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Abstract

Objectives. Patients with multiple myeloma (MM) are at increased
risk for infection. Clinical assessment of infection risk is
increasingly challenging in the era of immune-based therapy. A
pilot systems-level immune analysis study to identify predictive
markers for infection was conducted. Methods. Patients with
relapsed and/or refractory MM (RRMM) who participated in a
treatment trial of lenalidomide and dexamethasone were
evaluated. Data on patient demographics, disease and episodes of
infection were extracted from clinical records. Peripheral blood
mononuclear cells (PBMCs) collected at defined intervals were
analysed, with or without mitogen re-stimulation, using RNA
sequencing and mass cytometry (CyTOF). CyTOF-derived cell
subsets and RNAseq gene expression profiles were compared
between patients that did and did not develop infection to
identify immune signatures that predict infection over a 3-month
period. Results. Twenty-three patients participated in the original
treatment trial, and we were able to access samples from 17
RRMM patients for further evaluation in our study. Nearly half the
patients developed an infection (8/17) within 3 months of sample
collection. Infections were mostly clinically diagnosed (62.5%), and
the majority involved the respiratory tract (87.5%). We did not
detect phenotypic or numerical differences in immune cell
populations between patients that did and did not develop
infections. Transcriptional profiling of stimulated PBMCs revealed
distinct Th2 immune pathway signatures in patients that
developed infection. Conclusion. Immune cell counts were not
useful predictors of infection risk. Functional assessment of

ª 2021 The Authors. Clinical & Translational Immunology published by John Wiley & Sons Australia, Ltd on behalf of

Australian and New Zealand Society for Immunology, Inc.
2021 | Vol. 10 | e1235

Page 1

Clinical & Translational Immunology 2021; e1235. doi: 10.1002/cti2.1235
www.wileyonlinelibrary.com/journal/cti

mailto:
www.wileyonlinelibrary.com/journal/cti


stimulated PBMCs has identified potential immune profiles that
may predict future infection risk in patients with RRMM.

Keywords: CyTOF, immune profiling, infection risk prediction,
multiple myeloma, RNAseq

INTRODUCTION

Advances in immune-based therapies have
transformed multiple myeloma (MM) into a
chronic disease that is managed with multiple and
protracted therapeutic interventions. These
treatments have a cumulative impact on
immunity.1 Infections contribute significantly to
morbidity and mortality in patients with MM.2 In
particular, patients with relapsed or refractory
progressive disease have an increased risk of
infections including blood stream infections.3 The
mechanisms or cell types responsible for the
increased risk are not well defined. Consequently,
assessment of infection risk in patients has
become complex and unreliable.1 Pre-emptive
targeting of pathogens to prevent infection has
become challenging and would be greatly aided if
risk could be reliably assessed.

Immune profiling could assist with quantifying
risk of infection. In a previous exploratory study
of immune variables associated with increased risk
of infection in patients with newly diagnosed
MM, a Th2-dominant cytokine response, detected
after in vitro mitogen stimulation, was associated
with an increased risk of infection. In particular,
the IL-5 response to PMA antigen stimulation was
a key predictor of infection risk.4 Other groups
have utilised mass cytometry and detection of
transcriptomes individually as a means of
predicting infection outcomes in patients
undergoing HSCT.5,6 To date, there has not been
a comprehensive approach incorporating several
immune profiling platforms to identify future risks
of infection in patients with haematological
malignancies.

A more detailed understanding of the immune
profile during treatment at a systems level could
provide useful information to enable patient risk
stratification and appropriate management. This
study was conducted utilising a systems-level
approach to profile immune characteristics that
may be associated with risk of subsequent
infection in patients with relapsed and refractory
MM (RRMM) managed with immunomodulatory
drug (IMiD) therapy.

RESULTS

Patient characteristics, episodes of infection
and outcomes

Twenty-three patients with relapsed and
refractory MM (RRMM) participated in the clinical
trial at PMCC. Samples were available for 17
patients. The majority of patients (64.7%) were
male with a median age of 67.8 years (range
60.4–77.4 years) and median Charlson co-
morbidity score of 4 (3–7). Most had IgG MM
(64.7%), for a median of 4.6 years (range 0.8–
14.2 years). All patients received pneumocystis
prophylaxis, mostly with trimethoprim/
sulfamethoxazole (94.1%). Eight patients (47.1%)
developed an infection within 3 months of sample
collection. There were no significant demographic
or treatment differences, including corticosteroid
dosing, between patients who did or did not
develop infection within 3 months of sample
collection (Table 1). Eight infections were defined
in 8 patients. Three infections (37.5%) were
microbiologically diagnosed (MDI) whilst the
remaining 5 episodes were clinically diagnosed
(CDI) (62.5%). Of the three microbiologically
diagnosed infections, all were respiratory viral
infections (influenza N = 2, picornavirus N = 1).
There were no proven episodes of bacterial or
fungal infection. Both episodes of influenza
infection were treated with oseltamivir. Of the
CDIs, 80% (4/5) were upper respiratory tract
infections and 20% (1/5) gastrointestinal. 80% of
CDIs were treated with amoxycillin-clavanulate
acid (Augmentin DF). Most episodes of infection
were grade 2 in severity (75.0%) with the
remainder, grade 3 (25.0%). The two grade 3
episodes that required hospital admission were
due to MDI (influenza N = 1, picornavirus N = 1).
There was no intensive care unit admission or
mortality over the study period.

Immune cell phenotyping

Total white blood cell count (WCC), absolute
neutrophil count (ANC), eosinophil and basophil
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counts were quantified at time of sample collection
(see Table 2). CyTOF (Helios Mass Cytometry) was
used to define PMBC subsets in the patients at cycle
4 (for definition of treatment cycles, see methods
section). No single immune cell parameter or
activation phenotype amongst the identified
cellular subsets was associated with increased risk
for infection. Mean total cell numbers (9106 mL�1

of blood) are summarised in Table 2.

Transcriptional profiling

In order to characterise the transcriptional
landscape in MM patients, whole genome RNAseq
analysis was performed on in vitro stimulated or
non-stimulated PBMCs. After filtering and
normalising, 23 302 genes could be included in
the differential expression analysis with a false
discovery rate (FDR) of 10%. When evaluating

Table 1. Demographics of patients

Infection within 3 months

N = 8 (47.1%)

No infection within 3 months

N = 9 (52.9%)

Overall

N = 17 P-value

Age in years (Range) 70.0 (62.2–77.3) 67.0 (60.4–77.4) 67.8 (60.4–77.4) 0.29

Sex

Male 5 (62.5) 6 (66.7) 11 (64.7) 1.00

Female 3 (37.5) 3 (33.3) 6

Charlson co-morbidity index (Range) 5.0 (4.0–7.0) 4.0 (3.0–5.0) 4.0 (3.0–7.0) 0.06

Myeloma type

IgG 6 (75.0) 5 (55.6) 11 (64.7) 0.62

IgA 2 (25.0) 2 (22.2) 4 (23.5)

LC 0 (0.0) 2 (22.2) 2 (11.7)

Time since diagnosis in years (Range) 4.5 (0.8–14.2) 4.6 (0.8–13.0) 4.6 (0.8–14.2) 0.60

Previous lines of therapy (Range) 2.0 (1.0–4.0) 2.0 (1.0–5.0) 2.0 (1.0–5.0) 0.88

30-day cumulative dose of corticosteroidsa (Range) 1600 mg (965–1600) 1600 mg (965–1600) 1600 mg (965–1600) 0.77

a

Prednisone equivalent dose.

Table 2. Total cell numbers of cell populations from CyTOF-based phenotyping

Immune cell type

No Infection

N = 9 (9106 mL�1) � mean

Infection

N = 8 (9106 mL�1) � mean P-value

White blood cell count (WBC) 4.344 4.613 0.74

Total neutrophil count (ANC) 2.491 2.478 0.98

Eosinophils 0.077 0.094 0.64

Basophils 0.032 0.038 0.60

B cells – Na€ıve 0.071 0.069 0.97

B cells – Memory 0.007 0.08 0.80

B cells – Plasma < 0.001 < 0.001 0.21

CD8+ – Effector T killer cells 0.283 0.298 0.58

CD8+ – Na€ıve T killer cells 0.105 0.123 0.60

CD8+ – Memory T killer cells 0.027 0.036 0.60

CD4+ – Effector T helper cells 0.042 0.036 0.58

CD4+ – Na€ıve T helper cells 0.067 0.094 0.39

CD4+ – Memory T helper cells 0.221 0.265 0.53

Monocytes – Classical 0.248 0.317 0.48

Monocytes – Non-classical 0.045 0.026 0.40

Dendritic cells – Myeloid 0.120 0.072 0.11

Dendritic cells – Plasmacytoid 0.003 0.006 0.16

NK cells 0.120 0.193 0.12
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non-stimulated cells, only the two pseudogenes
RF00004 and RNY3 were identified to be
differentially expressed between patients that
developed infection compared to patients that
were infection free during the 3-month period
after sample collection (Supplementary figure 1a–
c).

When evaluating mitogen-stimulated cells, 17
differentially expressed genes were identified that
distinguished patients that developed infection
from those that did not (Figure 1a, b,
Supplementary table 2). Patterns of distinct
overall gene expression between the outcome
groups are indicated in the heatmap of the top 50
genes based on FDR (Figure 1c).

We next looked at differences in gene
expression between cells that were stimulated
compared to unstimulated cells within each
outcome group. When we compared stimulated vs
unstimulated immune cells from patients that did
not develop an infection, a total of 14 847 genes
were differentially expressed (Supplementary

figure 2a–c). In contrast, when the same
comparison was made in PBMCs from patients
that developed infection, 13 741 genes were
differentially expressed between stimulated and
unstimulated immune cells (Supplementary figure
2d–f).

Amongst the genes that were differentially
expressed after PMA/ionomycin stimulation,
11 500 were shared between patients that did
and did not develop infections. However, 2241
differentially expressed genes were peculiar to
patients who developed infection and 3347 were
unique to patients who did not develop infection.
Hallmark gene sets analysis of the transcriptional
response to mitogen stimulation between
infection and infection-free patients revealed
differences and distinct patterns in immune
regulation pathways (Figure 2b). Differentially
expressed genes involving the IL-2-STAT-5 and the
IL-6-STAT-3 pathways were highly represented in
patients who subsequently developed infection
whilst differentially expressed genes involved in

Figure 1. Transcriptome analysis in stimulated PBMCs comparing infection and no infection cases reveals 17 differentially expressed genes. (a)

Schematic overview of differential gene expression comparison of PMA/ionomycin-stimulated samples, between patients with and without

subsequent infection. (b) MD plot of differentially expressed genes between stimulated cells from patients with subsequent infection vs patients

without subsequent infection. Seventeen genes were identified as differentially expressed with FDR 10% (see also Supplementary table 2).

UP = upregulated, DOWN = downregulated, n.s. = not significant. (c) Heatmap of the top 50 genes in mitogen-stimulated samples. Red –

maximum expression, blue – minimum expression (logCPM adjusted for patient cessation year).
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TGF-ß pathway were overrepresented in patients
who did not develop infection within 3 months
(Figure 2b).

DISCUSSION

Patient co-morbidities (renal impairment), disease
stage and status as well as treatment factors
including type (high-intensity conventional
chemotherapy) and burden (increasing lines of
therapy) have all been independently associated
with increased risk for infection in patients with
MM.2,7 Predicting infection risk in MM patients is
becoming increasingly difficult because of the
complexity and diversity of treatment regimens
and their impact on disease state and immune
health. This is especially true for patients with
relapsed and refractory disease managed with
multiple lines of therapy.2,3 In a previous study,
Th2 cytokine signatures, particularly IL-3 and IL-5

release from PBMCs in response to PMA
stimulation, were associated with risk of infection
within 3 months.4 Measurement of the immune
response to a pan-antigen (mitogen) such as PMA
could be useful in predicting future risk of
infection. However, the utility of this approach
was only evaluated in newly diagnosed MM
patients following autologous stem cell transplant
and maintenance therapy. To expand on these
findings, population-based immune cell
phenotyping using CyTOF and systems-level
transcriptional profiling using RNAseq was
performed in a defined cohort of patients with
RRMM.

In concordance with previous studies,4 the main
immune cell populations and their effector/
memory status (CD4+, CD8+, NK, DC, B cells and
monocytes) did not differ between patients who
did or did not subsequently development
infection. This highlights that overall immune cell

Figure 2. Pathway analysis of genes between patient groups. (a) Schematic overview of differential gene expression comparison in mitogen-

stimulated PBMCs between patients who developed and did not develop an infection. (b) Venn diagram showing the number of common/unique

genes between mitogen-stimulated cells from patients who developed and did not develop an infection. (c) Hallmark gene set waterfall plot

generated from analysis of unique differentially expressed genes between stimulated cells from patients who developed an infection vs patients

who did not develop an infection. Dotted line indicates FDR of 10%. Arrowheads indicate hallmark gene sets of particular interest.
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numbers per se did not predict infection risk.
Interestingly, a reduction in circulating CD3+ CD4+

CD161+ cells has recently been associated with
severe infection in lenalidomide- and
dexamethasone-treated patients.8 We
hypothesised that a more detailed interrogation
of immune function in MM patients during
treatment would allow for better prediction of
infection risk.

Transcriptional profiling of immune cells,
analysed in the absence of in vitro stimulation,
identified significant differences in the expression
of two pseudogenes between patients that
developed infection compared to those that did
not. We also detected clear patterns and
differences in the regulation of the top 50 genes
between patients who developed infection
compared to those who did not. Profiling of
immune cells that were stimulated with PMA/
ionomycin showed an expanded array of
differentially expressed genes between the
patient groups, supporting the utility of this
approach in identifying more subtle changes and
differences. Amongst the differentially expressed
genes, identified after stimulation, several have
been implicated in host responses to infection.
GBP7 is a guanylate-binding protein induced by
interferon that has been reported to promote
oxidative mediated killing of pathogens.9 We
identified upregulated GB7 gene expression in
patients who subsequently developed infection.
ADORA2B, a type of adenosine receptor, was
found to be downregulated in these same
patients. Interestingly, adenosine receptors have
been implicated in inflammation and host
response to infection10 and were shown to be
involved in host protection against influenza
infection.11 Furthermore, the long non-coding
RNA (lnRNA) NRAV was also found to be
downregulated in patients who developed
infection. NRAV has been reported to be involved
in interferon responses during influenza viral
infection by regulating DNA histone modifications
of several interferon-stimulated genes (ISGs).12

This is particularly noteworthy given that the
majority of infections in our study were
respiratory tract infections including influenza
infections. Gamma delta T cells have been
implicated in host defence against influenza
infection.13 Strikingly, expression levels of TCR
gamma variants TRGV5 and TRGV4 were also
significantly decreased in patients that progressed
to infection.

We identified distinct differences in the overall
PBMC immune activation status, after mitogen
stimulation, between the patient outcome groups.
In all, 3347 genes were upregulated in PBMCs
collected from patients that did not develop
infections. In contrast, 2241 genes were
upregulated in patients who subsequently
developed infection. This difference, across more
than 1000 genes, suggests that patients who
subsequently develop infection lack the ability to
activate certain immune pathways that may be
important in immune defence.

Pathway analysis revealed a striking
overrepresentation of genes involved in IL-2-STAT-
5 and IL-6-STAT-3 signalling in stimulated PBMCs
from patients that progressed to overt infection
compared to PBMCs from patients that did not
develop infection. Interestingly, STAT-5 activation
has been shown to play an important role in
driving Th2 differentiation14 and IL-6-mediated
activity has been reported to inhibit Th1
differentiation15. These transcriptional profiles
correlate with previous findings that Th2-biased
immune responses, after in vitro mitogen
stimulation, appear to predict infection risk.
Furthermore, genes involved in interferon gamma
signalling were overrepresented in patients that
progressed to infection. Recent reports have
linked increased susceptibility to influenza
infections with an aberrant IFN-c response.16,17

The use of corticosteroids in particular at doses
used in this trial has been known to blunt the
immunostimulatory effects of lenalidomide18 and
potentially impact gene expression signatures.
However, patients in this study received
standardised myeloma therapy which minimise
the confounding effect of therapy (including
corticosteroids) on observed immune profiles.
There was no significant difference in the 30-day
cumulative dose of corticosteroids received prior
to sample collection between patients that did or
did not develop subsequent infection.

TGF-ß signalling was strongly overrepresented
in patients that did not develop subsequent
infection. TGF-ß is a pleiotropic cytokine has been
implicated as an important inhibitory master
regulator of Th1 and Th2 cytokine responses. TGF-
b has also been shown to inhibit Th2 responses,
particularly airway Th2 cell-induced
inflammation.19 Given the important role of TGF-ß
in progression of multiple myeloma, an
overlapping or additive affect in controlling
cancer growth and immunity could be considered.
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Limitations of this study include the focus upon
a small cohort of RRMM patients and the
relatively short duration of follow-up utilised
(3 months) for predicting infectious outcomes.
These may limit generalisability of our findings
across all MM stages and treatment groups and
may not be predictive of longer term risks of
infection. Nonetheless, the results are clinically
relevant and may inform patient management.
RNAseq was performed on the whole PBMC
population, thus limiting attribution of observed
gene expression signatures to particular cell types.
However, overall detection of predictive profiles is
hypothesis generating and represents a key step
towards translating the use of immune profiling
into clinical practice. To improve our
understanding of the mechanisms that drive risk
for infection in treated MM patients, future
studies including single-cell RNA sequencing could
be useful in attributing causation. It is possible
that some of the signatures detected in our study
represent the affect of covert infection rather
than the cause of overt infection. Regardless, they
still represent useful biomarkers to guide
management. CyTOF-based immune phenotyping
was restricted to main cellular subsets, but should
be expanded in the future to include surface
markers informed by both the results of our
RNAseq transcriptome analysis as well as recently
published data sets.8,13

CONCLUSIONS

The results of this study support previous findings
that numerical differences in immune cell
populations are not predictive of infection risk.
Transcriptional profiling identified Th2-biased
immune responses as potential immune signatures
that define susceptibility of MM patients to
infections, in the near term, and this finding
requires further prospective evaluation and
validation.

METHODS

Patient population and definitions

Patients with RRMM enrolled in a clinical treatment trial at
Peter MacCallum Cancer Centre (PMCC) were evaluated.20

Patients who had received one prior line of therapy were
eligible to participate. In brief, patients received 15 mg of
oral lenalidomide on days 1–21 of a 28-day cycle. All
patients received dexamethasone 20 mg orally, days 1–4, 9–
12 and 17–20 for the first four cycles, then dexamethasone

20 mg orally, days 1–4 only, from cycle five onwards. Blood
samples were collected prospectively at multiple defined
time points from patients who participated in this trial.
Trimethoprim–sulfamethoxazole prophylaxis was used
routinely for patients receiving more than 20 mg
prednisolone equivalent for more than 4 weeks or in the
setting of known intensive immunosuppression at PMCC.

Clinical and microbiology records were reviewed to
capture patient demographics, MM characteristics, and
characteristics of infective episodes. Episodes of infection
were defined and classified as microbiologically (MDI),
clinically defined infections (CDI) or fever of unknown focus
(FUF) according to international definitions.21 In brief, MDI
consisted of infection episodes with pathogen(s) isolated on
microbiological testing whilst CDI were infections in which
site(s) of infection were identified but no pathogens were
isolated on microbiological testing or due to absence of
testing.21 FUF was episodes of fever with no identifiable
site of infection or pathogen.21 Severity of infection was
graded according to the common terminology criteria for
adverse events.22

Sample collection and blood cell
preparation for in vitro assays

For the purpose of this study, samples collected prior to
cycle 4 of therapy were utilised. Total white blood cell
count (WCC), total neutrophil count (ANC), eosinophil and
basophil counts in patient samples were established at the
time of sample collection using an automated cell counter
(Cell Dyn Sapphire; Abbott Diagnostics, Abbott Park, IL,
USA). Peripheral blood mononuclear cells (PBMCs) were
isolated by Ficoll density separation and stored in RPMI/FBS/
10% DMSO (foetal bovine serum, dimethyl sulfoxide) in
liquid nitrogen prior to analysis. PBMCs were carefully
thawed in pre-warmed thawing medium (RPMI + 10%
FBS + Benzonase), washed twice and rested in RPMI
supplemented with 10% (vol/vol) FBS for 2 h at 37°C. The
cells were then split, and immune cell population data were
collected using HeliosTM Mass cytometry (CyTOF) or either
re-stimulated with phorbol myristate acetate (PMA)/
ionomycin or left untreated for 4 h for transcriptome
analysis by RNA sequencing (RNAseq).

CyTOF immune phenotyping

PBMCs were labelled using an expanded MaxPar� Human
Peripheral Blood Phenotyping Panel Kit (Cat# 201304;
Fluidigm/DVS Science, Sunnyvale, CA, USA) (for CyTOF
antibody panel, see supplementary table 1) and were
analysed using HeliosTM Mass cytometry. Briefly, 1 9 106

cells were resuspended in 300 lL in pre-warmed serum-free
media and Cell-ID Cisplatin 198 (Cat# 201198; Fluidigm/DVS
Science) was added to final concentration of 1 lM (10009
dilution of 1 mM stock solution). The cells were mixed well
and incubated at 37°C for 5 min before cisplatin staining
was quenched by washing with pre-warmed serum-
containing complete media using 5–109 the volume of the
stained cells (~3 mL). The cells were pelleted and fixed
using 500 lL Fix I buffer per sample for 15 min at room
temperature, washed in Maxpar Cell Staining Buffer before
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barcoding for 30 min using 20-plex Cell-ID Pd barcoding
plex kit (Cat# 201060; Fluidigm/DVS Science). The cells were
washed in Maxpar Cell Staining Buffer, and human TruStain
FcX (Fc receptor blocking solution; Cat# 422302; Biolegend,
San Diego, CA, USA) was added to each tube to incubate at
RT for 10 min on a rotating shaker followed by adding the
extracellular antibody cocktail for 30 min. After staining,
cells were washed two times in Maxpar Cell Staining Buffer
and iridium intercalator (Cat# 201192A; Fluidigm/DVS
Science) was added in 100 lL 1.6% PFA to the tubes for
overnight incubation (125 nM final concentration). The next
day, the cells were washed twice using Maxpar Cell Staining
Buffer followed by ddH2O and the cells resuspended in
normalisation bead solution (approximately 1 mL per
1 9 106 cells) to optimise the flow rate (350–400 cells per s)
and acquire the samples. All major peripheral blood
immune cell subsets including Effector CD8+ T Killer Cells,
Na€ıve CD8+ T Killer Cells, Activated CD8+ T Killer Cells,
Effector CD4+ T Helper Cells, Na€ıve CD4+ T Helper Cells,
Activated CD4+ T Helper Cells, Memory CD4+ T Helper Cells,
Memory B Cells, Na€ıve B Cells, Non-Canonical Monocytes,
Canonical Monocytes, Dendritic Cells and NK cells were
identified based on surface marker staining using the
gating hierarchy indicated in Supplementary figure 2.
Gating was performed according to the Fluidigm Human
Peripheral Blood Phenotyping Panel Kit data sheet (Cat#
201304; Fluidigm/DVS Science) and using the software
Fluidigm. Cytobank.org.

Transcriptional profiling

PBMC RNA extraction after 4 h in vitro re-stimulation was
performed using the Isolate II RNA mini kit (Cat# BIO-
52072; Meridian Bioscience, Cincinnati, OH, USA). An
input of 100 ng of total RNA were prepared and indexed
separately for illumina sequencing using the TruSeq RNA
sample Prep Kit (Cat# RS-122-2001; Illumina, San Diego,
CA, USA) with RiboGlobin depletion as per manufacturer’s
instruction. Each library was quantified using the Agilent
Tapestation (using RNA ScreenTape [Cat#5067-5576] on a
2200 TapeStation system (Cat# G2964AA; Agilent
Technologies, Waldbrunn, Germany) and the QubitTM DNA
BR assay kit for Qubit 3.0� Fluorometer (Cat# Q32850;
Thermo Fisher Scientific, Waltham, MA, USA). The indexed
libraries were pooled for single end sequencing (1 9 75
cycles) on a NextSeq 500 instrument using the v2 150
cycle High Output kit (Cat# 20024906; Illumina, San
Diego, CA, USA) as per manufacturer’s instructions with a
coverage of 30M reads per sample. The base calling and
quality scoring were determined using Real-Time Analysis
on board software v2.4.6, whilst the FASTQ file
generation and demultiplexing utilised bcl2fastq
conversion software v2.15.0.4.

All reads were aligned to the human genome, build
hg38, using align from the Rsubread software package
v2.0.1.23 Over 90% of reads were successfully mapped for
each sample. The number of reads overlapping genes was
summarised into counts using featureCounts from
Rsubread.24 An average of 37% of reads were assigned to
genes for each sample. Genes were identified using
Gencode annotation for the human genome v31.
Differential expression (DE) analyses were then undertaken

using the edgeR25 and limma26 software packages v3.30.0
and v3.44.1, respectively.

Prior to analysis, all genes with no current symbol,
ribosomal RNAs and non-protein coding immunoglobulin
genes were removed. Gender-specific genes including XIST
and those unique to the Y-chromosome were also removed
to avoid gender biases. Expression-based filtering for lowly
expressed genes was then performed using edgeR’s
filterByExpr function with default parameters. Following
filtering, 23,308 genes remained. Library sizes were then
normalised using the trimmed mean of M-values (TMM)
method.27

Following filtering and normalisation, the data were
transformed to log2-counts per million (CPM) and the
correlation between samples from the same patient
estimated using limma’s duplicateCorrelation function.28

Sample weights were also calculated using limma’s
arrayWeights function.29 Differential expression was then
assessed using linear models and robust empirical Bayes
moderated t-statistics with a trended prior variance (the
limma-trend pipeline).26,30 To increase precision, the linear
models included not only the patient correlation estimate
and sample weights, but also an adjustment for the
cessation year for each patient. The false discovery rate
(FDR) was controlled below 0.1 using the method of
Benjamini and Hochberg. Analyses of the Gene Ontology
(GO) terms and KEGG pathways were performed using
limma’s goana and kegga functions, respectively. The
analysis of the Hallmark gene sets from the Molecular
Signatures Database was achieved using limma’s fry
function.

The mean-difference (MD) plots were drawn using
limma’s plotMD function and the heatmaps using the
pheatmap CRAN software package v1.0.12.

Statistical analysis

Categorical variables were summarised as proportions whilst
continuous variables were summarised with median and
interquartile range (IQR). Episode of infection (MDI, CDI,
FUF) within 3 months after sample collection was the
outcome of interest for analysis. Categorical variables
between patients with or without infection were compared
utilising chi-square or Fisher’s exact test whilst continuous
variables were compared utilising the Mann–Whitney U-test
with analyses performed on Stata version 13.1 (Statacorp,
USA.) and P < 0.05 considered statistically significant. This
study was approved by the PMCC human research ethics
committee (HREC/17/PMCC/209).
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