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Abstract: Phytopathogenic fungi, causing significant economic and production losses, are becoming
a serious threat to global food security. Due to an increase in fungal resistance and the hazardous
effects of chemical fungicides to human and environmental health, scientists are now engaged to
explore alternate non-chemical and ecofriendly management strategies. The use of biocontrol agents
and their secondary metabolites (SMs) is one of the potential approaches used today. Trichoderma spp.
are well known biocontrol agents used globally. Many Trichoderma species are the most prominent
producers of SMs with antimicrobial activity against phytopathogenic fungi. Detailed information
about these secondary metabolites, when grouped together, enhances the understanding of their
efficient utilization and further exploration of new bioactive compounds for the management of plant
pathogenic fungi. The current literature provides the information about SMs of Trichoderma spp. in a
different context. In this review, we summarize and group different antifungal SMs of Trichoderma spp.
against phytopathogenic fungi along with a comprehensive overview of some aspects related to
their chemistry and biosynthesis. Moreover, a brief overview of the biosynthesis pathway, action
mechanism, and different approaches for the analysis of SMs and the factors affecting the regulation
of SMs in Trichoderma is also discussed.
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1. Introduction

Plant pathogens cause significant losses, which have obstructed efforts to increase agricultural
production. In spite of remarkable achievements in the development of chemical pesticides, plant
breeding technologies, and different cultural practices, as well as other management strategies
for the control of plant pathogens, losses due to disease remain a limiting factor in agricultural
production throughout the world, including many developed countries [1]. Among plant pathogens,
phytopathogenic fungi are one of the main infectious agents in plants, causing significant economic and
production losses. Throughout the history of agriculture, plant pathogenic fungi have been devastating
threats and the most diverse group of economic and ecological threats [2].

Several management strategies have been utilized for the control of fungal plant pathogens,
including the use of chemical fungicides, the breeding of disease resistance varieties, and several other
cultural practices. The excessive and continuous use of chemical fungicides cause serious hazardous
concerns related to human, animal, and environmental health. Breeding for disease resistance is a
long-lasting process. Though resistance genes have been incorporated successfully in plants for disease
management, breeding has to be a continuous process because the pathogens evolve rapidly, break the
resistance, and plants become susceptible. In advanced agriculture, most of the fungal plant pathogens
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can be controlled by modern management practices but epidemics with huge yield losses still occur.
Recently, wheat blast outbreaks (Magnaporthe oryzae) and soybean rust (Phakopsora pachyrhizi) in several
Asian countries caused devastating yield losses [3]. There is a need to explore alternate management
strategies. The use of biological control agents and their secondary metabolites is one of the potential
approaches that is consumer and environmentally friendly.

Secondary metabolites (SMs) from microorganisms may have an antifungal role against
agriculturally important phytopathogenic fungi [4]. Among different microorganisms, the species of
the genus Trichoderma are the most potent biocontrol agents in use today because they produce a diverse
range of antimicrobial SMs [5,6]. Trichoderma species secrete a plethora of metabolites into their vicinity
while having minimal nutritional needs. These metabolites can be utilized for agricultural, industrial,
and medical benefits and hence are important to humans. Several Trichoderma spp. exhibit antifungal
activities against phytopathogenic fungi [7], in which different groups of SMs, such as terpenes,
pyrones, gliotoxin, gliovirin, and peptaibols may be involved [8]. Comprehensive information about
these SMs regarding their antifungal role against phytopathogenic fungi, when grouped together, will
enhance the understanding of their efficient utilization and further exploration of new antifungal
bioactive metabolites for the management of plant pathogenic fungi. The current literature provides
the information about SMs of Trichoderma spp. in a different context [9–12]. In this review article,
we summarize and group different antifungal SMs of Trichoderma spp. against phytopathogenic fungi,
along with a comprehensive overview of some aspects related to their chemistry and biosynthesis.
In addition, a brief overview of different approaches for the analysis of SMs, the mechanism of action
of SMs, the general biosynthesis pathway, and factors influencing SM regulation in Trichoderma is
also discussed.

2. Antifungal SMs Produced by Trichoderma spp.

2.1. Epipolythiodioxopiperazines

Epipolythiodioxopiperazines (ETPs) have a high reactive potential among fungal SMs and are
characterized by a diketopiperazine ring that originates from a peptide. Diketopiperazines (DKPs) are
considered the product of protein degradation and they were generally nonpreferred peptides because
they are synthesized from protein hydrolysates. The toxicity of ETPs is attributed to their disulphide
bridges, which bind to thiol groups and generate reactive oxygen species through redox cycles, and in
this way inactivate proteins [13]. In the past few years, scientists diverted more towards DKP research
because of their strong biological activities. Many DKPs from microorganisms were isolated and studied
for their biological activities. The first DPK gliotoxin (1) (Figure 1) was isolated from Trichoderma lignorum
in 1936 [14], while a further description of gliotoxin was made from Trichoderma viride in 1944 [15].
Subsequent isolations and biosynthetic analyses have also been performed from this strain [16,17].
In 1975, Hussain et al. also isolated this compound from Trichoderma hamatum. Gliotoxins exhibit
bioactivity against the human pathogenic fungus Aspergillus fumigatus, but also play important roles
in the biocontrol activity of Trichoderma virens against some plant pathogenic fungi [18,19]. Some
biocontrol strains (so-called Q-strains) of T. virens also produce gliotoxin [20]. For example, gliotoxin
isolated from T. virens ITC-4777 was active against Rhizoctonia bataticola (with an ED50 of 0.03 g/mL),
Macrophomina phaseolina (with an ED50 of 1.76 g/mL), Pythium deharyanum (with an ED50 of 29.38 g/mL),
Pythium aphanidermatum (with an ED50 of 12.02 g/mL), Sclerotium rolfsii (with an ED50 of 2.11 g/mL),
and Rhizoctonia solani (with an ED50 of 3.18 g/mL) [21]. Gliovirin (Figure 1; 2) is another member of this
class of toxin, produces mainly by a strain of T. virens [22]. Two analogues of gliovirin (Figure 1; 2a, 2b)
were isolated from Trichoderma longibrachiatum. These analogues exhibited antifungal activity against
R. solani [23]. Strains of T. virens that produce gliotoxin also showed antagonistic activity against
R. solani [24], while those strains that produce gliovirin were antagonistic to Pythium ultimum [25].
Both gliovirin and gliotoxin come under the epipolythiodioxopiperazine class of toxins and exhibited
characteristic disulphide bridges [26]. The DKP gliotoxin gene cluster in the T. virens genome comprises
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eight genes, a cluster-specific regulator, auxiliary biosynthetic enzymes, and nonribosomal peptide
synthetase (NRPS); dioxopiperazine synthetase [20]. The removal of a part from the gliP open reading
frame confirmed the association of the gene cluster with gliotoxin production [27]. The gliP mutants
that were unable to produce gliotoxin showed less activity against P. ultimum while exhibiting a higher
vegetative growth rate [18]. Unexpectedly, another six genes of the gli cluster and gliP were also
reported in the genome of T. reesei, but this species does not produce gliotoxin [20].

Figure 1. Structures of diketopiperazines from Trichoderma spp.: [1] gliotoxin isolated from
Trichoderma lignorum, [2] gliovirin isolated from T. virens, [2a, 2b] analogues of gliovirin isolated
from T. longibrachiatum.

2.2. Peptaibols

Peptaibols are the linear peptides consisting of α,α-dialkylated amino acids, isovaline, α-amino
isobutyric acid (Aib), an acetylated N-terminus, and a C-terminal amino alcohol. They are ecologically
and commercially important for their antimicrobial and anti-cancer properties, as well as their ability
to induce systemic resistance in plants against microbial invasion. The peptaibols are amphipathic
in nature and self-assemble to form voltage-dependent ion channels in membranes. This ability is
largely responsible for the antibiotic properties of these compounds [28,29]. Peptaibols are produced
largely by members of genus Trichoderma [30], and the first discovered peptaibol, alamethicin F30
(Figure 2; 3), was reported from T. viride [31,32]. Peptaibol subclasses were defined on the basis of
peptide chain length. Those peptaibols having 18–20 residue peptides in their chain length are called
long-sequence peptaibols [33–37], those having 11–16 residue peptides in their chain length are termed
short-sequence peptaibols [38], while peptaibols having only 7–11 residue peptides in their chain
length, with N-terminal amino acids acylated by a short lipid chain, are termed lipopeptaibols [39].
Three peptaibols, trichokonins VI (Figure 2; 4), VII (Figure 2; 5), and VIII (Figure 2; 6), obtained
from Trichoderma koningii, showed broad-spectrum antimicrobial activity against a range of important
plant pathogens, such as R. solani, Fusarium oxysporum, Verticillium dahliae, and Botrytis cinerea.
Trichokonins are insensitive to proteolytic enzymes and showed biological activity over a wide pH
range even after autoclaving [40]. Trichokonin VI (Figure 2; 4), isolated from Trichoderma pseudokoningii,
induced extensive apoptotic programmed cell death in Ascochyta citrullina, B. cinerea, F. oxysporum,
Phytophthora parasitica, and V. dahliae [41]. Interestingly, trichokonins were also proved to be highly
active against Clavibacter spp., which infects a variety of economically important crops, including
potato, maize, and tomato [42]. The peptaibols trichorzianine A1 (Figure 2; 7) and B1 (Figure 2; 8)
from Trichoderma harzianum could inhibit the spore germination, as well as hyphal elongation, of
plant pathogenic fungi [43,44], and there was a synergistic interaction between hydrolytic enzymes
and peptaibols [45]. The antiviral properties of the peptaivirins A (Figure 2; 9) and B (Figure 2; 10)
belonging to the peptaibol group has also been reported against tobacco mosaic virus infection in
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tobacco plants [46]. Peptaibols induce plant defense reactions through the salicylate signal pathway,
leading to systemic acquired resistance, which is an interesting feature [47–49]. The potential of the
peptaibols of Trichoderma qualifies their exploitation as important plant protectants. There are two
peptaibol synthetases (of 18 and 14 modules) in Trichoderma genomes. Even though there are more than
700 described peptaibol sequences [50], no genetic studies on their synthesis have been conducted,
except in T. virens Gv29-8. Using gene disruptions, the 18-residue peptaibol synthetase Tex1 has been
shown to be responsible for the production of the trichovirin II-type 18-residue peptaibol, while the
14-module enzyme assembles both the 14-residue and the 11-residue peptaibol in T. virens [28,51,52].

Figure 2. Structures of antifungal peptaibols from Trichoderma spp.: [3] alamethicin F30, [4] trichokonin
VI, [5] trichokonin VII, [6] trichokonin VIII, [7] trichorzianine A1, [8] trichorzianine B1, [9] peptaivirin
A, [10] peptaivirin B; peptaibols [4], [5], and [6] were isolated from T. koningii, [7], [8], [9], and [10] were
isolated from T. harzianum.

2.3. Pyrones

The pyrone 6-pentyl-2H-pyran-2-one (6-PP) (Figure 3; 11) is a flavoring agent responsible
for the aroma of coconut and has been reported to have antifungal and plant growth-promoting
activities [53]. It belongs to the chemically diverse group of low molecular weight metabolites having
a high vapor pressure at room temperature and low water solubility, which are classified as volatile
organic compounds (VOCs) [54]. Pyrone 6-PP was first discovered in a culture broth of T. viride [55],
after which it was also reported to be produced by T. koningii and T. harzianum [56,57]. It caused
31.7% and 69.6% growth reduction in F. oxysporum and R. solani, respectively, at a concentration of
0.3 mg/ml. A positive antifungal correlation had been investigated between pyrone 6-PP production
and the antagonistic ability of T. harzianum [58,59]. In stored kiwi fruits, the application of pyrone
6-PP at 0.4 to 4 mg /mL could significantly reduce B. cinerea rots on both naturally infected and
artificially inoculated fruits [60]. In addition, 6-PP was also found in T. harzianum T77 and SQR-T037,
which were used for the control of grapevine trunk diseases [61] and Fusarium wilt in cucumber
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in continuously cropped soil [62]. T. harzianum was found to produce three bioactive analogues of
pyrone 6-PP (Figure 3; 12–15). The analogue (12) was active against Candida albicans, Penicillium spp.,
Cryptococcus neoformans, and A. fumigatus [56,63]. In another study, analogue (12), isolated from
T. harzianum and T. longibrachiatum, exhibited antifungal activity against Armillaria mellea [64].
The analogue hydro-derivatives massoilactone (13) and d-decanolactone (14) were reported to have
activity against Phytophtora and Botrytis species [65]. Another analogue of pyrone, viridepyronone
(15), was produced by a strain of T. viride and showed 90% growth inhibition of S. rolfsii at a minimum
inhibitory concentration (MIC) of 196 mg/ml [66]. Pyrone 6–PP and its analogues are derived from
fatty acids, and their biosynthesis in T. atroviride IMI206040 has been studied by using [1-14C] and
[U-14C] linoleic acid. It was suggested that the oxidization of linoleic acid to 13-hydroperoxide-diene,
followed by 5-hydroxy-2,4-decenioc acid formation and finally esterification, resulted in the formation
of pyrones [67].

Figure 3. Structures of antifungal pyrones from Trichoderma spp.: [11] 6-PP isolated from
T. viride; [12], [13], [14], and [15] analogues of 6-PP isolated from T. harzianum.

2.4. Butenolides

An antifungal butenolide compound, harzianolide (Figure 4; 16), was isolated from three strains of
T. harzianum [68–70]. The dehydro-derivative (17) of harzianolide (16) was obtained from T. harzianum.
Another butanolide, T39butenolide (18), was produced by a commercially available T. harzianum
strain [71]. All of these compounds (16–18) showed antifungal activity against Gaeumannomyces
graminis var. tritici [68,71]. Harzianolide (16) particularly inhibited the growth G. graminis var. tritici at
200 mg/mL, while T39butenolide (18) inhibited the growth of G. graminis at 100 mg/mL. Additionally,
harzianolide (16) and T39butenolide (18) caused growth inhibition in P. ultimum and R. solani [71].
From the fungus T. longibrachiatum Rifai aggr, 5-Hydroxyvertinolide (19) was isolated, which was
antagonistic to the fungus Mycena citricolor, the agent responsible for American leaf spot disease of
coffee [72]. In another study, the antifungal effect of a compound of harzianolide (16) and T39butenolide
(18) was reported against P. ultimum, R. solani, and B. cinerea [73]. The biosynthesis of these butenolides
probably involves two Favorskii rearrangements from a C-14-diepoxide, resulting in the extrusion of
the two carbons that form the lactone [74].
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Figure 4. Structures of antifungal butenolides from Trichoderma spp. [16]: harzianolide, [17]
dehydro-derivative of harzianolide, [18] T39butenolide, [19] 5-hydroxyvertinolide butenolides; [16], [17],
and [18] were isolated from T. harzianum and [19] was isolated from T. longibrachiatum.

2.5. Pyridones

Antifungal harzianopyridone (Figure 5; 20) was first isolated from T. harzianum in 1989.
It contains a pyridine ring system with a 2,3-dimethoxy-4-pyridinol pattern [75]. The racemic
form of harzianopyridone (20) showed strong antifungal activity against plant pathogenic fungi,
such as P. ultimum, G. graminis var. tritici [71], R. solani, and B. cinerea [75]. A laevorotatory form
of harzianopyridone (20) isolated from T. harzianum exhibited weak antibacterial and antifungal
activity and also showed high phytotoxicity in an etiolated wheat coleoptile bioassay analysis.
The harzianopyridone (20) was also reported to cause necrosis in corn, bean, and tobacco in a
concentration-dependent manner, which suggested that the two harzianopyridone (20) enantiomers
may exhibit different activities [74]. In another investigation, harzianopyridone (20) isolated from
T. harzianum showed activity against Phytophthora cinnamomi, B. cinerea, and Leptosphaeria maculans [73].
This compound was also reported to inhibit more than 90% of the growth of R. solani, F. oxysporum,
and S. rolfsii [76]. The pyridone harzianopyridone (20) was proposed to be biosynthesized from a
tetraketide with the possible involvement of aspartic acid [74,75].

Figure 5. Structure of antifungal pyridone [20] harzianopyridone from T. harzianum.

2.6. Azaphilones

The azaphilones contain a chiral quaternary center and extremely high oxygenated bicyclic core,
and hence form a structurally diverse group of SMs. Two azaphilone-type compounds, harziphilone
(Figure 6; 21) and fleephilone (Figure 6; 22), were reported to be produced by T. harzianum. These
were isolated by the bioassay-guided fractionation of the butanol–methanol extract of the fermentation
broth of T. harzianum. T. harzianum was also found to produce another azaphilone, T22azaphilone (23).
These compounds exhibited significant antifungal activity against P. ultimum, G. graminis var. tritici,
and R. solani [71]. T22azaphilone (23) also exhibited antifungal activity against B. cinerea, P. cinnamomi,
and L. maculans at low doses [73]. Gene deletions and biochemical investigations demonstrated that
azaphilones were collaboratively synthesized by two separate clusters containing four core enzymes,
two nonreducing PKSs, one highly reducing PKS, and one NRPS-like PKS. This is a meaningful
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mechanism of fungal SMs, which allows fungi to synthesize more complex compounds and gain new
physiological functions [77].

Figure 6. Structures of antifungal azaphilones isolated from T. harzianum: [21] harziphilone, [22]
fleephilone, [23] T22azaphilone.

2.7. Koninginins

Some species of Trichoderma produced a series of SMs, named koninginins A–E (Figure 7; 24–28)
and G (29). Koninginins A (24) and B (25) were identified in the culture broth of a strain of T. koningii
obtained from soil and the root of Diffenbachia species [78,79]. Two strains of T. harzianum isolated from
wheat roots were also reported to produce koninginins A (24) and B (25) in their liquid cultures [68].
The total synthesis of compounds 24 and 25 allowed for the correction of the relative configurations
of koninginins A (24a) and B (25a) [80,81]. Later, in 2002, X-ray analysis was used to confirm this
stereochemistry [82]. The koninginins C (26) and D (27) were produced by T. koningii isolated from soil
and fermented on a shredded wheat medium [83,84]. The koninginin E (28) was isolated from liquid
cultures of T. harzianum and T. koningii [85,86] and koninginin G (29) was obtained from Trichoderma
aureoviride [87]. The total synthesis of koninginin D (27) and E (28) has been performed [81]. Except
for koninginin C (26), all other koninginins are bioactive against different plant fungal pathogens.
For example, koninginins A, B, D, E, and G (24, 25, 27, 28, 29) exhibit activity against G. graminis var.
tritici [68,85], while koninginin D (27) was reported to have antifungal activity against several plant
pathogenic fungi, such as F. oxysporum, Bipolaris sorokiniana, P. cinnamomi, and Pythium middletonii [84].
In another study, koninginins A, B, and D (24, 25 and 27), obtained from Trichoderma koningiopsis YIM
PH30002, exhibited antifungal activity against F. oxysporum, Fusarium solani, and Alternaria panax [88].
Koninginins belong to the secondary metabolite group of polyketides. Generally, the polyketide
synthases catalyze the polyketide biosynthesis reaction, which is carried out by the repeated attachment
of short chain fatty acids, i.e. propionate and acetate, by similar pathways exhibited by fatty acid
biosynthesis [89].
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Figure 7. Structures of antifungal koninginins from Trichoderma spp.: [24] koninginin A, [25] koninginin
B, [26] koninginin C, [27] koninginin D, [28] koninginin E, [29] koninginin G; koninginins [A], [B], [C],
[D], and [E] were produced by T. koningii and koninginin [E] was produced by T. aureoviride.

2.8. Steroids

Stigmasterol (Figure 8; 30) was obtained from T. harzianum and T. koningii that showed antifungal
activities against R. solani, S. rolfsii, M. phaseolina, and F. oxysporum [76,90]. Two other steroids,
ergosterol (31) and 3,5,9-trihydroxyergosta-7,22-dien-6-one (32), isolated from Trichoderma sp. YM
311505, exhibited strong antifungal activities against Pyricularia oryzae, C. albicans, Aspergillus niger,
and Alternaria alternata with an MIC value of 32 µg/mL [91].

Figure 8. Structures of antifungal steroids from Trichoderma spp.: [30] stigmasterol, [31] ergosterol,
[32] 3,5,9-trihydroxyergosta-7,22-dien-6-one.

2.9. Anthraquinones

Three anthraquinones, 1,8-dihydroxy-3-methylanthraquinone (Figure 9; 33),
1-hydroxy-3-methylanthraquinone (34), and 6-methyl-1,3,8-trihydroxyanthraquinone (35), were
isolated from T. harzianum strains that were active against R. solani, S. rolfsii, M. phaseolina,
and F. oxysporum [76]. Compounds 33 and 34 also showed antifungal activity against
G. graminis var. tritici and P. ultimum [71]. It was reported that the low oxidation state of
6-methyl-1,3,8-trihydroxyanthraquinone (35) had the potential to change to a high oxidation state
by the host reactive oxygen species that were released in response to attack by microbial pathogens,
which means compound 35 may have the ability to increase the efficiency of Trichoderma against host
resistance to other pathogens [92].
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Figure 9. Structures of antifungal anthraquinones from Trichoderma spp.: [33]
1,8-dihydroxy-3-methylanthraquinone, [34] 1-hydroxy-3-methylanthraquinone, [35]
6-methyl-1,3,8-trihydroxyanthraquinone.

2.10. Lactones

The antifungal 10-member lactone cremenolide (Figure 10; 36) was isolated from T. cremeum. Along
with the promotion of tomato seedling growth, this compound (36) also showed antifungal activities
against R. solani, B. cinerea, and F. oxysporum [93]. Another lactone, aspinolide C (37), was isolated
from T. arundinaceum and showed an antibiotic effect against B. cinerea and Fusarium sporotrichioides.
Beside its direct antibiotic effect, compound (37) also played an important role in the induction of plant
resistance against phytopathogenic fungi. [94]. Cerinolactone (38) was isolated from culture filtrates of
T. cerinum [95] and showed strong activity against Rosellinia necatrix [96].

Figure 10. Structures of antifungal lactones from Trichoderma spp.: [36] cremenolide, [37] aspinolide
C, [38] cerinolactone.

2.11. Trichothecenes

Trichothecenes are the sesquiterpenoid-derived SMs mainly produced by Fusarium and other
fungal genera, like Trichoderma, Trichothecium, and Stachybotrys [97,98]. The chemical structure of
trichothecenes comprises a trichothecene ring, which contains an olefinic ring at C-9,10, and an epoxide
group of C-12 [97]. Trichothecenes inhibit protein synthesis by preventing peptide bond formation at
the peptidyl transferase center of the 60S ribosomal subunit [99,100]. Trichodermin (Figure 11; 39) was
the most widely studied antifungal compound [99,100]. It was first obtained from T. brevicompactum
and displayed significant inhibitory activity on R. solani, B. cinerea, and Colletotrichum lindemuthianum
(EC50 = 25.60 g/mL) [97]. It was also isolated from T. harzianum and showed activities against several
phytopathogenic fungi, such as Cochliobolus miyabeanus, R. solani, C. lindemuthianum, F. oxysporum,
Thanatephorus cucumeris, Colletotrichum gloeosporioides, and B. cinerea [101,102].

Figure 11. Structure of antifungal trichothecene: [39] trichodermin from Trichoderma spp.
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2.12. Others

Other antifungal compounds belonging to different chemical classes isolated from Trichoderma
spp. are briefly described here, and their structures are presented in Figure 12. Diterpene harziandione
(Figure 12; 40) was isolated from T. harzianum [103] and T. viride and showed antifungal activity
against S. rolfsii [104]. Three antifungal compounds, 10,11-dihydrocyclonerotriol (41), catenioblin
C (42), and sohirnone A (43), were obtained from T. longibrachiatum and have been shown to have
antifungal activities against C. albicans and P. oryzae [105]. Harzianic acid (44), a tetramic acid produced
by the T. harzianum M10 strain, demonstrated remarkable biological properties, including plant growth
promotion and antimicrobial activity against different plant pathogenic fungi, such as Pythium irregulare,
Sclerotinia sclerotiorum, and R. solani [106]. The cyclopentenoneacrylic acid derivative trichodermester
A (45) was isolated from a marine-derived T. atroviride and showed activity against Phaeosphaerella theae
with an MIC of 125 µg/disc [107].

Figure 12. Structures of other antifungal compounds from Trichoderma spp.: [40] harziandione,
[41] 10,11-dihydrocyclonerotriol, [42] catenioblin C, [43] sohirnone A, [44] harzianic acid,
[45] trichodermester A.

3. Antifungal Mechanisms of Trichoderma SMs

The success of Trichoderma spp. for their antifungal activities against phytopathogenic fungi could
be attributed to the combined action of SMs and hydrolytic enzymes [108]. The inhibition of B. cinerea
spore germination has been shown to be due to the synergetic effect of gliotoxin (Figure 1; 1) and
endochitinase enzymes [109], while gliP-deleted mutants of T. virens, which are unable to produce
gliotoxin, reduced their mycoparasitism against the soybean pathogen S. sclerotiorum and oomycete
pathogen P. ultimum [27]. Similar to other plant beneficial microorganisms, Trichoderma fungi release
elicitor-like substances which induce a systemic or localized resistance response in plants [5].

Various SMs produced by Trichoderma spp., such as harzianolides, peptaibols, and certain volatile
compounds, are reported to have antifungal potential, as well as acting as a plant growth promoter,
resulting in increased plant resistance to pathogen attack. For example, 6-PP (Figure 3; 11), along
with reducing the mycelial growth of F. oxysporum, B. cinerea, and R. solani, also promotes plant
growth and induces systemic resistance, probably by acting as an auxin-like compound [53]. Recently,
it has been shown that tomato plants treated with 6-PP produced significantly more γ-aminobutyric
acid and acetylcholine, which helps the plants to resist pathogens [110]. The antifungal activities
of peptaibols are due to their ability to form ion channels in membranes and inhibit the enzymes
responsible for the synthesis of cell walls [111–113]. Trichokonin VI (Figure 2; 4), a peptaibol derived
from T. pseudokoningii, showed antifungal activity by inducing extensive apoptotic programmed cell
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death [41,114]. In addition, peptaibols also trigger plant defense responses. The Dtex1-deleted mutants
of T. virens, which were unable to produce 18-residue peptaibol, failed to trigger systemic resistance
responses in cucumber [28]. Meanwhile, the application of the 20-residue peptaibol alamethicin
F30 (Figure 2; 3) from T. viride induced jasmonic acid- and salicylic acid-mediated resistance in lima
bean [47].

Another mechanism of SMs for controlling phytopathogenic fungus is their role in the competition
for nutrients. The fast-growing ability of Trichoderma spp. makes them potential competitors for
nutrients and space. Trichoderma spp. make iron unavailable for the competing microorganisms by
releasing siderophores, which scavenge iron from the environment. Iron competition has been shown to
play an important role in the antagonistic activity of T. asperellum against F. oxysporum [115]. The coiling
ability of Trichoderma around thehyphae of the prey fungus increases its mycoparasitism activity [116].
It is reported that the anthraquinone SMs, emodin and pachybasin, derived from T. harzianum, play a
role in the self-regulation of coiling in T. harzianum [117]. The addition of these compounds increased
the number of coils of the mycoparasite around R. solani hyphae, and this effect seems to be due to a
stimulation of cAMP synthesis. Some SMs interact with the toxins of pathogenic fungi and inhibit
their growth. For example, 6-PP (Figure 3; 11) secreted by T. harzianum degrades fusaric acid and
mycotoxins and inhibits Fusarium moniliforme mycelial growth [118].

4. Approaches for the Analysis of SMs in Trichoderma spp.

For SMs, there is not a one-to-one relationship between a metabolite and a gene. The secondary
metabolome, however, in many cases is a result of many genes and their enzymes [119]. The fungal
sequencing of fungal genomes disclosed the fact that gene clusters associated with SMs exceed the
number of SMs from a given fungus and several gene clusters from the prediction remain silent [120].
Different molecular, as well as cultivation-based, approaches involved in the regulation of these
silent gene clusters can be utilized for their activation [121,122]. Metabolomics, along with the efforts
for the activation of silent gene clusters, can contribute to the development and identification of
new SMs (Figure 13). Metabolomics includes the untargeted, as well as targeted, approaches for
determining the identity of all low molecular weight SMs of an organism. Untargeted approaches are
the methods and techniques for the searching of all known and unknown detectable compounds, while
targeted approaches are for the identification of already known compounds. Different chromatographic
techniques, such as gas and liquid chromatography, along with mass spectrometry, are useful for the
analysis of metabolites in complex samples. These techniques are helpful to detect a large number of
metabolites. The applications of liquid chromatography mass spectrometry (LC-MS) allows for the
detection of mid- to nonpolar metabolites, while gas chromatography mass spectrometry (GC-MS) is
suitable for the study of both volatile and polar small substances [123]. Liquid chromatography, when
combined with tandem mass spectrometry (LC-MS/MS), is useful for peptaibiotic detection in the
samples extracted from fungal cultures, whereby the specific amino acid, Aib, for peptaibiotics can be
indicated by mass differences of D m/z 85 [30]. The known structures of peptaibiotics can be obtained
by comparing the amino acid sequences obtained from LC-MS/MS analysis with their respective
databases, such as the “Comprehensive Peptaibiotics Database” [124]. The matrix-assisted laser
desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS) is an advanced approach,
which is much faster and more effective than the traditional bioactive screening techniques, to discover
new bioactive SMs in fungus. This technique was used for the detection of peptaibol production profiles
from 28 different Trichoderma species [125]. Imaging mass spectrometry (IMS) is another advancement
that allows the direct analysis of fungi for SMs. In association with MALDI and coupled to a mass
spectrometer, IMS produces images depicting the spatial distribution of natural products [126–129].
MALDI-IMS has been used for the metabolic analysis of living bacterial communities and interkingdom
interactions between fungi and bacteria directly from their cultures [130–132]. Recently, MALDI-IMS
was used to visualize the SMs in the mycoparasitic interaction of R. solani and T. atroviride [133]. Little,



Microorganisms 2020, 8, 817 12 of 22

or even no, sample preparation requirements make the MALDI techniques well suited to the analysis
of co-cultivations [134].

Figure 13. Schematic presentation of approaches for the analysis of SMs in Trichoderma spp.

5. Biosynthesis Pathway and Factors Affecting the Regulation of SMs in Trichoderma spp.

SMs are usually synthesized from a few precursors produced by primary metabolism, which
act as raw material for the production of SMs. These precursors are then transformed to first stable
intermediates through the action of different core enzymes. Based on the core enzyme involved in the
biosynthesis of intermediates, they can be divided into different groups, such as dimethylallyl
tryptophan synthases, polyketide synthases (PKSs), terpene cyclases, non-ribosomal peptide
synthetases (NRPSs), and hybrid PKS-NRPS enzymes, and are involved in the production of indole
alkaloids, polyketides, terpenes, non-ribosomal peptides, and PKS-NRPS hybrids, respectively [135].
The further modification of the first stable intermediates is generally accomplished by decorating or
tailoring enzymes, resulting in the formation of a final active product or compound [135]. In addition
to these core enzymes, the gene cluster of SMs may also contain other genes that encode transcription
factors for the regulation of gene expression involved in biosynthesis and transporters that contribute
to self-protection or SM efflux [135–138]. The evolutionary force responsible for the maintenance and
formation of SM genes in physical clustering is unclear [139]. However, the physically linked genes in a
cluster exhibit the ability of better co-regulation, which allows a strong coordinated connection among
the enzymes involved in the same biosynthesis pathway [140–142]. Here, a brief introduction on the
SM biosynthetic scheme and their regulation factors in Trichoderma fungi is presented (Figure 14).
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Figure 14. Proposed biosynthetic scheme and the regulation factors of SMs in Trichoderma spp.

Recent studies related to regulatory factors and the influence of environmental conditions on fungal
SMs enhanced our understanding on the tightly regulated cellular process of SMs. Like other fungi,
in Trichoderma spp., different factors, such as pH signaling, velvet-complex proteins, and interactions
with other organisms, are responsible for the expression of genes related to SMs [143–149]. The
transcriptomic responses of T. virens, T. reesei, and T. atroviride to the presence of R. solani were evaluated,
and two PKSs were found among the genes induced in T. reesei–R. solani and T. atroviride–R. solani
interactions, whereas all the genes in the biosynthesis cluster of gliotoxin were up-regulated [143]. An
up-regulation of the lipoxygenase gene, that is involved in the biosynthesis of 6-PP, was also noticed
in T. atroviride [150]. In another study, the co-culture of T. arundinaceum and B. cinerea revealed an
increase in the expression of tri biosynthetic genes [147]. However, in the interaction zone between
T. arundinaceum and B. cinerea, a secondary metabolite of B. cinerea, which is also a virulence factor of
B. cinerea, reduced tri gene expression and harzianum A production in T. arundinaceum [147].

It was reported that the presence of the Fusarium mycotoxin fusaric acid resulted in the suppression
of 6-PP (Figure 3; 11) production and the induction of sporulation-associated metabolite i.e., 1-octen-3-ol,
production [151]. In return, certain Trichoderma strains, due to the secretion of 6-PP, are capable of
inhibiting fatty acid production by F. moniliforme and degrading fatty acids [118]. In Trichoderma
genomes, gene clusters related to the production of SMs harbor specific transcription factors. In addition
to these regulators present in gene clusters, several other key players also take part in the regulation of
SM biosynthesis, such as PacC, a pH regulator which influences different fungal genes in response
to environmental pH [149,152]. The PacC orthologue of T. virens controls the iron transport and
biosynthesis of SMs. In DpacC mutants of T. virens, the gene expression was altered for cytochrome
P450, NRPS Tex15, and siderophore-related biosynthesis enzymes [153]. Moreover, biocontrol activity
was reduced in T. virens DpacC mutants, which may be because of their inability to adapt to alkaline pH.

The production of SMs is also under the regulation of the heterotrimeric velvet complex.
This complex consists of two velvet proteins, VelA and VelB, and methyltransferase LaeA [154].
The velA orthologue vel1 governs the regulation of gene clusters related to the production of SMs.
The disruption of the vel1 gene stopped the biosynthesis of gliotoxin and silenced several SM-related
genes that encode for one cytochrome P450 monooxygenase, two PKSs, NRPSs, and one O-methyl
transferase [148]. A similar role was noticed for the T. reesei LaeA orthologue that influenced the
expression of lignocellulose-degrading enzymes [146,155]. The T. atroviride removal of lae1 resulted in
abolishing the antifungal activity of T. atroviride. This correlated with a significantly reduced expression
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in 6-PP-related lipoxygenase genes and PKS-encoding genes. The influence of lae1 on the production
of 6-PP was also corroborated when, in antagonism experiments, the enhanced production of 6-PP
was noticed in lae1 over-expressing strains [146]. The biosynthesis of 6-PP in T. harzianum is also
associated with Thctf1. The deletion of the transcription factor Thctf1 altered the antimicrobial activity
of T. harzianum and abolished the production of two SMs derived from 6-PP [156].

The transfer and sensing of environmental cues affecting the regulation of fungal SMs was achieved
by membrane bound receptors, such as G protein-coupled receptors (GPCRs), and their associated
intracellular signaling pathways. The T. atroviride biosynthesis of SMs was governed by G protein
signaling and the associated cAMP pathway [157–159]. The decrease in 6-PP and increase in peptaibol
production was reported with the deletion of tga1, which encodes an adenylyl cyclase-inhibiting Ga
subunit of T. atroviride [158]. The biosynthesis of peptaibol was further dependent on two regulators,
BLR1 and BLR2, under certain conditions [160].

6. Conclusions

Fungi, being a most diverse group of phytopathogens, exert a huge impact on agriculture. High
genetic flexibility and broad-spectrum lifecycles allow the pathogenic fungi to develop fungicide
resistance and invade new hosts. Therefore, new management strategies are needed for fighting against
pathogenic fungi. The utilization of SMs from Trichoderma spp. has been used in plant protection as an
environmentally friendly and efficient management tool against a variety of phytopathogens. This
review presented the fungicidal SMs from Trichoderma spp. against phytopathogenic fungi. Some
aspects of the structural overview of SMs and their biosynthesis were reviewed. Brief information on
the biosynthesis pathway, action mechanism, different approaches for the analysis of SMs, and factors
affecting the regulation of SMs in Trichoderma was also discussed.
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