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INTRODUCTION 
 

With advances in the early screening, diagnosis and 

treatment of gastric cancer (GC), its annual incidence 

and mortality have decreased [1]. However, GC is still 

the fifth most frequently diagnosed cancer and the 

third leading cause of cancer-related mortality, with 

almost 1,000,000 new cases and 800,000 deaths each 
year [2, 3]. Due to indistinctive symptoms, GC often 

exhibits proliferation, extensive invasion and 

lymphatic metastasis at the time of diagnosis, 

contributing to its poor prognosis [4]. The 

pathogenesis of GC is complex, as it is controlled by 

genetic alterations in oncogenes and suppressor genes, 

and these alterations result in disease heterogeneity 

[4]. Despite advances in the molecular characteristics 

of GC, the prospect of tailored individual therapy 

based on histological and molecular subtypes is still 

unsatisfactory. The overall 5-year relative survival rate 

of GC patients is still quite low [5]. Therefore, it is 

worthwhile to explore the novel biological indicators 

and molecular mechanisms of GC. 
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ABSTRACT 
 

Alternative splicing (AS), contributing to vast protein diversity from a rather limited number of genes in 
eukaryotic transcripts, has emerged as an important signature for tumor initiation and progression. However, a 
systematic understanding of its functional impact and relevance to gastric cancer (GC) tumorigenesis is lacking. 
Differentially expressed AS (DEAS) was verified among GC-associated AS events based on RNA-seq profiles from 
the TCGA database. Functional enrichment analysis, unsupervised clustering analysis and prognostic models 
were used to infer the potential roles of DEAS events and their molecular, clinical and immune features. In 
total, 12,225 AS events were detected from 5,199 genes, among which 314 AS events were identified as DEAS 
events in GC. The parental genes of the DEAS events were significantly enriched in the regulation of GC-related 
processes. The splicing correlation network suggested a significant relationship between DEAS events and 
splicing factors (SFs). Three clusters of DEAS events were identified to be different in prognosis, cancer-specific 
signatures and immune features between distinct clusters. Univariate and multivariate analyses regarded 3 
DEAS events as independent prognostic indicators. Profiling of the AS landscape in GC elucidated the functional 
roles of the splicing network in GC and might serve as a novel prognostic indicator and therapeutic target. 

mailto:xueyingwei@hrbmu.edu.cn
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/


 

www.aging-us.com 4318 AGING 

Cancer profiling has allowed more dimensionalities due 

to advances in the depth and quality of transcriptome 

sequencing in the era of cancer genomics [6]. 

Alternative splicing (AS) is one of the most crucial 

posttranscriptional regulatory mechanisms and modifies 

more than 90% of human genes [7]. AS significantly 

enriches protein diversity by generating different RNA 

isoforms of single genes [8]. AS may result in a series 

of consequences, such as changing the stability of 

proteins, adding or deleting structural domains and 

modifying the interactive relationship between proteins 

[9]. Abnormal AS events participate in several 

tumorigenic processes, such as proliferation, apoptosis, 

angiogenesis and metastasis [10]. The initial unbalanced 

expression of splice isoforms or the accumulation of 

incorrect isoforms was believed to be associated with 

one of the cancer hallmarks, genetic instability and 

mutation, summarized by Dougla Hanahan and Robert 

A. Weinberg [11, 12]. Moreover, growing evidence 

indicates that cancer-specific AS events possess 

potential applications in cancer therapy, serving  

as prognostic biomarkers and even therapeutic targets 

[9, 13]. 

 

Here, we repurposed and integrated multi-RNA-seq 

analysis among entries in the gastric tissue cohort from 

The Cancer Genome Atlas (TCGA) database to 

comprehensively analyze AS events. We systematically 

profiled the genome-wide AS events in GC and 

identified GC-related AS events. We also explored the 

potential biological function and underlying regulatory 

mechanisms of these specific cancer-related AS events 

in GC. Distinct clusters of GC-related AS events were 

identified, and the association between the distinct 

clusters and clinical and immune features was 

investigated. Finally, we performed survival analyses to 

identify the prognostic value of AS events. 

 

RESULTS 
 

Overview of AS events in the TCGA STAD cohort 

 

The large-scale genome RNA-seq data of 305 stomach 

adenocarcinoma (STAD) patients from the TCGA 

database were analyzed, and a total of 12,225 AS events 

were identified from 5,199 genes. The included 

population comprised 846 alternate acceptor (AA) site 

events from 702 genes, 919 alternate donor (AD) site 

events from 727 genes, 3,137 alternate promoter (AP) 

events from 1,531 genes, 1,881 alternate terminator 

(AT) events from 948 genes, 4,417 exon skip (ES) 

events from 2,465 genes, 86 mutually exclusive exon 

(ME) events from 82 genes and 939 retained intron (RI) 

events from 698 genes (Figure 1A). According to the 

prioritization of proportion among AS events, ES events 

accounted for 36.13% of all AS events, whereas ME 

events accounted for 0.7% of all AS events. 

Intriguingly, a considerable proportion of genes 

contained two or more AS events, and 5 different AS 

events occurred in one single gene (Figure 1B). 

 

Identification of DEAS events in GC 

 

To identify DEAS events in GC, we compared the 

percent spliced in (PSI) values of GC and adjacent 

normal tissues from the TCGA database. After 

screening, a total of 314 DEAS events from 280 genes 

were identified. Among these DEAS events, 175 DEAS 

events from 161 genes were upregulated, and 139 

DEAS events from 127 genes were downregulated 

(Figure 1C, Supplementary Table 1). Intriguingly, GC 

and normal tissues were clearly separated into two 

discrete groups using unsupervised hierarchical 

clustering based on these DEAS events, but 

unfortunately, two GC tissues were misclassified as 

normal tissues (Figure 1D). There was an uneven 

distribution of splicing modes between DEAS events 

and all AS events (Figure 1B, 1E). Most genes had only 

one AS event, whereas some genes had up to two 

different splicing modes (Figure 1E). 

 

Notably, some genes, such as MTMR11, CCL14, 

HDAC9 and CHN2, showed the opposite trends for the 

same splicing mode of the parental gene in GC and 

normal tissues (Figure 2A). Since aberrant AS events 

might directly affect the expression of parental genes, 

the relationship between DEAS events and differentially 

expressed genes (DEGs) was further assessed. By 

comparing 314 DEAS events from 280 parental genes 

between GC and normal tissues, a total of 79 DEGs 

involving 97 DEAS events were observed (Figure 2B, 

Supplementary Table 2). Spearman’s correlation 

analysis indicated that 69 of 97 (71.13%) DEAS events 

were significantly correlated with the expression of 

their parental gene (|R| ≥ 0.4 and adjusted P < 0.05). 

Moreover, almost half of these 69 DEAS events were 

AP events (44.93%) (Supplementary Figure 1, 

Supplementary Table 3). 

 

Enrichment and interaction analyses of DEAS events 

 

The potential influence of DEAS events on the parental 

genes was then assessed with biological function 

enrichment analysis. The results revealed that certain 

GO categories, such as protein localization to the cell 

periphery, cell junction assembly, cell adhesion 

molecular binding and cadherin binding, were enriched 

in these 280 parental genes, which are closely 

associated with GC development (Figure 3A, 
Supplementary Table 4). Furthermore, certain vital 

KEGG pathways, such as proteoglycans in cancer, 

adrenergic signaling in cardiomyocytes, the AMPK 
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signaling pathway, the HIF-1 signaling pathway and the 

TNF signaling pathway, were also enriched (Figure 3B, 

Supplementary Table 5). Consistent with these findings, 

gene set enrichment analysis (GSEA) revealed that 

DEAS events in GC were significantly enriched in actin 

binding, adrenergic signaling in cardiomyocytes and the 

AMPK signaling pathway (Figure 3C, 3D, 

Supplementary Tables 6, 7). 

 

Since AS events could inevitably affect protein 

functions, a protein-protein interaction (PPI) network of 

the parental genes of DEAS events was constructed to 

reveal the potential influence of DEAS events at the 

protein level (Figure 4A). Moreover, hub genes and 

individual modules were further identified based on the 

PPI network. Among the PPI network, we found that 

the top 5 hub genes were RPS6, RPL32, RPL18A, 

RPS21 and RPS3A (Figure 4B). We also identified two 

individual modules (Figure 4C, 4D). Consistent with 

our results from the enrichment analysis, DEAS events 

in module 1 were enriched in polysomes (GO: 0005844) 

and ribosomes (KEGG: hsa03010), suggesting that the 

function of ribosomes might be frequently affected by 

DEAS events in GC (Supplementary Table 8). DEAS 

events in module 2 were enriched in adhesion junction 

(KEGG: hsa04520), leukocyte transendothelial 

migration (KEGG: hsa04670) and several other GO 

terms (Supplementary Table 9). 

 

Network of DEAS events and SFs 

 

Alternative splicing patterns can be regulated by many 

types of RNA-binding proteins (RBPs), which are 

known as splicing factors (SFs) [14]. Among these 

special proteins, serine-arginine-rich splicing factor 

(SRSF) and heterogeneous nuclear ribonucleoprotein 

(hnRNP) are two well-known families of splicing 

regulatory factors [15]. To explore the potential 

regulatory relationship between DEAS events and SFs in 

GC, correlations between the PSI value of 314 DEAS 

events and the expression of SFs were analyzed in the 

TCGA STAD cohort. A total of 170 DEAS events were 

significantly associated with 44 SFs (|R| ≥ 0.4 and 

adjusted P < 0.05) (Figure 5A, Supplementary Table 10).  

 

 
 

Figure 1. Profiling of AS events identified in GC. (A) The number of AS events and their parental genes derived from GC patients was 
counted based on the AS types. (B) Interactive analysis of seven types of AS events derived from GC patients is shown in an UpSet plot. (C) 
DEAS events between GC and adjacent normal tissues were visualized in a volcano plot. (D) Distinct DEAS events between GC and adjacent 
normal tissues were clustered and visualized in sector plots. (E) Interactive analysis of DEAS events between GC and adjacent normal tissues 
is shown in an UpSet plot. 
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In the SF-associated regulatory network, we observed 

that most SFs were significantly correlated with more 

than one DEAS event and that one DEAS event could 

be regulated by 13 different SFs, all of which 

characterize the comprehensive regulatory network of 

cooperative or competitive relationships between DEAS 

events and SFs. For example, RBM24 showed a 

positive correlation with LRRFIP1_ES and SEPT9_AP 

(Figure 5B, 5C). On the other hand, RBM24 showed a 

negative correlation with DIXDC1_AP and FLNA_ES 

(Figure 5D, 5E). Other representative correlations 

between DEAS events and SFs are presented in scatter 

plots (Supplementary Figure 2). 

 

DEAS-based cluster construction and correlations 

with molecular, clinical and immune features 

 

Because of molecular heterogeneity, GC can be 

clustered into molecular subtypes based on the 

distinct expression patterns of genes or proteins [4]. 

Here, consensus unsupervised analysis was performed 

on distinct clusters of GC patients according to the 

DEAS events that varied at the individual level. As 

shown in the consensus matrix heatmap, 3 clusters of 

GC patients were identified: cluster 1 (n = 154, 

50.5%), cluster 2 (n = 100, 32.78%) and cluster 3 (n = 

51, 16.72%) (Figure 6A). Consistent with the 

consensus clustering results, principal component 

analysis (PCA) also discerned significant differences 

among clusters 1, 2 and 3 (Figure 6B). In addition, a 

gene set variation analysis (GSVA) revealed a set of 

cancer-specific signatures that differed between the 

DEAS-based clusters (Figure 6C, Supplementary 

Table 11). This finding suggested that different 

clusters were associated with different biological 

processes, which further validated the reliability of 

our DEAS-based clusters.  

 

To study the clinical implications of the DEAS-based 

clusters, univariate survival analysis was conducted to

 

 
 

Figure 2. Profiling of DEAS EVs identified in GC. (A) The opposite trend of representative DEGs between GC and adjacent normal tissues 
is shown in violin plots. Some AS events of these representative DEGs were upregulated in GC tissues (upper). The same AS events of these 
representative DEGs were downregulated in GC tissues for the different splicing sites (lower). (B) Interactive analysis of DEGs between GC 
and adjacent normal tissues is shown in an UpSet plot. 
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assess the relationship between clusters and survival 

outcomes. We found that the survival outcome was not 

randomly distributed across different clusters (Figure 

6D). GC patients belonging to cluster 1 had a better 

prognosis than those belonging to clusters 2 and 3 

(Figure 6D). We also assessed the relationship  

between DEAS-based clusters and clinicopathological 

factors. The distributions of T stage, histologic grade 

and microsatellite status among the clusters were 

significantly different (Figure 7A, Supplementary  

Table 12). 

 

To comprehensively characterize the immune features 

based on DEAS events, we investigated differences in 

the immune microenvironment and found that both the 

immune and stromal scores were significantly different 

between the DEAS-based clusters (Figure 7B, 7C). 

Notably, cluster 1, which was associated with a better 

prognosis, was associated with lower immune and 

stromal scores than clusters 2 and 3 (Figure 7B). 

Moreover, our studies of immune cell infiltration 

revealed that many types of immune cells were not 

randomly distributed across the different clusters 

(Figure 7A, 7C, Supplementary Table 12). Cluster 1 had 

a significantly lower proportion of non-immunotherapy-

associated cells, such as activated mast cells, and a 

higher proportion of immunotherapy-associated cells, 

such as T cell follicular helper cells, compared with 

clusters 2 and 3 (Figure 7A, 7C Supplementary Table 

12). These results provide further insight into 

immunotherapy, and the tumor immune dysfunction and 

exclusion (TIDE) algorithm was used to predict the 

likelihood of a response to immunotherapy. These 

results suggested that the DEAS-based clusters were 

correlated with different immune responses (Figure 7A, 

Supplementary Table 12). Patients in cluster 1 (50.64%, 

78/154) presented a higher proportion of immuno-

therapy-associated cells and a lower proportion of 

stromal cells; thus, they might be more likely to respond 

to immunotherapy than patients in cluster 2 (27%, 

27/100) and cluster 3 (13.72%, 7/51). 

 

Prognostic value of DEAS events in GC 

 

To identify the potential clinical value of DEAS events, 

we investigated the underlying relationship between 

DEAS events and the prognosis of patients with GC. 

Among the 314 DEAS events, univariate Cox

 

 
 

Figure 3. Potential biological functions of DEAS events. (A) GO analysis of DEAS events is shown in bubble plots. (B) KEGG analysis of 
DEAS events is shown in bubble plots. (C, D) GSEA of DEAS events. 
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Figure 4. PPI analysis of DEAS events. (A) The interactome of 280 parental genes for 314 DEAS events is shown in the PPI network. (B) 

The interactome of the top 5 hub genes. (C) Module 1 was associated with ribosomes. (D) Module 2 was associated with adherens junctions 
and migration. 

 

 
 

Figure 5. Regulatory splicing correlation network in GC. (A) The correlation of DEAS events with SFs is shown in network plots. (B, C) 

Representative positive correlations between DEAS events and SFs are shown in scatter plots. (D, E) Representative negative correlations 
between DEAS events and SFs are shown in scatter plots. 



 

www.aging-us.com 4323 AGING 

regression analysis revealed that 21 DEAS events were 

significantly associated with OS (Figure 8A). After 

adjusting for relative clinical covariates, 15 DEAS 

events were identified as independent prognostic factors 

(Figure 8B). Ultimately, in the multivariate Cox 

regression analysis, 3 of the 15 DEAS events were 

determined as independent prognostic indicators: 

CD70_AT, CNTNAP3B_AT and RTN1_AP (Figure 

8C). As shown in Figure 8D, Kaplan-Meier analysis 

was conducted to assess the relationship between DEAS 

events and survival. Furthermore, each independent 

prognostic indicator DEAS event was found to be 

significantly associated with many types of immune 

cells (Figure 8E). Combined with the above DEAS-

based clusters, we observed that DEAS events 

associated with good prognoses, such as CLIP3_AP, 

CNTNAP3B_AT and UNKL_AP, were highly 

expressed in cluster 1. In contrast, DEAS events 

associated with poor prognoses, such as PLCD1_AP, 

MLLT4_ES and ZNF483_AT, were highly expressed in 

clusters 2 and 3 (Figure 8F). 

 

DISCUSSION 
 

AS, as a crucial posttranscriptional modification, allows 

cells to generate multiple RNA and protein isoforms 

with distinct structural, regulatory and functional 

properties [8, 9]. It has been determined that abnormal 

AS events contribute to numerous diseases, including 

several types of cancer [10, 11]. Accumulating evidence 

 

 
 

Figure 6. DEAS-based clusters associated with molecular characteristics, cancer-specific signatures and prognosis. (A) 

Consensus clustering analysis of 3 defined clusters was visualized in a matrix heatmap. (B) PCA of 3 distinct clusters is shown in scatter plots. 
(C) GSVA of cancer-specific signatures between DEAS-based clusters is shown in a cluster heatmap. (D) Kaplan-Meier survival analysis of 
patients within 3 distinct clusters of OS. 
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has also proven that the specific dysregulation of AS 

events plays crucial roles in the initiation and 

progression of GC [16]. For instance, CD44, MUTYH 

and WNT2B splice variants participate in the 

metastasis, carcinogenesis and development of GC  

[17–19]. Because of the limited sample sizes of one or a 

few specific AS events in previous studies, the 

exploration of AS events in GC is far from 

comprehensive. Hence, we systematically profiled AS 

events in a large-scale GC cohort to elucidate the 

landscape of AS events in GC. 

 

Through a rigorous filter, a total of 12,225 AS events of 

5,199 genes were identified in 305 GC patients, 

indicating that AS is a common posttranscriptional 

modification in GC. Moreover, 314 DEAS events were 

detected from 280 genes among the GC and normal 

tissues. The correlation analysis indicated that most of 

the DEAS events were significantly correlated with the 

expression of their parental gene, consistent with the 

hypothesis that AS acts as an important segment of the 

posttranscriptional process and alters gene expression 

[20]. All the above experimentally validated splice 

variants were also identified by our procedure, 

suggesting that our results are reliable and that the 

DEAS events identified in our study are ubiquitous in 

GC. In addition, we found that GC shares some 

common DEAS events with those in colorectal and 

head-neck squamous cell cancers, indicating that certain 

AS events are common in cancer tumorigenesis and 

development [21, 22]. 

 

To explore the potential mechanism of DEAS events in 

GC, we performed functional enrichment analysis and 

generated a PPI network of their parental genes. In the 

functional enrichment analysis, the parental genes were 

mainly enriched in pathways related to the cytoplasm 

and extracellular matrix, such as “cell junction 

organization and assembly”, “cell adhesion molecular 

binding and cadherin binding” and “AMPK signaling

 

 
 

Figure 7. DEAS-based clusters associated with clinicopathological characteristics and immune microenvironment features. 
(A) A total of 305 DEAS events ordered by distinct clusters with annotations associated with clinicopathological characteristics and immune 
microenvironment features were visualized in a matrix heatmap. (B) Immune and stromal scores of each DEAS-based cluster. (C) Percentage 
matrix heatmap of immune cell infiltration in the tumor microenvironment between distinct clusters. 
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 pathway”. The cytoplasm is the major location of 

AMPK, and the AMPK signaling pathway is considered 

a vital factor in the development and treatment of GC 

[23–26]. Abnormal cell adhesion and cell junctions are 

also associated with the progression and metastasis of 

GC, which further supports the accuracy and reliability 

of our enrichment analysis [27–29]. Correspondingly, 

the DEAS events influenced the above potential 

pathophysiological processes in GC. By constructing 

the interaction network of the parental genes, we found 

that most were correlated with each other. Two 

individual modules were highlighted in the PPI 

network, suggesting potential molecular complexes. Of 

note, all top 5 hub genes belonging to the ribosomal

 

 
 

Figure 8. Prognostic value of DEAS events in GC. (A) Univariate analysis of DEAS events associated with OS is shown in forest plots of 
hazard ratios. (B) Univariate analysis of DEAS events associated with OS after adjusting for relative clinical covariates is shown in forest plots 
of hazard ratios. (C) Multivariate analysis of DEAS events associated with OS is shown in forest plots of hazard ratios. (D) Kaplan-Meier 
survival analysis of the independent prognostic DEAS events on OS. (E) Correlation analysis of the independent prognostic DEAS events and 
immune cells. (F) Differential expression of representative prognostic DEAS events between distinct clusters was visualized in a matrix 
heatmap. 
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protein family comprised one individual module, which 

implies that the functions of ribosomes might be 

affected by DEAS events in GC. 

 

SFs have been reported to participate in the precise 

regulation of RNA splicing by binding to specific 

RNA sequences [30]. Thus, we performed an 

integrated analysis of SFs and DEAS events to address 

the underlying mechanism of the splicing pathway in 

GC. The splicing correlation network showed 

distinguished interactions between DEAS events and 

SFs. Of note, we found that the same SF might play 

dual roles in the regulation of AS events and that the 

same AS event could be synergistically or 

antagonistically regulated by different SFs. This 

suggests that complex regulatory mechanisms may 

influence SFs and AS events. Indeed, the real 

regulatory mechanisms involved in RNA splicing 

could be more sophisticated than we revealed in this 

study. The relationship between DEAS events and SFs 

should be considered a dynamic interaction network 

instead of a simple “one to one” pattern. 

 

Increasing evidence has demonstrated that AS events 

play an indispensable role in immune micro-

environment formation [13]. Actual identification of 

the distinct patterns of AS events in the tumor 

microenvironment will contribute to GC therapy. 

Here, we revealed three distinct DEAS-based patterns 

among 314 DEAS events, and these three patterns 

presented distinct molecular, clinical and immune 

features. We found that most of the cancer hallmark 

pathways were significantly different between the 3 

DEAS-based clusters and that pathogenetic pathways 

were broadly different regarding tumor biology. This 

further indicates that the DEAS-based clusters 

identified herein are reliable. According to our results, 

GC patients belonging to cluster 1 were significantly 

associated with a low histologic grade, a low T stage 

and a favorable survival outcome. 

 

Moreover, cluster 1 was characterized by high tumor 

purity and was significantly associated with low 

immune and stromal scores. Consistent with our results, 

previous studies have also determined that low tumor 

purity is associated with a poor prognosis and an 

enhanced immune phenotype [31–33]. Referring to the 

amount of immune cell infiltration, the relative 

proportion of M2 macrophages and neutrophils is 

substantially inversely correlated with tumor purity [31–

33]. Consistent with this finding, we found that the 

relative proportion of multiple types of immune cells 

was significantly low in cluster 1. According to the 

TIDE algorithm, the low proportion of immune cell 

types indicated that tumor purity was an essential factor 

of immunotherapy in GC. In addition, cluster 1 

presented a higher proportion of immunotherapy-

associated cells and a lower proportion of stromal cells, 

which was beneficial for immunotherapy. GC patients 

belonging to cluster 1 might obtain a better response 

than patients in other clusters. These findings suggest 

that the DEAS events in GC confer essential biological 

and clinical implications. 

 

Due to the potential significance of AS events in 

tumor biology, their clinical relevance in GC was 

further assessed by survival analysis. A total of 21 

DEAS events were found to be associated with OS. 

Among these survival-associated DEAS events, some 

genes were determined to play crucial roles in tumor 

biology. For instance, PLCD1 inhibits tumor 

formation in breast cancer by inducing apoptosis [34]. 

HLF transactivates c-Jun to promote tumor-initiating 

cell generation in hepatocellular carcinoma [35]. The 

inactivation of BNIP3 likely plays a vital role in the 

progression of colorectal cancer and GC [36]. 

Moreover, 15 of 21 survival-associated DEAS events 

also showed a significant association with OS, even 

after adjusting for multiple clinical factors, including 

sex, age and TNM stage. Finally, 3 of 21 survival-

associated DEAS events were revealed as independent 

prognostic factors, and these 3 DEAS events 

performed well in stratifying GC patients into groups 

based on survival through Kaplan-Meier survival 

curves. In addition, each of these 3 DEAS events 

showed a significant association with several types of 

immune cells. The AS landscape profile in GC was 

mapped, thus providing an overview of this research, 

and the findings elucidated the functional roles of the 

splicing network in GC. Unfortunately, a limited 

number of validation experiments were performed; 

however, we intend to perform additional validation 

experiments in the future. 

 

Our study depicted a comprehensive landscape of AS 

events in GC patients, and the implementation of strict 

criteria ensured the identification of abnormal AS 

events related to GC. Our functional analysis indicated 

that 314 DEAS events identified in our study might play 

essential roles in the development of GC. The SF-AS 

regulatory network further clarified the underlying 

mechanism of the splicing-associated pathway. More-

over, based on the DEAS events, the comprehensive 

clustering analysis of GC revealed the intrinsic 

relevance of molecular alterations and immune features, 

which indicated the value of AS events in predicting the 

clinical outcomes of GC patients. In addition, survival-

related DEAS events might not only serve as prognostic 

indicators and therapeutic targets for GC patients but 

also help to decipher the mechanism of AS events in 

GC oncogenesis. 



 

www.aging-us.com 4327 AGING 

 

MATERIALS AND METHODS 
 

Data acquisition and curation 

 

Patients who met the following criteria were included in 

the TCGA GC cohort: (1) patients who were 

histologically confirmed as having primary GC; (2) 

patients with RNA-seq data; (3) patients with 

alternative RNA splicing data; (4) patients with detailed 

clinicopathological and follow-up information, 

including sex, age, race, TNM stage, histologic grade, 

microsatellite status and overall survival (OS) status; 

and (5) patients with an OS time of over 90 days. The 

corresponding RNA-seq data and clinical information of 

the GC cohort were downloaded from the TCGA data 

portal using the “GDCRNATools” package [37]. The 

corresponding alternative RNA splicing data of the GC 

cohort were downloaded from the TCGA SpliceSeq 

dataset [38]. Splicing events in the dataset were divided 

into seven categories: ES, RI, AP, AT, AD, AA and 

ME. Each splicing event was quantified by the PSI 

value [39], which ranges from 0 to 1 and represents the 

ratio of normalized read counts to indicate the inclusion 

of a transcript element over the total normalized reads 

for that event. To generate a reliable set of AS events, 

we implemented a series of stringent filters, which 

included “percentage of samples with a PSI value ≥ 

75%”, “average PSI value ≥ 0.05” and “standard 

deviation of the PSI value ≥ 0.1”. Only AS events 

meeting the above criteria were included in the present 

analysis. Moreover, we filled in the missing PSI values 

using the k nearest neighbors algorithm [40]. 

 

DEAS event identification and functional analysis 

 

To identify the DEAS events in GC, we applied the 

paired sample t-test to compare the PSI values between 

tumor tissues and matched adjacent normal tissues, and 

the P-value was adjusted by the Benjamini-Hochberg 

(BH) method. AS events with an absolute value of log2-

fold change ≥ 1 and an adjusted P-value < 0.05 were 

considered statistically significant. Then, we subjected 

the parental genes of the DEAS events to a biological 

function enrichment analysis, which was performed 

with the “clusterProfiler” package [41]. Gene Ontology 

(GO) terms, including “biological process (BP)”, 

“cellular component (CC)” and “molecular function 

(MF)”, and Kyoto Encyclopedia of Genes and Genomes 

(KEGG) pathways with adjusted P values < 0.05 were 

selected for further analysis. In addition, the parental 

genes of these DEAS events were mapped to coding 

proteins, and the PPIs between these coding proteins 

were downloaded from the Search Tool for the 

Retrieval of Interacting Genes/Proteins (STRING) 

database. A minimum required interaction score of 0.9 

was used to identify reliable interaction results. The PPI 

network was further visualized with Cytoscape [42]. 

Hub genes and specific modules of the PPI network 

were identified by CytoHubba and the Molecular 

Complex Detection (MCODE) plug-in of Cytoscape 

[43, 44]. 

 

SFs and splicing correlation network 

 

A total of 78 genes that participated in the process of 

alternative RNA splicing (GO: 0000380) were obtained 

from the Molecular Signatures Database (MSigDB) 

[45]. The raw count value of these splicing genes was 

then extracted from the RNA-seq data and normalized 

by trimmed means of M (TNM) values [46]. We 

implemented the “voom” method to further transform 

the raw counts [47]. Spearman’s correlation analysis 

was conducted to explore the correlations between the 

expression of the splicing genes and the PSI values of 

the DEAS events. The P-value was adjusted by the BH 

method, and a correlation coefficient ≥ 0.4 and an 

adjusted P-value < 0.05 were considered statistically 

significant. The correlation network of the DEAS events 

and splicing genes was visualized with Cytoscape [42]. 

 

Cluster analysis and correlation with molecular, 

clinical and immune features 

 

Based on the identified DEAS events (n = 314), 

unsupervised clustering of the TCGA STAD cohort was 

performed via hierarchical consensus clustering with the 

“ConsensusClusterPlus” package [48]. Associations 

between clusters and clinicopathological variables 

(pathological T stage, pathological N stage, pathological 

M stage, pathological TNM stage, histologic grade and 

microsatellite status), survival status (OS), immune 

features (immune score, stromal score and immune cell 

infiltration) and immunotherapy responses between 

clusters were analyzed. Immune and stromal scores 

were calculated based on the ESTIMATE algorithm 

[49]. Immune cell infiltration was analyzed by 

CIBERSORT [50]. The TIDE algorithm was used to 

predict the clinical response to immunotherapy [51, 52]. 

GSVA was performed by the “clusterProfiler” package 

to investigate differences in the biological processes 

between the distinct DEAS-based clusters, and those 

with an adjusted P-value < 0.05 were considered 

statistically significant [41, 53]. 

 

Survival analysis 

 

To determine the survival-associated DEAS events in 

GC, we performed a univariate Cox proportional 
hazards regression analysis to estimate the PSI value of 

DEAS events with OS. DEAS events with a P-value < 

0.05 in the univariate Cox regression analysis were 
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selected as candidate prognostic AS events. To 

investigate whether these candidate prognostic AS 

events were independent clinical indicators, a 

multivariate Cox regression analysis was then applied 

and adjusted for the following clinically relevant 

covariates: sex, age, pathological T stage, pathological 

N stage, pathological M stage, pathological TNM stage, 

histologic grade and microsatellite status. Furthermore, 

based on the PSI value of each independent prognostic 

AS event, patients were divided into low-risk and high-

risk subgroups according to the optimal cutoff value, 

which was determined by the “survminer” package [54]. 

Kaplan-Meier survival analyses with log-rank tests were 

performed to demonstrate the survival probability 

variation over time between the low-risk and high-risk 

subgroups, and P-values < 0.05 were considered 

statistically significant. 
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Supplementary Figure 1. Correlation heatmap of DEAS events and their parental genes. 

 

 
 

Supplementary Figure 2. Representative correlation between DEAS events and SFs. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1–4, 6–12. 

 

Supplementary Table 1. DEAS events. 

Supplementary Table 2. DEGs of the 280 parental genes. 

Supplementary Table 3. Spearman’s correlation analysis of DEGs and DEAS events. 

Supplementary Table 4. GO enrichment analysis of DEAS events. 

Supplementary Table 5. KEGG enrichment analysis of DEAS events. 

KEGG ID Description GeneRatio BgRatio Adjusted P-value gene ID 

hsa00562 Inositol phosphate metabolism 6/127 74/8032 0.0010682 MTMR1/MTMR3/MTMR4/ALDH6A1/PIK3CD/PLCD1 

hsa05205 Proteoglycans in cancer 10/127 204/8032 0.0014152 
CD44/ESR1/WNT2B/RPS6/AKT1/CAMK2D/CAMK2

G/ANK3/PIK3CD/FLNA 

hsa04261 Adrenergic signaling in cardiomyocytes 8/127 149/8032 0.0024234 
ATP2B4/ADRA1A/PPP1R1A/TPM1/AKT1/CAMK2D/

CAMK2G/CACNA2D4 

hsa04152 AMPK signaling pathway 7/127 120/8032 0.0028412 
TBC1D1/CAB39L/LEPR/ADRA1A/AKT1/SCD5/PIK3

CD 

hsa04620 Toll-like receptor signaling pathway 6/127 104/8032 0.0059612 CASP8/MAP2K7/MAP2K6/AKT1/TIRAP/PIK3CD 

hsa04066 HIF-1 signaling pathway 6/127 109/8032 0.0074647 RPS6/AKT1/CAMK2D/CAMK2G/ANGPT1/PIK3CD 

hsa04668 TNF signaling pathway 6/127 112/8032 0.0084888 CASP8/MAP2K7/MAP2K6/DAB2IP/AKT1/PIK3CD 

hsa04670 Leukocyte transendothelial migration 6/127 113/8032 0.0088515 CD99/VCL/CXCL12/AFDN/PIK3CD/CTNND1 

hsa04012 ErbB signaling pathway 5/127 85/8032 0.0109392 MAP2K7/AKT1/CAMK2D/CAMK2G/PIK3CD 

hsa05131 Shigellosis 9/127 236/8032 0.0123094 
CD44/VCL/AKT1/WIPI2/PIK3CD/BNIP3/SEPTIN9/P

LCD1/FNBP1 

hsa05235 
PD-L1 expression and PD-1 checkpoint 

pathway in cancer 
5/127 89/8032 0.0131715 NFATC2/MAP2K6/AKT1/TIRAP/PIK3CD 

hsa05161 Hepatitis B 7/127 162/8032 0.0141447 
CASP8/MAP2K7/NFATC2/MAP2K6/AKT1/TIRAP/PI

K3CD 

hsa05017 Spinocerebellar ataxia 5/127 98/8032 0.0192755 NFYA/AKT1/WIPI2/GRIN2C/PIK3CD 

hsa04070 Phosphatidylinositol signaling system 5/127 99/8032 0.0200512 MTMR1/MTMR3/MTMR4/PIK3CD/PLCD1 

hsa04140 Autophagy - animal 6/127 137/8032 0.0212426 MTMR3/MTMR4/AKT1/WIPI2/PIK3CD/BNIP3 

hsa04720 Long-term potentiation 4/127 67/8032 0.0212478 PPP1R1A/CAMK2D/CAMK2G/GRIN2C 

hsa04664 Fc epsilon RI signaling pathway 4/127 68/8032 0.0223072 MAP2K7/MAP2K6/AKT1/PIK3CD 

hsa05152 Tuberculosis 7/127 180/8032 0.0237873 NFYA/CASP8/LSP1/AKT1/CAMK2D/CAMK2G/TIRAP 

hsa04625 C-type lectin receptor signaling pathway 5/127 104/8032 0.0242368 CASP8/NFATC2/LSP1/AKT1/PIK3CD 

hsa04520 Adherens junction 4/127 71/8032 0.0256768 VCL/AFDN/PTPRF/CTNND1 

hsa05214 Glioma 4/127 75/8032 0.0306229 AKT1/CAMK2D/CAMK2G/PIK3CD 

hsa05412 
Arrhythmogenic right ventricular 

cardiomyopathy (ARVC) 
4/127 77/8032 0.0332926 ITGB4/CACNA2D4/JUP/DMD 

hsa04724 Glutamatergic synapse 5/127 114/8032 0.0342061 SLC38A1/GLUL/GRIN2C/SHANK2/GRIK2 

hsa04510 Focal adhesion 7/127 199/8032 0.0380996 VCL/TNC/ITGB4/AKT1/COL6A3/PIK3CD/FLNA 

hsa03010 Ribosome 6/127 158/8032 0.0389509 MRPL22/RPL18A/RPS6/RPL32/RPS3A/RPS21 

hsa04722 Neurotrophin signaling pathway 5/127 119/8032 0.0400213 MAP2K7/AKT1/CAMK2D/CAMK2G/PIK3CD 

hsa05135 Yersinia infection 5/127 120/8032 0.0412523 MAP2K7/NFATC2/MAP2K6/AKT1/PIK3CD 

 

Supplementary Table 6. GO GSEA between tumor and normal samples. 

Supplementary Table 7. KEGG GSEA between tumor and normal samples. 

Supplementary Table 8. Functional enrichment analysis for module 1. 

Supplementary Table 9. Functional enrichment analysis for module 2. 

Supplementary Table 10. Spearman’s correlation analysis of DEAS events and SFs. 
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Supplementary Table 11. Kruskal-Wallis test of GSVA scores among the three clusters. 

Supplementary Table 12. Clinical and immune features among the 3 DEAS-based clusters. 

 

 

 


