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gondii Hijacks GABAergic Signaling
and Voltage-Dependent Calcium
Channel Signaling for Trojan
horse-Mediated Dissemination
Amol K. Bhandage and Antonio Barragan*

Department of Molecular Biosciences, The Wenner-Gren Institute (MBW), Stockholm University, Stockholm, Sweden

Dendritic cells (DCs) are regarded as the gatekeepers of the immune system but can

also mediate systemic dissemination of the obligate intracellular parasite Toxoplasma

gondii. Here, we review the current knowledge on how T. gondii hijacks the migratory

machinery of DCs and microglia. Shortly after active invasion by the parasite, infected

cells synthesize and secrete the neurotransmitter γ-aminobutyric acid (GABA) and

activate GABA-A receptors, which sets on a hypermigratory phenotype in parasitized

DCs in vitro and in vivo. The signaling molecule calcium plays a central role for this

migratory activation as signal transduction following GABAergic activation is mediated via

the L-type voltage-dependent calcium channel (L-VDCC) subtype Cav1.3. These studies

have revealed that DCs possess a GABA/L-VDCC/Cav1.3 motogenic signaling axis that

triggers migratory activation upon T. gondii infection. Moreover, GABAergic migration

can cooperate with chemotactic responses. Additionally, the parasite-derived protein

Tg14-3-3 has been associated with hypermigration of DCs andmicroglia. We discuss the

interference of T. gondii infection with host cell signaling pathways that regulate migration.

Altogether, T. gondii hijacks non-canonical signaling pathways in infected immune cells

to modulate their migratory properties, and thereby promote its own dissemination.

Keywords: apicomplexa, CNS infection, dendritic cell, microglia, motility, GABA receptor

INTRODUCTION

The apicomplexan parasite Toxoplasma gondii infects a diverse repertoire of hosts, including
humans and rodents (Tenter et al., 2000). As an obligate intracellular pathogen, Toxoplasma is able
to infect and replicate within virtually any type of nucleated cell from warm-blooded vertebrates.
Despite that up to one-third of humans become chronically infected during their lifetime, most
infections are considered asymptomatic. Yet, Toxoplasma can cause life-threatening disease in
immunocompromised individuals or to the developing fetus (Montoya and Liesenfeld, 2004).
Congenital toxoplasmosis is also a significant problem in veterinary medicine.

After oral ingestion, systemic parasite dissemination during primary infection precedes the
establishment of chronic infection. Early studies in rodents showed that, shortly after invasion of
the intestinal tissue (Dubey, 1997), parasites (tachyzoite stage) are retrieved in the blood circulation
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(Derouin and Garin, 1991; Zenner et al., 1998). At this early
stage–before the infection is controlled by the immune response–
the parasite can be isolated from virtually any organ in rodents,
including immunoprivileged organs such as brain, eyes, and
testis (Hitziger et al., 2005). Consequently, breaching restrictive
biological barriers, such as the intestine, the blood brain-barrier,
blood-retina barrier, or the placenta, is a requisite for the
establishment of primary Toxoplasma infection and subsequently
chronic infection or congenital infection.

The rapidly replicating stage of T. gondii (the tachyzoite)
mediates dissemination. Tachyzoites have an obligate
intracellular existence and their active locomotion, termed
gliding motility, is instrumental for invasion of host cells
(Dobrowolski and Sibley, 1996). Gliding motility also powers
parasite migration within the tissue microenvironment
(Barragan and Sibley, 2002). Additionally, transportation
by the blood and the lymphatic circulation assures rapid systemic
dissemination to distant organs.

The onset of immune responses against T. gondii is
accompanied by the transformation of the parasite into tissue
cysts (bradyzoite stage) and is believed to result in long-
lasting or lifelong chronic infection in humans (Joynson and
Wreghitt, 2001). In rodents, cellular immune responses mediated
by dendritic cells (DCs), T cells, NK cells, macrophages, and
cytokine responses (IL-12 and IFN-γ) are essential to overcome
primary infection and for establishing latent chronic infection
(Yap and Sher, 1999; Sacks and Sher, 2002). Leukocytes traffic
the tissues, populate the blood, drain to the lymphatic system
and back into the circulation (Friedl and Weigelin, 2008).
Thus, while constitutive epithelial and connective tissues may
provide refuge and replicative niches for T. gondii, leukocytes
additionally mediate immune surveillance and are essential
for pathogen clearance. However, the migratory functions of
leukocytes make them also suitable vehicles for Toxoplasma to
mediate its dissemination in the organism by a Trojan horse
mechanism (Weidner and Barragan, 2014).

In this review, we discuss the current knowledge on how
Toxoplasmamodulates the migratory properties of immune cells,
primarily DCs, and microglia, by inducing a hypermigratory
phenotype that promotes parasite dissemination. The
mechanisms involved in Toxoplasma-induced hypermigration
include a hijacking of the GABAergic signaling system and
voltage-dependent calcium channel (VDCC) signaling in
parasitized cells.

GABA, A SIGNALING MOLECULE IN THE
CNS AND PERIPHERAL TISSUES

The γ-aminobutyric acid (GABA) is most commonly known as
an inhibitory neurotransmitter in the CNS of vertebrates, where
it contributes in maintaining the balance between excitatory
and inhibitory neurotransmission. GABA executes its action in
the CNS through GABA-A and GABA-B receptors. GABA-A
receptors are chloride (Cl−) -permeable ion channels formed by
pentameric combinations of subunits (2 α + 2 β + 1 additional
subunit) out of 19 known subunits to date (α1-6, β1-3 γ1-3, δ,

ε, θ, π, ρ1-3) (Olsen and Sieghart, 2008; Sieghart et al., 2012). In
contrast, GABA-B receptors are metabotropic G-protein coupled
receptors formed as a heterodimer of 2 subunits (Bowery et al.,
2002; Bowery, 2010).

The depolarizing (excitatory) or hyperpolarizing (inhibitory)
effects of GABA depend on the intracellular Cl− concentration
[Cl−]i which is set by cation chloride co-transporters
(CCCs) -NKCCs and KCCs (Blaesse et al., 2009; Kaila et al.,
2014). For instance, higher relative expression of NKCC1 than
KCC2 in the immature neurons results in higher [Cl−]i leading
to depolarizing effects of GABA (Ben-Ari et al., 2007; Kilb,
2012). Thus, GABA can mediate depolarizing or hyperpolarizing
responses in immature and mature neurons, respectively,
indicating a developmental switch between the actions of
GABA. Additionally, certain neuronal populations in the adult
rat brain exhibit depolarizing responses to GABA (Chiang
et al., 2012; Haam et al., 2012; Sauer et al., 2012). Further,
experimental down-regulation of KCC2 results in excitatory
effects upon GABA-A receptor activation in the adult neurons
(Sarkar et al., 2011). Overall, these studies highlight that the
actions of GABA are highly dependent on activity of Cl−

transporters, developmental stage, cell type and sub-cellular
localization (Bortone and Polleux, 2009).

Beyond neurotransmission, GABA has also been attributed
roles in cellular processes such as migration, proliferation,
differentiation, synapse formation, axonal growth, and neuronal
death (Birnir and Korpi, 2007; Kilb, 2012). In addition to its
predominant presence in the CNS, GABA is also synthesized
by non-neuronal tissues like pancreatic islets, glia cells, adrenal
medulla, germ cells, testes, and immune cells and these tissues
also often express GABA receptors (Gladkevich et al., 2006;
Jin et al., 2013). Of note, GABA precedes the existence of the
vertebrate and invertebrate nervous systems and is synthesized
by prokaryotes for metabolic purposes (Feehily et al., 2013;
Xiong et al., 2014), and by plants for signaling (Michaeli and
Fromm, 2015). T. gondii possesses a GABA shunt pathway and
can utilize GABA as an energy source, for instance, to sustain
glidingmotility under nutrient-limited conditions (MacRae et al.,
2012). Thus, GABA’s function as a neurotransmitter is likely an
evolutionary adaption posterior to metabolic and other signaling
functions. In other words, GABA precedes the development of a
CNS in metazoa and, consequently, alternative functions exist.

A GABAergic SIGNALING SYSTEM IN
IMMUNE CELLS AND
PERIPHERAL TISSUES

Research over the past decade has identified the functional
implications of GABA and its receptors outside the CNS, i.e.,
in pancreatic islets, immune system, digestive system, and
reproductive system (Gladkevich et al., 2006; Bhandage et al.,
2018a; Korol et al., 2018). Mounting evidence indicates that
brain-resident immune cells, such as microglia, and circulating
immune cells, such as neutrophils, T lymphocytes, monocytes,
macrophages and DCs, secrete GABA, and/or express GABA
receptors and associated proteins (Rane et al., 2005; Alam et al.,
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2006; Bhat et al., 2010; Lee et al., 2011; Fuks et al., 2012; Bhandage
et al., 2015, 2018a).

Further, GABA impacts on the effector functions of immune
cells, i.e., migration, proliferation, and cytokine secretion via
GABA receptors. For instance, GABA mediates protective roles
by inhibiting auto-reactive T cells in human autoimmune
inflammatory diseases such as type 1 diabetes, rheumatoid
arthritis and multiple sclerosis (Tian et al., 2004, 2011; Bhat et al.,
2010; Bhandage et al., 2018a). Gephyrin-dependent enhanced
GABA signaling has been shown to participate in the conversion
of alpha cells to insulin producing beta cells in diabetic pancreatic
islets resulting in cure of type 1 diabetes (Li et al., 2017). GABA
and GABA-A receptor signaling have also been implicated in
maturation and proliferation of adult stem cells and GABA has
been suggested as a tumor-signaling molecule in cancer cells
(Andäng et al., 2008; Young and Bordey, 2009). Moreover, a
recent study demonstrates antimicrobial and autophagy-related
roles for GABA in macrophages upon mycobacterium infection
(Kim et al., 2018). Jointly, this highlights the significance of
GABAergic signaling in human diseases.

Thus, mounting evidence shows that the immune system
harbors components or the complete machinery for GABAergic
signaling and that GABA can serve as a modulator of the effector
functions of immune cells (Table 1). It evidences a possible cross-
talk between the nervous system and the immune system and
the presence of novel “neuro-immune-signaling” axes (Sospedra
and Martin, 2005; Levite, 2012). However, the understanding
of GABAergic signaling and its patho-/ physiological roles in
immune cells is still rudimentary or non-existent compared
with neuronal systems and thus, crucial to be further studied
in depth.

VDCC SIGNALING IN IMMUNE CELLS

VDCCs are formed from α1, α2, β, δ, and γ subunits
where the transmembrane α1 subunit forms the tetrameric
ion channel with a central pore permeable specifically
for calcium ions. The 10 members of the VDCC (also
called CaV) family can be divided in 3 subfamilies—
high voltage activated L-type, moderate voltage activated
P/Q, N, R-type and low voltage activated T-type
channels (Catterall, 2011).

The expression of VDCCs by immune cells has long
remained unresolved. However, their expression and implication
in immune functions has more recently received attention
(Table 1). In excitable cells like neurons and pancreatic islets beta
cells, the channels are opened by depolarizing voltage changes in
the membrane potential but how they are operated in immune
cells is still ambiguous (Badou et al., 2013). It is possible that
immune cells can sense these depolarizing changes by activation
of ligand-gated ion channels such as GABA-A receptors and
N-methyl-D-aspartate (NMDA) receptors.

Some of the implications of VDCCs in the immune cell
physiology are described here. The CaV1.4 channels, L-type
VDCC, have been shown to contribute in controlling naive T cell
homeostasis, T cell receptor (TCR) signaling and antigen-driven

T cell immune responses (Omilusik et al., 2011). Additionally,
CaV1.2 and CaV1.3, other L-type VDCC channels, participate
in TCR-induced calcium flux in T cells (Stokes et al., 2004).
Not only α subunits but also β subunits of CaV channels
are shown to be important for normal T cell functions such
TCR-mediated calcium entry, nuclear factor of activated T cells
(NFAT) activation, and cytokine production (Badou et al., 2006).
The CaV3.1, T-type channel, shapes the cytokine profile of T
helper cells and can ameliorate autoimmune responses (Wang
et al., 2016). The CaV1.2 channels can activate intracellular
calcium receptors and contribute in the surface expression of
MHC class II molecules in DCs during antigen presentation to
T cells (Vukcevic et al., 2008). While characterization has just
begun, these evidences indicate functional roles for VDCCs in
immune cell physiology.

INFECTION OF LEUKOCYTES BY T. gondii

AND THEIR ROLE IN
PARASITE DISSEMINATION

Following oral infection, Toxoplasma rapidly disseminates in
its host. Early studies in rodents detected tachyzoites in the
blood, lymph nodes and peripheral organs rapidly after infection
(Derouin and Garin, 1991; Dubey, 1997; Zenner et al., 1998).
It was demonstrated that not only the intestinal tissue becomes
parasitized but also the intra-epithelial leukocytes (Dubey et al.,
1997). Following studies showed that both resident and non-
resident leukocytes become infected in the intestine (Courret
et al., 2006; Gregg et al., 2013).

The rapid dissemination of T. gondii tachyzoites (Hitziger
et al., 2005) combined with the parasite’s ability to infect and
replicate within leukocytes (Channon et al., 2000) raised the
hypothesis that the systemic spread of parasites was mediated
by a Trojan horse type of mechanism. DCs were identified as
important mediators of dissemination and attributed shuttling
functions for T. gondii (Courret et al., 2006; Lambert et al.,
2006; Bierly et al., 2008). Additionally, all strains tested to date
from the three predominant T. gondii lineages (types I, II, III)
induce a hypermigratory phenotype in DCs upon challenge
with tachyzoites (Figures 1A–C) (Lambert et al., 2009). The
characteristics and criteria of the hypermigratory phenotype have
been previously reviewed (Weidner and Barragan, 2014) and its
impact on the dissemination of T. gondii is discussed below.

Similar to DCs, monocytic cells have been attributed
a hypermigratory phenotype upon Toxoplasma challenge
(Harker et al., 2013; Cook et al., 2018). Additionally, parasite-
transportation functions to the brain have been attributed to
monocytes (Courret et al., 2006; Lachenmaier et al., 2011).
Other leukocytes also become infected in vivo and thus may also
contribute to the systemic spread of the infection. These include
T cells (Persson et al., 2007; Chtanova et al., 2009), NK cells
(Persson et al., 2009; Sultana et al., 2017), neutrophils (Norose
et al., 2008; Coombes et al., 2013), and macrophages (Da Gama
et al., 2004; Lambert et al., 2011). While NK cells do not seem
to facilitate passage of T. gondii across the blood-brain barrier
(Petit-Jentreau et al., 2018), the relative contribution of the
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TABLE 1 | GABAergic and VDCC components described in cells of the immune system.

Acronym Full name Function Expressing cells Species References

GAD Glutamate

decarboxylase

GABA synthesis DC, T cell, microglia Human, mouse Dionisio et al., 2011; Fuks et al., 2012;

Bhandage et al., 2019

GABA-T GABA-

transaminase

GABA degradation T cell, microglia Human, mouse Dionisio et al., 2011; Bhandage et al.,

2019

GAT GABA transporter GABA transportation

across the cell

membrane for

secretion

DC, microglia, T cell Human, mouse Dionisio et al., 2011; Fuks et al., 2012;

Bhandage et al., 2019

GABA-A R GABA-A receptors Polarization/depolarization

of the cell membrane

via Cl− flux into/out of

the cell

DC, PBMCa, T cell,

monocyte,

macrophage, microglia

Human, mouse,

rat

Tian et al., 2004; Bhat et al., 2010;

Dionisio et al., 2011; Wheeler et al., 2011;

Fuks et al., 2012; Mendu et al., 2012;

Bhandage et al., 2015, 2018a, 2019

NKCC Na+-K+-Cl−

co-transporter

GABA-A R regulation

via Cl− transport into

the cell

PBMC, microglia Human, mouse Bhandage et al., 2015, 2018a, 2019

KCC K+-Cl−

co-transporter

GABA-A R regulation

via Cl− transport out of

the cell

PBMC, microglia Human, mouse Bhandage et al., 2015, 2018a, 2019

VDCC

(CaV )

Voltage-

dependent

calcium channels

Ca2+ signaling via flux

into/out of the cell

DC, PBMC, microglia Human, mouse Kanatani et al., 2017; Bhandage et al.,

2018b, 2019

aperipheral blood mononuclear cells.

different leukocyte types to dissemination at the different phases
of the infection remains undetermined.

T. gondii INFECTION AND GABAergic
SIGNALING IN DCs

Primary Human and Murine DCs Express a
Functional GABAergic System
Murine bone marrow-derived DCs (mBMDCs) express
mRNAs for five GABA-A receptor subunits (α3, α5, β1, β3,
ρ1), the enzyme responsible for GABA synthesis (glutamate
decarboxylase GAD65) as well as a GABA transporter (GAT4)
(Fuks et al., 2012). Since the classical GABA-A channel pentamer
requires 2 α, 2 β, and 1 additional subunit, the expression pattern
in mBMDCs indicated the possibility of subunit assembly
into a pentamer that can be trafficked to the cell membrane
(Figure 2A). GABA-induced whole-cell inwards currents
recorded in mBMDCs and human monocyte-derived DCs
(hMDDCs) using patch clamp electrophysiology (Fuks et al.,
2012) demonstrated presence of functionally active GABA-A
receptors. It may be assumed that the activation of GABA-A
receptors results in efflux of Cl− ions out of cells, leading
to membrane depolarization. Thus, DCs harbor a functional
GABAergic system.

Knowledge remains limited on the expression and function
of the GABAergic system in other immune cells (Barragan
et al., 2015). It will be instrumental to determine the subunit
composition of the active subtype of GABA-A receptors and
of additional GABAergic signaling components such as CCCs,
GADs, GATs, GABA transaminase (GABA-T), and GABA-A
receptor anchoring proteins. Further extending this knowledge

to human DCs (native myeloid/plasmacytoid DCs) will be
crucial to understand the implication of GABAergic signaling in
human diseases.

Toxoplasma-Infected DCs Secrete GABA
Independent of the parasite strain, Toxoplasma infection induced
GABA secretion in mBMDCs in a time- and dose-dependent
manner (Fuks et al., 2012). Further, hMDDCs also consistently
secreted GABA upon parasite infection with a donor-to-donor
quantitative variability (Fuks et al., 2012). Parasitized DCs, but
not by-stander DCs, secreted GABA, indicating that intracellular
localization of live parasites was necessary for GABAergic
activation of DCs. In line, GABA secretion was associated with
active tachyzoite invasion but not adhesion of parasites to the cell
membrane, challenge with heat-inactivated tachyzoites or lysate,
infected cell supernatants and LPS. Pharmacological inhibition
of GABA synthesis or transport did not impact on parasite
replication inside DCs or on the DC viability, suggesting that
GABAergic signaling was independent of the host cell and
parasite developments.

GABAergic cells are defined by their ability to produce GABA
through the expression of GABA synthesizing enzymes. GAD has
two isoforms: GAD65 and GAD67 (Kilb, 2012). The abundant
secretion of GABA and expression of GAD65 in Toxoplasma
infected-DCs show that DCs become GABAergic cells upon
parasite infection.

It remains unknown how the parasite infection regulates
GABA synthesis and secretion by DCs. It is plausible that parasite
effector molecules interact with components of the GABAergic
system such as enzymes synthesizing or metabolizing GABA
(GADs) and GABA-T or transporters of GABA (GATs) to
induce these secretions (Figure 2B). Upon parasitic infection in
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FIGURE 1 | Human and murine DCs exhibit a hypermigratory phenotype upon infection by T. gondii. (A) Human monocyte-derived DCs (hMDDCs) infected with

RFP-expressing T. gondii tachyzoites (red) stained with Alexa flour 488 Phalloidin to detect F-actin (green). Cell nuclei are stained with DAPI (blue). Shortly after

tachyzoite invasion, cells undergo rapid morphological changes, including rounding-up, accentuation of membrane projections such as veils and ruffles, and

dissolution of podosomes. Scale bar = 10µM. (B,C) Representative motility plots of unchallenged (black) and Toxoplasma-infected (red) murine bone marrow-derived

DCs (mBMDCs), respectively. Infected cells exhibit prolonged migratory paths and elevated velocities. Cells were imaged and tracked as described in Weidner et al.

(2013). X- and Y-axes indicate µm.

mBMDCs, transcriptional expression of GAD65 was unaltered
but expression of GAT4 was seven-fold upregulated (Fuks
et al., 2012). Also, the intervention in GABA synthesis by
pharmacological inhibition of GAD (using semicarbazide)
abolished GABA secretion in the supernatants whereas inhibition
of the transporter GAT4 (using SNAP 5114) diminished GABA
secretion to around half (Fuks et al., 2012; Kanatani et al., 2017).
This suggests that GABA is not only synthesized de novo, but also
transported more efficiently outside the cells implying roles for
both GAD65 and GAT4 in the hypermigratory phenotype.

Of note, Toxoplasma utilizes a metabolic GABA-shunt as
an energy source under nutrient-limited conditions (MacRae
et al., 2012). In respect to hypermigration of parasitized
DCs, inhibition of GABA synthesis or transport decreased the
concentration of GABA only in the supernatants of infected DCs
but not in the supernatants from free (extracellular) tachyzoites,
indicating that the host cell GABAergic machinery is responsible
for the augmented secretions of GABA.

Recently (Brooks et al., 2015) identified delocalization of
GAD67 in Toxoplasma-infected rodent brain as an indication
of disturbed GABA signaling in CA3 pyramidal neurons and
increased susceptibility of the animals to experimentally induced
epileptic seizures. If GAD67 plays a role in the hypermigration of
primary DCs remains to be investigated.

Modulation of GABA-A Receptors in
Parasitized DCs
The abundant GABA secretions in the supernatants of infected
DCs would presumably act in an autocrine fashion on GABA-
A receptors in the host cell membrane. Since GABA-A receptors
are fast Cl− ion channels with opening time in the millisecond
range and [Cl−]i in monocytic cells is higher than in mature
neurons (ranging from 24 to 75mM), GABA-mediated activation
of GABA-A channels in DCs results in inwards currents, as
shown by patch clamp electrophysiology (Fuks et al., 2012) i.e.,
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FIGURE 2 | The GABAergic motogenic signaling axis that mediates the migratory activation of DCs and microglia upon T. gondii (TG) infection. (A) Resting DCs and

microglia harbor components of the GABAergic machinery including enzymes for GABA synthesis (GAD), GABA transporters (GATs), GABA-A receptors (GABA-A R),

chloride co-transporters (CCCs), and also the components of the VDCC signaling system, with calcium as a second messenger. GABA is produced from glutamate by

glutamate decarboxylases (GAD65/67) and is transported by GATs. GABA-A R subunits are transcribed and assembled in the ER-Golgi compartment before

trafficking to the plasma membrane. Activation of GABA-A R requires binding of two GABA molecules to open the ion channel pore permeable for chloride (Cl−).

(Continued)
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FIGURE 2 | The CCCs i.e., NKCCs/KCCs are involved in the maintenance of Cl− gradient in DCs. In murine DCs, expression of the L-type VDCC CaV1.3

predominates over other expressed VDCCs while microglia express a broader set of VDCCs. (B) T. gondii actively invades host cells and resides intracellularly in a

parasitophorous vacuole (PV). Shortly after parasite invasion, DCs exhibit (i) enhanced GABA synthesis through GAD, (ii) upregulation of the transporter GAT4, (iii)

elevated expression of GABA-A R subunit mRNAs, indicative of increased receptor trafficking to the membrane, and (iv) elevated NKCC1 activity leading to an

increase in [Cl−]i. A similar GABAergic activation occurs in microglia upon Toxoplasma infection. The secreted GABA acts in an autocrine fashion and activates

GABA-A R. Opening of GABA-A channels results in Cl− efflux from the cell producing depolarization of the plasma membrane. Depolarization activates VDCCs,

preferentially the subtype CaV1.3 in DCs, and leads to calcium (Ca2+) entry into the cell. Hypothetically, Ca2+ acts as second messenger to promote cellular signaling

implicated in motility, transmigration, chemotaxis and transcriptional modulation. Hitherto unidentified intracellular targets may include 14-3-3-regulated MAP kinase

activity. Higher intracellular Ca2+ concentrations or fluxes are likely required for the observed rapid cytoskeletal rearrangements, such as the dissolution of podosomes

and integrin redistributions implicated in the hypermigratory phenotype.

efflux Cl− ion out of the cell. Thus, GABAergic activation will
increase the positive charge inside the cell and depolarize the
plasma membrane (Tian et al., 2004; Cahalan and Chandy, 2009;
Bhandage et al., 2018a).

As indicated above, mBMDCs express mRNAs for five GABA-
A receptor subunits (α3, α5, β1, β3, ρ1). Interestingly, the
expression of α3 and ρ1 subunits was upregulated by 2 h post-
infection (Fuks et al., 2012). This probably contributes to de novo
assembly of GABA-A pentamers that can traffic to themembrane.
Increase in the number of functional GABA-A pentamers on
the membrane would enhance GABAergic signaling, and thereby
depolarization in DCs (Figure 2B). GABA has been shown
to induce migration and chemotaxis in immature neurons in
vitro through the activity of ρ subunit-containing GABA-A
receptors (Denter et al., 2010). Similarly, the upregulation of
the ρ1 subunit in Toxoplasma-infected DCs raises the possibility
that ρ1-containing GABA-A receptors may be involved in the
hypermigration of DCs. Further, parasitic infection may possibly
impact on intracellular molecules such as protein kinases that
regulate GABA-A receptor activity. Given the expression level
of GABA-A receptor subunits and their functional status upon
parasite infection in mBMDCs, we speculate that opening of few
GABA-A channels per cell per unit time may be sufficient to
change the membrane potential significantly, further activating
downstream signaling (Chandy et al., 2004; Tian et al., 2004;
Cahalan and Chandy, 2009; Feske et al., 2012).

Altogether, Toxoplasma-induced activation of GABAergic
signaling will depolarize the DCs, reaching the threshold
membrane potential for opening of VDCCs and resulting in
calcium entry into the cell. Previous reports have shown that
depolarizing GABA-A receptor activation can cause calcium
influx through VDCCs without triggering action potentials
in immature neurons and stimulate neuronal migration,
chemotaxis and maturation (Lin et al., 1994; Behar et al., 1996;
Ganguly et al., 2001; Owens and Kriegstein, 2002; Ben-Ari,
2012). It was therefore reasonable to explore whether T. gondii
infection induced DC migration through a similar mechanism,
as delineated below.

GABAergic Signaling Mediates Enhanced
Transmigration and Hypermotility of
Toxoplasma-Infected DCs
GABA-A receptor blockade inhibits hypermigration of
Toxoplasma-infected DCs (Fuks et al., 2012). Similarly,

interference of GABA synthesis or transportation by
pharmacological inhibition of GADs or GATs, respectively,
abrogates transmigration and hypermotility in parasitized DCs.
Addition of supernatants from infected DCs or exogenous
GABA in presence of the inhibitors of GAD and GAT
reconstituted the transmigration frequencies and hypermotility
of DCs (Kanatani et al., 2017). Further, adoptively transferred
parasitized DCs in mice exhibited impaired migration and
reduced dissemination upon treatment with inhibitors of
GAD and GAT as compared to non-treated cells. Additionally,
the parasite load in brain, spleen and mesenteric lymph
nodes of mice was substantially lower upon GABAergic
inhibition. This suggests that the hypermigratory phenotype
cannot be induced without active GABAergic signaling
in DCs.

Regulation of the GABA-A Receptor
Activity by CCCs
The activity of GABA-A receptors i.e., depolarization (excitation)
or hyperpolarization (inhibition) depends on the [Cl−]i which,
in turn, is set by CCCs. The most commonly studied CCCs
in the CNS are NKCC1 and KCC2 out of 2 and 4 from
NKCC and KCC family of solute carriers, respectively, and
their expression varies depending on developmental stages,
cell types and sub-cellular localization (Blaesse et al., 2009;
Kaila et al., 2014). Thus, CCCs are essential for maintaining
Cl− homeostasis to obtain depolarizing or hyperpolarizing
GABAergic responses (Glykys et al., 2014).

Since Toxoplasma infection modulates the GABAergic system
in DCs, it would be interesting to know which CCCs are
instrumental in DCs for maintenance of [Cl−]i. Any changes
in CCC expression could alter [Cl−]i which eventually will
alter the activity of functional GABA-A receptors in DCs.
Some evidences indicate that monocytic cells have significantly
higher [Cl−]i than that of mature neurons (Ince et al., 1987;
DeFazio et al., 2000). With this high [Cl−]i, DCs ought to
depolarize upon GABA-A receptor activation, similar to the
depolarizing effects of GABA on immature neurons (Kilb,
2012). However, the CCC expression repertoire of CCC in
DCs and the putative impact by Toxoplasma infection remain
uncharacterized. Yet, recent data indicates that the CCC
expression is modulated in primary microglia upon Toxoplasma
infection (Bhandage et al., 2019).
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CALCIUM SIGNALING DOWNSTREAM TO
GABAergic SIGNALING IS ESSENTIAL FOR
THE INDUCTION OF A HYPERMIGRATORY
PHENOTYPE IN DCs

CaV1.3 Channels Are the Active L-Type
VDCCs Mediating Hypermigration in DCs
In sub-physiological concentrations of calcium, the Toxoplasma-
induced hypermigratory phenotype of DCs was abrogated
(Kanatani et al., 2017). In addition, nickel ions dose-
dependently inhibited induction of hypermotility. Since
nickel ions compete with physiological calcium by blocking the
permeation path of VDCCs, this suggested the involvement
of VDCCs.

A transcriptional analysis showed that mBMDCs
constitutively expressed 9 different CaV channel pore-
forming α1 subunits, indicating a possibility for formation of
functional CaV channels (Kanatani et al., 2017). When the most
prominently expressed CaV1.3 channels were pharmacologically
inhibited or genetically silenced, the abolished transmigration
and hypermotility in mBMDCs were not recovered by
addition of exogenous GABA (Figure 2B). Inhibition of
other calcium channels, e.g., silencing of CaV1.2 channels
or antagonism of purinergic receptors, non-significantly
impacted on hypermotility, indicating that CaV1.3 was
the key VDCC subtype in DCs responsible for mediating
Toxoplasma-induced hypermigration.

Additionally, calcium influx through L-type VDCCs
can regulate the activity of GABA-A receptors through
phosphorylation of the β3 subunit by calmodulin-dependent
protein kinase II (CaMKII) (Saliba et al., 2012). This suggests
that CaV1.3 channels and GABA-A receptors may cooperate and
mutually regulate each other in DCs.

GABAergic Signaling Induces
VDCC-Mediated Calcium Signaling in DCs
Exposure of DCs to GABA evoked a transient calcium influx,
suggesting that GABA-A receptor-induced depolarization can
open VDCCs for calcium influx (Kanatani et al., 2017).
Additionally, inhibition of GABAergic signaling abrogated
hypermotility, which was reconstituted by VDCC activation
(Bay-K8644). In sharp contrast, GABAergic activation was
unable to recover the hypermotility of DCs upon blockade of CaV
channels by broad inhibitors of VDCCs (nifedipine, benidipine),
by a selective CaV1.3 channel antagonist or by CaV1.3 gene
silencing. Jointly, this indicated that VDCC-dependent calcium
signaling mediated hypermotility downstream of GABAergic
signaling (Figure 2B).

Calcium Signaling Through VDCCs Results
in Hypermigration
Calcium, being an important second messenger, participates
in multiple cellular processes. Local openings of VDCCs on
the plasma membrane are crucial for neurotransmission in
neurons or the fusion of insulin-containing vesicles in pancreatic
islet beta cells (Lin et al., 1994; Behar et al., 1996; Gandasi
et al., 2017). Similarly, in Toxoplasma-infected hypermotile DCs,

the subcellular microdomains in the plasma membrane may
be important for signaling, and therefore for conferring the
migratory activation. The observed transient calcium fluxes
in response to GABA may participate in the dissolution of
adhesion-mediating podosomes (Weidner et al., 2013), the
redistribution of integrins (Kanatani et al., 2015), the balance
between activity of matrix metalloproteinases (MMPs) and
tissue inhibitor of metalloproteinase 1 (TIMP1) (Olafsson et al.,
2018) and thus, ultimately in the cytoskeletal remodeling
driving the DCs toward a hypermigratory phenotype. Of note,
TIMP1 is released by calcium-dependent vesicular exocytosis
(Dranoff et al., 2013) and is instrumental in the reduced
proteolytic activity and migratory activation of parasitized DCs
(Olafsson et al., 2018). Possibly, high-resolution live cell calcium
imaging might elucidate the regulation of these processes
by calcium.

Why is Toxoplasma manipulating inotropic receptors in
the host cell? The effector functions achieved through the
modulation of inotropic receptors are rapid, in range of seconds,
and therefore offer the advantage of bypassing transcriptional
regulation in the host cell. Thus, it might be in favor of
Toxoplasma to hijack GABAergic and VDCC signaling in DCs
to achieve a rapid onset of hypermigration shortly after host-
cell invasion and thereby speed-up the process of systemic
dissemination (Lambert et al., 2006; Fuks et al., 2012).

MODULATION OF IONOTROPIC
SIGNALING IN MICROGLIA AND OTHER
BRAIN-RESIDENT CELLS

Recent work has shown that Toxoplasma infection can alter
GABAergic synapses in the rodent brain (Brooks et al., 2015).
Altering of the distribution of the GABA synthesis enzyme
GAD67 led to disturbed GABA signaling and increased the
susceptibility of animals to experimentally induced epileptic
seizures. Also, Toxoplasma infection decreased the expression
of the astrocytic glutamate transporter, GLT1, and increased
extracellular glutamate levels (David et al., 2016). Thus,
the observed dysregulation of GABAergic and glutamatergic
signaling in toxoplasmosis is intriguing, also in perspective
of the infiltration of DCs to the brain parenchyma during
Toxoplasma infection (John et al., 2011). Additionally, astrocytes
and microglia are both permissive to parasite invasion and
replication in vitro but only microglia exhibited enhanced
transmigration and hypermotility upon challenge with T. gondii
(Dellacasa-Lindberg et al., 2011; Contreras-Ochoa et al., 2012;
Bhandage et al., 2019). This raises the question whether microglia
serve as Trojan horses for Toxoplasma dissemination within
the brain parenchyma.

Human microglia have been reported to express GABA-T
and 3 GABA-A receptor subunits (α1, α3, and β1) (Lee et al.,
2011). In addition, microglia respond to GABA by suppressing
IFN-γ production through inhibition of inflammatory pathways
mediated by NF-kB and P38 mitogen-activated protein (MAP)
kinases. These inhibitory effects of GABA are partially mimicked
by the GABA-A receptor agonist–muscimol and the GABA-
B receptor agonist -baclofen, implying functionality for both
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types of GABA receptors in human microglia (Lee et al., 2011).
In mouse retinal microglia, endogenous GABAergic signaling
negatively regulated dendritic morphology in vivo in the brain
as the inhibition of GABA-A or GABA-B receptors resulted in
more profound increase in dendritic structures (Fontainhas et al.,
2011). A recent characterization in murine primary microglia
revealed that (i) microglia exhibit hypermotility upon challenge
with T. gondii, (ii) secretion of GABA upon T. gondii infection,
(iii) transcriptional expression of a complete GABAergic
machinery including GABA-A receptors, (iv) T. gondii infection
modulated the expression of the GABAergic machinery, and (v)
pharmacological inhibition of GABAergic signaling at different
levels (synthesis, receptor, receptor regulator, and VDCC
inhibition) abrogated hypermotility of microglia (Bhandage et al.,
2019). Jointly, this indicates that T. gondii infection activates
migration of microglia via GABAergic signaling, similar to DCs.

Additional immune cells that mediate important immune
responses to Toxoplasma infection, such as monocytes, T
cells, NK cells, macrophages, and neutrophils, have been
associated with the parasite dissemination, as delineated above.
Whether Toxoplasma infection modulates GABAergic signaling
in other immune cells—if expressed—needs to be addressed in
future investigations.

A ROLE FOR Tg14-3-3 IN T.

gondii-INDUCED HYPERMIGRATION OF
DCs AND MICROGLIA

Much of the current work in understanding the Trojan
horse mechanism has focused on the infected host cell.
Cytoskeletal changes with dissolution of podosomes, elevation
in motility and transmigration, modulated interactions with
extracellular matrix and regulation of integrin receptors,
among others, have been reported in DCs or monocytic cells
following infection by T. gondii (Lambert et al., 2006; Harker
et al., 2013; Weidner et al., 2013; Kanatani et al., 2015;
Cook et al., 2018; Olafsson et al., 2018).

By analyzing the impact of fractionated total tachyzoite lysates
on DC motility, T. gondii 14-3-3 (Tg14-3-3), a parasite-derived
orthologous protein of the ubiquitously expressed 14-3-3 protein
family of eukaryotic cells, was linked to hypermigration of DCs
and microglia (Weidner et al., 2016). In the absence of other
T. gondii proteins, recombinant Tg14-3-3 was sufficient to induce
a hypermigratory state in DCs and microglia, with velocities
comparable to that of a live Toxoplasma infection. Tg14-3-3
was detected in secreted parasite fractions and localized to the
parasitophorous vacuolar space in infected DCs. Interestingly,
a rapid recruitment of host cell 14-3-3 to the parasitophorous
vacuole membrane (PVM) was observed (Weidner et al., 2016).
Thus, the PVM may serve as the potential interface for Tg14-3-3
interaction with host cellular proteins.

Little is known about the functions of the 14-3-3 proteins
in apicomplexan parasites, and specifically Tg14-3-3 (Assossou
et al., 2003, 2004; Lorestani et al., 2012). In mammalian
eukaryotic cells 14-3-3 proteins are involved in the MAP
kinase-mediated regulation of cellular processes including the
organization of the cytoskeleton and the cell motility (Sluchanko

and Gusev, 2010). Further, specific human isoforms of 14-3-
3 can promote cell migration and metastasis of cancer cells
through cytoskeletal remodeling (Somanath and Byzova, 2009;
Freeman andMorrison, 2011). It is therefore plausible that Tg14-
3-3, directly or indirectly through sequestration of host 14-3-3,
impacts on MAP kinase signaling and thereby motility.

GABAergic MIGRATORY ACTIVATION OF
DCs CAN COOPERATE WITH
CHEMOTAXIS OF
Toxoplasma-INFECTED LEUKOCYTES

Upon contact with microbes in peripheral tissues, DC
maturation implies changes in the expressed chemokine
receptors that license migration to draining lymph nodes.
As delineated above, Toxoplasma-induced hypermigration
of DCs depends on GABAergic signaling (Fuks et al., 2012),
but not on classical chemokine receptors, e.g., chemokine
receptor 7 (CCR7) or Toll-like receptor (TLR)/MyD88
signaling (Lambert et al., 2006; Olafsson et al., 2018). Yet,
hypermigratory DCs down-regulate CCR5 and up-regulate
CCR7 upon Toxoplasma challenge (Fuks et al., 2012; Weidner
et al., 2013), in line with reported chemotactic responses
by CD34+ DCs (Diana et al., 2004). Secretion of the dense
granule protein GRA5 has been associated with the up-
regulation of CCR7, and CCR7/CCL19-driven chemotaxis
(Persat et al., 2012). Indeed, DCs challenged with soluble
GRA5, or live tachyzoites, chemotaxed in a CCL19 gradient
(Fuks et al., 2012; Persat et al., 2012; Weidner et al., 2013).

The impact of chemokine receptor modulation in
Toxoplasma-infected DCs remains however unexplored in
vivo. In vitro, the onset of GABAergic hypermigration following
parasite invasion is rapid (minutes) while the onset of measurable
chemotactic responses is significantly slower in vitro (12–24 h)
(Fuks et al., 2012; Weidner et al., 2013; Kanatani et al., 2015).
Yet, hypermotility and chemotaxis cooperatively potentiated the
speed and directional motility of parasitized DCs in vitro. Thus,
GABAergic hypermotility and CCR7-mediated chemotaxis may,
in theory, jointly potentiate migration of infected DCs in vivo,
and facilitate parasite dissemination.

THE Trojan horse MECHANISM AND FREE
EXTRACELLULAR TACHYZOITES: TWO
CO-EXISTING MODES OF
PARASITE DISSEMINATION?

Intracellular localization in migratory leukocytes represents
a secluded niche for dissemination, partly protecting from
immune attack in the hostile extracellular environment.
However, despite T. gondii’s obligate intracellular existence for
replication (Dobrowolski and Sibley, 1996), its extracellular
gliding motility mechanism provides a means for migration in
the microenvironment in tissues (Barragan and Sibley, 2002).
Freshly egressed tachyzoites can actively traverse polarized
epithelial and endothelial cell monolayers. The identified process
of paracellular transmigration implicates interactions between
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host cell ICAM-1 and the parasite adhesin MIC2 (Barragan and
Sibley, 2002, 2003; Barragan et al., 2005; Furtado et al., 2012b).

Shortly after inoculation of parasites in murine experimental
models, leukocyte-associated tachyzoites can be detected in the
circulation but also free extracellular tachyzoites that increase in
numbers as infection develops (Lambert et al., 2009; Konradt
et al., 2016). The relative contribution of these two possible
modes for dissemination in natural infections in rodents or
humans remains unexplored. However, it is likely that, following
systemic dissemination in the blood, passage to the brain occurs
with low parasitemia during natural primary infection.Moreover,
extracellular tachyzoites are exposed to neutralization by the
complement system and IgM (Couper et al., 2005). Also, parasite
genotype-related differences have been described. For type II
and III strains, the relative leukocyte-associated fraction of
tachyzoites predominated early during infection (Lambert et al.,
2009), in line with observations of leukocyte-associated type II
parasites early after infection (Courret et al., 2006; Unno et al.,
2008). In contrast, for type I parasites, the relative extracellular
tachyzoite fraction was predominant in the spleen (Lambert et al.,
2009). Additionally, transfer of tachyzoites between different
leukocyte types has been shown to occur in the blood and tissues
(Persson et al., 2007, 2009; Kanatani et al., 2017).

One additional possibility is that infected leukocytes in
circulation “deliver” the parasites to the endothelium (Lambert
and Barragan, 2010), as recently reported for a pulmonary
infection model in mice (Baba et al., 2017). In infection models of
toxoplasmosis, both parasitized leukocytes and free extracellular
tachyzoites have been suggested to mediate dissemination
in ocular infection (Furtado et al., 2012a,b, 2013) and for
intraluminal intestinal spreading in mice (Coombes et al., 2013;
Gregg et al., 2013). Jointly, this indicates that both intracellular
and extracellular dissemination strategies co-exist and may
even act in a complementary fashion at different phases of
the infection.

CONCLUSIONS AND PERSPECTIVES

Toxoplasma gondii has developed strategies for hijacking
the migratory functions of infected leukocytes, which
simultaneously serve as a replicative niche. Thus, T. gondii
reconciles the obligate need for intracellular replication with
the establishment of infection in peripheral organs. To this
end, T. gondii modulates the motogenic GABAergic/VDCC
signaling axis of DCs and microglia to hijack migratory
functions and promote its dissemination. Similarly, upcoming
evidences indicate that parasites, bacteria and viruses
modulate GABAergic signaling in immune cells for survival
(Fuks et al., 2012; Zhu et al., 2017; Kim et al., 2018).

The impact of GABA and other neuroactive molecules in
immune cells is an emerging field. Infection models, such
as toxoplasmosis, can increase the current understanding
of the GABAergic signaling system in immune cells and
on how GABAergic signaling impacts on physiological and
pathophysiological conditions. Additionally, novel insights into
the pathogenesis of infections are provided. Research from recent
years has revealed that immune cells are GABAergic and future
studies will likely uncover novel functions for GABA signaling in
immune cells.
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