobacterium nucleatum. These 25 genomes
were used to generate a community of 500 genomes using
the population sampler in MetaSim (24) that allows gener-
ation of offsprings from a single source sequence. The
generation was done in a way that the initial 25 genomes
did not all contribute the same numbers of offsprings
(Supplementary Data SD and Supplementary Table S1).
For this generation, the population sampler was run
using the Jukes–Cantor model of DNA evolution (25).
These 500 genome sequences were then sampled (at 10�
depth of coverage) using wgsim (26) to generate 100-bp
paired-end reads from inserts of size 300 bp. To study the
effect of sequencing errors, we generated two data sets
using wgsim, denoted as DS3 (0%) and DS3 (1%), corres-
ponding to 0% sequencing error and 1% sequencing error,
respectively. Both DS3 (0%) and DS3 (1%) contained
115 991 500 reads. The reference protein set R in this case
was the set of 40 724 non-redundant sequences obtained
by clustering the combined set of proteins from the initial
25 genomes using cd-hit at 95%.

DS4 (simulated marine metagenome)
Using a collection of 25 sequenced genomes, we simulated
a surface marine metagenomic community containing
organisms at varying abundances (27). This collec-
tion included strains of Candidatus pelagibacter,
Prochlorococcus marinus, Synechococcus, Flavobacteriales,
Nitrosococcus oceani, Vibrio, Photobacterium,
Erythrobacter, Alteromonas, Roseobacter and Shewanella
(Supplementary Data SD and Supplementary Table S1).
Two data sets DS4 (0%) and DS4 (1%), each containing
103 915 150 reads, were generated in a manner similar to
the method used for DS3. The reference protein set R in
this case was the set of 64 913 non-redundant sequences
obtained by clustering the combined set of proteins from
the initial 25 genomes using cd-hit at 95%.

DS5 (saliva sample)
We downloaded a human microbiome data set (GenBank
SRA accession SRS013942) generated from a saliva
sample as part of the Human Microbiome Project
(HMP) (28). The data set was already quality trimmed
and filtered to remove human sequences, and it consisted
of 14 637 415 Illumina reads (paired-end 100-bp reads).

DS6 (stool sample)
This data set (GenBank SRA accession SRS014459) con-
sisted of Illumina paired-end reads generated from a stool
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sample as part of the HMP. It was also already quality
trimmed and filtered to remove human sequences, and it
consisted of 86 362 260 reads (100-bp reads).

RESULTS AND DISCUSSION

As part of the evaluations using data sets DS3, DS4, DS5
and DS6, we compared our peptide assembly framework
with an alternate strategy that involves assembling nucleo-
tide sequence reads and then identifying genes on
the assembled contigs. MetaORFA, the peptide

reconstruction method that we noted earlier, was not
included in our evaluation. Although (to our knowledge)
MetaORFA is not currently available as an open-source
program, more importantly, it also had a different aim
that is not directly comparable with ours. As described
in the original article (18), MetaORFA first generates
the set of all six-frame translations from the input
sequence reads set, and then assembles the peptides that
are subsequently searched against reference protein data-
bases for diversity analysis. Because of the nature of the
input sequences (six-frame translations), the MetaORFA
output will contain a large number of assembled peptide
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Figure 1. Specificity (SP) and sensitivity (SN) of the various methods on the oral microbiome data (DS3) as a function of reference protein sequence
length coverage. Panels (A) and (B) show the performance when using FGS as gene finder on DS3 (0%) and DS3 (1%), respectively. Panels (C) and
(D) show the performance when using MGA as gene finder on DS3 (0%) and DS3 (1%), respectively. VEL, Velvet; SOA, SOAPdenovo; MVV,
MetaVelvet; MID, Meta-IDBA; IDU, IDBA-UD.
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sequences that are not true protein sequences, thus
adversely affecting the method’s overall sensitivity and
specificity (the criteria we use for our evaluation).
Furthermore, the six-frame translation approach does
not scale well for large Illumina data sets.
Six different nucleotide assemblers were used in our

comparisons (Supplementary Data SB): Velvet (29),
MetaVelvet (10), CLC (http://www.clcbio.com),
SOAPdenovo (30), Meta-IDBA (9) and IDBA-UD (11).
All evaluations were carried out using two different
metagenomic gene finders: FragGeneScan (FGS) (16)
and MetaGeneAnnotator (MGA) (15). Only output

sequences �60 amino acids in length were considered in
the evaluation for each method, including ours.

All methods were evaluated with respect to specificity,
sensitivity, percentage of chimeric sequences generated
(chimera rate) and percentage of reads incorporated in
assembly (read assembly rate). We define the various
terms here. Let P denote the set of amino acid se-
quences output by a method, and let R denote the set of
reference protein sequences. A sequence in P is defined
to be ‘c% length matched’ to a sequence in the reference
setR if the two sequences have an alignment with�90% se-
quence identity and the alignment covers � c% of the
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Figure 2. Specificity (SP) and sensitivity (SN) of the various methods on the marine metagenome data (DS4) as a function of reference protein
sequence length coverage. Panels (A) and (B) show the performance when using FGS as gene finder on DS4 (0%) and DS4 (1%), respectively. Panels
(C) and (D) show the performance when using MGA as gene finder on DS4 (0%) and DS4 (1%), respectively. VEL, Velvet; SOA, SOAPdenovo;
MVV, MetaVelvet; MID, Meta-IDBA; IDU, IDBA-UD.
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length of the reference sequence. We use this concept to
define specificity and sensitivity in the context of varying
alignment length coverage of reference sequence. Thus,

Specificity ðat c%Þ ¼

number of sequences in P that are c% length matched

total number of sequences in P

Sensitivity ðat c%Þ ¼

number of sequences in R that are c% length matched

total number of sequences in R

A sequence in P is defined to be a chimera if distinct
regions on this sequence have �90% identity alignments
to two different sequences in R. Chimera rate is the per-
centage of sequences in P that are labelled as chimeras.

For specificity and sensitivity calculations of each
method, we excluded a sequence in P if it did not have a
c% length match to a sequence in the reference protein set
R but did have a high-quality TBLASTN match (�90%
identity match over �90% of its length) to one of the
reference genomes used to construct the data set. We
took this approach, as it was not always possible to dis-
tinguish between overcalling on the gene finder’s part and
true genes that were missed by genome annotation.

We used these evaluation criteria to assess the perform-
ance of the methods on the data sets DS1, DS2, DS3, DS4,
DS5 and DS6 that are of varying complexity.

The evaluation of SPA on DS1 was intended to test
its ability to reconstruct protein sequences in a simplistic
scenario, namely, when only a single prokaryotic genome
is present and all of its constituent peptide fragments are

available. The average specificity (at 90%), sensitivity
(at 90%), chimera rate and read assembly rate of SPA
on DS1 (1165 genomes) were 98.00%, 98.23%, 0.07%
and 99.86%, respectively; for the length match definition
in this evaluation, we required a sequence identity of
�98% (instead of only �90%), as we were considering
each of the genomes separately. SPA’s performance
shows that, for this scenario, it can recover nearly the
full lengths of all the proteins from their constituent
peptide fragments. Furthermore, in the reconstruction
process, SPA incorporates nearly all of the constituent
input peptide fragments while producing few false posi-
tives and a negligible number of chimeras.
DS2 was intended to evaluate the performance of SPA

on a collection of closely related genomes in a scenario
where all of the constituent peptide fragments from these
genomes are available, and the genomes are in equal abun-
dance. The specificity (at 90%), sensitivity (at 90%),
chimera rate and read assembly rate on DS2 were
89.23%, 93.4%, 0.26% and 99.24%, respectively.
Although its performance drops slightly compared with
the simpler single genomes scenario; nevertheless, SPA is
able to reconstruct nearly complete sequences of the
proteins in these genomes with a very low chimera rate.
Data sets DS3 and DS4 were intended to model natur-

ally occurring microbial communities (from human oral
and surface marine environments) where groups of closely
related organisms along with their strain variants are
present at varying abundance levels (6,27,31,32), and the
community has been sequenced to a reasonable depth.
Specificity (at c%) and sensitivity (at c%) of all the
methods (for c varying from 50 to 90) are shown in
Figures 1 and 2. The chimera and read assembly rates

Table 1. Read assembly rate (Read) and chimera rate (Chim) for each of the methods on the oral [DS3 (0%) and DS3 (1%)], marine [DS4

(0%) and DS4 (1%)], saliva (DS5) and stool (DS6) metagenomes

DS3 (0%) DS4 (0%) DS3 (1%) DS4 (1%) DS5 DS6

Read Chim Read Chim Read Chim Read Chim Read Chim Read Chim

SPA
FGS 93.00 0.13 92.30 0.06 85.02 0.15 82.73 0.10 60.60 0.03 81.93 0.07
MGA 92.07 0.15 90.92 0.05 83.32 0.16 80.74 0.10 61.98 0.03 81.70 0.07

VEL
FGS 68.79 0.03 73.15 0.02 0.43 0.04 3.68 0 59.28 0.02 82.89 0.02
MGA 0.12 0.03 0.04 0.02 0.03

CLC
FGS 21.64 0.02 33.36 0.03 7.11 0.04 14.47 0.04 64.87 0.05 88.29 0.03
MGA 0.04 0.03 0.03 0.03 0.04 0.03

SOA
FGS 88.79 0.31 92.27 0.23 67.31 0.00 73.99 0 88.73 0.03 92.47 0.03
MGA 1.87 2.41 0.91 1.88 0.03 0.05

MVV
FGS 95.64 0.02 91.87 0.02 13.39 0.03 25.29 0 84.06 0.02 93.05 0.02
MGA 3.21 1.18 0.03 0 0.03 0.03

MID
FGS 11.62 0.01 17.16 0.02 5.48 0.02 8.76 0.02 54.91 0.04 79.89 0.07
MGA 0.01 0.02 0.01 0.02 0.03 0.03

IDU
FGS 36.46 0.16 49.91 0.15 44.06 0.31 56.47 0.19 69.41 0.15 88.10 0.14
MGA 0.37 0.33 0.17 0.28 0.14 0.11

For Meta-IDBA, we computed the assembled read rate by mapping the reads back to the contigs using CLC mapper. VEL: Velvet, SOA:
SOAPdenovo, MVV: MetaVelvet, MID: Meta-IDBA, and IDU: IDBA-UD.

PAGE 7 OF 10 Nucleic Acids Research, 2013, Vol. 41, No. 8 e91



are given in Table 1. From the table and figures, it can be
seen that our peptide assembly framework offers an ex-
tremely promising approach for analysing proteins in
metagenomic data sets. Our method has higher specificity
and sensitivity compared with the alternate strategy of
assembling nucleotide reads followed by the identification
of genes. Our method also has the highest read assembly
rate among all the methods evaluated. These observations
hold even in the presence of sequencing errors (Figure 1B
and D, Figure 2B and D, Supplementary Data SC,
Supplementary Figures S1–S3 and Supplementary Table
S2). The chimera rates for all the methods evaluated here
are generally low. All of the methods generally had higher
sensitivity compared with their specificity. Among the
nucleotide read assembly based methods, there was no
consistent ranking on the DS3 and DS4 data sets, but
Velvet, MetaVelvet and IDBA-UD perform compara-
tively better in the absence of sequencing errors; at 1%
sequencing error, however, IDBA-UD tends to perform
better than the other nucleotide read assembly based
methods. The performance of the nucleotide-based
approaches on DS3 and DS4 shows that these methods
are confounded by strain variations that result in predic-
tions of fragmentary protein sequences. On the other
hand, our assembly framework, which operates in amino
acid space, is less impacted by these polymorphisms.
We note that the choice of gene finders affects the speci-
ficity and sensitivity of all the methods. Our peptide
assembly framework tends to perform slightly better
when using FGS as the gene finder as compared with
using MGA. We speculate that FGS’s ability to handle
indels in the coding sequence may be one reason for the
improved performance. As our method uses the gene
finder in the GF stage, the overall performance can be
impacted if genes are missed in this first stage. Specificity
and sensitivity values for our method shown in Figures 1
and 2 were computed after excluding this effect of the gene
finder. When it is taken into account, however, the speci-
ficity and sensitivity of our method decrease slightly;
nevertheless, they are still higher compared with those
of the other methods (Supplementary Data SE and
Supplementary Figures S4 and S5).
We also evaluated the performance of all the methods

on data sets DS5 and DS6. As these data sets were
generated from real metagenomic samples, the ground
truth (that is, the reference protein set) is not known.
Thus, we could only evaluate specificity, chimera rate
and read assembly rate. For computing specificity and
chimera rate, we compared the amino acid sequences
generated by each method with NCBI’s nraa database
(33). The specificity plots for these data sets using the
various methods are shown in Figures 3 and 4, and the
chimera and read assembly rates are in Table 1. The spe-
cificity values on these data sets are not as high as those
for DS3 and DS4. We suspect that this may be due to
lower sequence coverage (that is, sequencing depth) of
the organisms in these samples. When using FGS, our
assembly framework tends to perform the best among
all the methods. With MGA, on these data sets,
IDBA-UD has the best performance with our approach

not far behind. The chimera rates for all the methods are,
again, low.

Our method took 95 h (using FGS) and 101 h (using
MGA) to process the stool sample (86 million reads)
(Supplementary Table S3). As part of our future work,
we will improve the computational efficiency of our im-
plementation, including the use of distributed approaches
that will allow for scaling with the data volume. We will
also explore the use of combining gene finders to improve
specificity and sensitivity.

In conclusion, our framework offers a promising
approach for analysing proteins in large metagenomic
data sets. It is also an effective approach for compressing
large metagenomic data sets. The protein sequence
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Figure 3. Specificity of the various methods on the saliva metagenome
as a function of reference protein sequence length coverage. (A)
Performance when using FGS as gene finder; (B) performance when
using MGA as gene finder. VEL, Velvet; SOA, SOAPdenovo; MVV,
MetaVelvet; MID, Meta-IDBA; IDU: IDBA-UD.
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assemblies generated by the framework can be easily
incorporated into downstream functional analysis of
metagenomic data. The constituent peptide fragment
counts for an assembled protein can be used to compute
that protein family’s abundance in the data set using stat-
istics developed for read-based analysis (34). Also, the
assembled proteins, being longer, can be annotated with
greater accuracy. Furthermore, the assembled proteins
themselves can be organized into protein families using
various clustering approaches, thus allowing for studies
of their function and evolution. Although a framework
based on assembling peptides does not necessarily
achieve taxonomic binning of sequences (as, as noted

earlier, amino acid conservation extends over a larger
taxonomic range compared with nucleotide conservation),
the resulting peptide assemblies could nevertheless be used
as a starting point for studying protein family evolution.
For instance, the underlying nucleotide read sequences for
an assembled protein sequence could themselves be
assembled separately at a high stringency to identify
gene sequences from individual strains or species (akin
to haplotype phasing), and these gene sequences could
then be used in phylogenetic analysis. Finally, although
not evaluated here, our framework could, in principle,
be used in the analysis of metatranscriptomic data
generated from microbial communities (after the
removal of non-coding RNA sequences) to assemble
protein-coding genes.

SUPPLEMENTARY DATA
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