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The unnatural amino acid (UAA) incorporation technique through genetic code expansion has been
extensively used in protein engineering for the last two decades. Mutations into UAAs offer more dimen-
sions to tune protein structures and functions. However, the huge library of optional UAAs and various
circumstances of mutation sites on different proteins urge rational UAA incorporations guided by artifi-
cial intelligence. Here we collected existing experimental proofs of UAA-incorporated proteins in litera-
ture and established a database of known UAA substitution sites. By program designing and machine
learning on the database, we showed that UAA incorporations into proteins are predictable by the
observed evolutional, steric and physiochemical factors. Based on the predicted probability of successful
UAA substitutions, we tested the model performance using literature-reported and freshly-designed
experimental proofs, and demonstrated its potential in screening UAA-incorporated proteins. This work
expands structure-based computational biology and virtual screening to UAA-incorporated proteins, and
offers a useful tool to automate the rational design of proteins with any UAA.

� 2022 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
Site-specific incorporation of unnatural amino acids (UAAs) into
proteins can be realized by nonsense codon suppression with the
engineered tRNA and aminoacyl-tRNA synthetase (aaRS) pairs, a
powerful technique developed by Schultz et al. in 2001 for the
study of protein structures and functions [1]. In the last two dec-
ades, over 150 UAAs have been incorporated into various proteins
in bacterial, yeast, and mammalian cells [2]. More recently, this
technique has been expanded to transgenic animals including
worms, fruit flies, zebrafish, and mice [3]. Since proteins are mostly
composed of 20 canonical or natural amino acid (NAA) residues,
the UAA substitution of a specific NAA residue, also termed as
the NAA ? UAA mutation, can render the protein new features
or altered functions [4], such as photo-crosslinking [5], biorthogo-
nal labelling [6], site-specific conjugation [7] or improved enzy-
matic activities [8]. The reported UAA-incorporated proteins
could serve as a good database resource for investigating the rules
of UAA substitutions.

Several factors are generally considered to influence the effi-
ciency or outcome of UAA substitutions [9], which can be classified
into three categories: the evolutional tolerance of the protein
sequence, the steric effects of the protein structure, and the phys-
iochemical changes accompanying the NAA ? UAA mutation
(Fig. 1a). Some conserved sites crucial for protein functions tend
to be less tolerant for UAA substitutions [10]. Surface-exposed resi-
dues are preferred for UAA substitutions due to their little pertur-
bation to protein structure and easy accessibility of subsequent
labelling [11]. The substitutions are location-dependent and the
circumstances vary among different residues and proteins. Besides,
UAAs and NAAs may have physiochemical differences in aspects of
polarity, hydrophobicity, and hydrogen bonds. UAAs with similar
physiochemical properties to NAAs are more likely to make a suc-
cessful substitution, in which previous researchers tend to acqui-
esce [12]. So, the UAA substitution is a multivariate process that
remains challenging to predict [13]. A recent study has shown
the ability of machine learning in predicting the site tolerability
for one UAA [14]. For the general case of any UAA substituting
any site on any protein, a reliable model or program integrating
all relevant factors is still needed for instructive predictions or vir-
tual screening of UAA-incorporated proteins.

In this research, we systematically collected existing records of
UAA-incorporated proteins from 196 articles published between
2001 and 2021, and created a database of experimentally verified
UAA substitution sites (the database of known UAA sites, see
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Fig. 1. Architecture of this study. (a) Schematic illustration of a typical UAA substitution and the related influencing factors. (b) Flow chart of preparing the database and
designing the RPDUAA program.
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Fig. 1b and Supplementary Data) for machine learning. The target
proteins, NAAs and UAAs were registered in local libraries to com-
pute evolutional tolerances, steric effects and physiochemical
changes as observation factors. By designing a program called
‘‘Rational Protein Design with Unnatural Amino Acids” (the
RPDUAA program, see Supplementary Guide) and performing
logistic regression between the UAA substitution outcome (success
or failure) and multiple observation factors, we tested and vali-
dated the performance of the prediction model. Finally, we
designed 42 UAA-incorporated proteins and examined the strategy
of probability-based UAA incorporations using RPDUAA.
1. Results

1.1. Preparation of the database and libraries

The UAA-incorporated proteins reported in previous researches
can provide insight into the process of UAA substitutions, and we
started by reorganizing them into a database. By searching in
PubMed for articles that contain ‘‘unnatural/non-canonical amino
acid incorporation/substitution/replacement” in the title or
abstract, we found more than 500 entries. Further, 196 research
articles which give definite information of the target protein, the
substitution site, the substituted NAA, the substituting UAA, and
the substitution outcome were considered. To improve the quality
and creditability of the database, several inclusion and exclusion
criteria were applied during data collection as detailed in the
Methods section. For example, the target protein should have pref-
erentially a coordinate structure file in the Protein Data Bank (PDB)
or at least a full sequence for structure predictions. The UAA sub-
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stitution site and the original NAA there were manually confirmed
in the protein structure or sequence. UAA substitutions on linkers,
peptides or proteins less than 50 residues were excluded, because
their loose or small structures usually contain few stably interact-
ing domains for studying the steric effects. The UAA substitution
outcome (success or failure) was judged by different experimental
methods as reported and further graded as direct, indirect or other
related proofs. Direct proofs include mass spectrometry of UAA-
incorporated proteins or critical peptide fragments [12,15,16], gels
or blots confirming the expressions or non-expressions of UAA-
incorporated proteins [17], or some well-established optical repor-
ters [18]. Indirect proofs include miscellaneous results such as
retaining protein functions [19] or enzymatic activities [20], or
the virus package of UAA-incorporated viral proteins [21]. Other
related proofs include UAA replacement using the auxotrophic
strains [22] or UAA incorporations by the ligated UAA-dCA-tRNA
method [23]. For failure substitutions, the researches had better
demonstrate the UAA/aaRS/tRNA system was functional elsewhere
[24] and the failure was mainly attributed to incompatible UAAs at
current positions instead of a deficient system. When available, the
UAA incorporation efficiency relative to wild-type was calculated
to supplement the UAA incorporation outcome and efficiency
>0.01 was considered as a successful incorporation.

After manually collecting the information of the target protein,
the substitution site, the substituted NAA, the substituting UAA,
the substitution outcome, the proof level and the related methods,
we input it to the RPDUAA program to extract more information
from files and format a record into the database. For each protein,
three files were prepared: the cif file contains the protein structure
information which could be downloaded from PDB or generated
through structural predictions with AlphaFold2 or RoseTTAFold;
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the fasta file contains the protein sequence information; the xml
file contains the multiple sequence alignment information
obtained by a BLASTP query. By inputting the PDB ID of a protein,
the RPDUAA program can automatically download and analyze the
three files, extract the evolutional or structural information of
interest for the protein, and process the key information into a
fourth csv file for further use. The chemical formulae of all NAAs
and UAAs were drawn in the Schrodinger Canvas software, which
also supported calculating and exporting physiochemical proper-
ties and similarity matrix of NAAs and UAAs. In the first release,
20 NAAs, 172 UAAs, and 159 target proteins were registered in
local libraries whose properties could be easily called by the
RPDUAA program. Finally, the manually inputted and automati-
cally extracted information of a NAA ? UAA substitution was inte-
grated by the RPDUAA program as a standard record in the
database. At present, the database of experimentally verified UAA
substitution sites has enrolled 1221 records from literature, com-
prising 1064 success records and 157 failure records (Fig. 1b).
The database and related libraries are updatable and users can
append their own UAAs, proteins or substitution records. For flex-
ible use of the database, we also created several practical subsets,
such as the direct proof subset, the amber suppression subset, the
non-predicted PDB subset, and the non-viral protein subset.
Machine learning on these featured subsets will give more per-
spectives (see Pages 48–51 of Supplementary Guide).

1.2. Establishment of the prediction model

We aimed to establish a model that can predict the outcome of
UAA substitutions from observed evolutional, steric and physio-
chemical factors. The evolutional tolerance was evaluated by
searching the protein sequence in BLAST and calculating the site
entropy from the multiple sequence alignment result, which was
conveyed by a xml file. The steric effects could be directly obtained
from the protein structure in the cif or pdb format. Typical indexes
of the steric effects include the relative accessible surface area of a
residue [25], the half sphere exposure beta of a residue [26], and
secondary structure types such as helix, strand and turn. The phys-
iochemical properties exported from the Schrodinger Canvas soft-
ware include atomic logP (AlogP), electrotopological states
(Estate), polar surface area (PSA), molecular polarizability (Polar),
hydrogen bond acceptors (HBA), hydrogen bond donors (HBD),
rotatable bonds (RB), and molecular weight (MW). The differences
between NAAs and UAAs on these physiochemical properties were
calculated. The UAA similarity to the substituted NAA was based
on the binary fingerprint of chemical formula and stored in a csv
file. Besides, the expanded codon type and proof level were also
considered. The full interpretations and preprocessing of these
observed variables were detailed in Table 1 with their sources
and categories annotated. The anticipated prediction model should
simulate the tendency that substitutions at the evolutionally con-
served or sterically hindered sites generally require UAAs with
strictly similar properties to the original NAAs, while substitutions
at the evolutionally mutable or sterically exposed sites may be
more tolerant and less picky on UAAs.

For all substitution records in the database, we collected and
preprocessed the variables as listed in Table 1, which formed a fea-
ture matrix. The outcome of UAA substitutions (success or failure)
is a binomial response variable, and we chose logistic regression as
the prediction model (see Equation (1) below).

log
P

1� P

� �
¼ bþ

X16
i¼1

ki � Vi ð1Þ

Here, P represents the probability of successful UAA substitution at
a given site in the protein; b denotes the bias of machine learning or
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the fitted intercept of logistic regression; ki and Vi are the paired
coefficients and variables as listed in Table 1, which were empiri-
cally considered to be crucial for UAA substitutions. The model
mainly considered the protein structure information and amino
acid properties to judge the possibility of incorporating one UAA
at a given protein site. There are more variables affecting the UAA
incorporation process, such as the codon context in the mRNA,
kinetic property of protein biosynthesis, tRNA abundance, syn-
thetase activity, and competition from release factors in host cells
[27]. However, our model did not include these variables due to
limited information in the literature and difficulties in quantifying
and comparing these variables among different researches.
1.3. Performance of the prediction model

Next, we embedded the prediction model in the RPDUAA pro-
gram and tested its performance on the whole database using
three different methods (Fig. 2a). Principal component analysis
(PCA) of the feature matrix showed a splitting trend between suc-
cess and failure records, implying that success UAA substitutions
may possess a different set of features from failure ones. However,
the clusters of the two groups still overlapped seriously on the PCA
graph, partly because of the low explained variance ratios (EVR1 +
EVR2 < 50 %) by principal components 1 and 2 in the two axes.
After training the prediction model with the whole database, we
plotted the predicted probability of successful UAA substitutions.
As expected, success records exhibited significantly higher proba-
bilities than failure records, and a probability cutoff might work
in separating the majority of success records and failure records.
After optimizing the probability cutoff to 0.83 by maximizing the
sum of sensitivity and specificity, the prediction model yielded
an accuracy of 81.41 % when trained and tested with the whole
database. The receiver operating characteristic (ROC) curve was
used to determine the overall diagnostic capability of the predic-
tion model on the UAA substitution outcome. For the whole data-
base, the area under the ROC curve was 0.87, indicating a reliable
diagnostic capability.

The majority of target proteins in the database were down-
loaded from PDB, while a minority were predicted from the protein
sequence by AlphaFold2 or RoseTTAFold due to the lack of a PDB
coordinate. We created a non-predicted PDB subset containing all
records with a PDB coordinate but excluding those with in silico
predicted protein structures. When the model was trained and
tested by this subset, a similar splitting trend was seen on the
PCA graph, the prediction accuracy at the optimal cutoff was
77.16 %, and the ROC area was 0.87 (Fig. 2b). Moreover, we tested
the model with some featured subsets, such as the amber suppres-
sion subset, the miscellaneous proofs subset, or the non-redundant
subset (see Page 50 of Supplementary Guide), which also demon-
strated similar performances.

The whole database and most of its subsets were biased with
overwhelming success records than failure ones, partly due to
the fact that the literature tended to report more successes than
failures. As a result, the optimal cutoff was much higher than
0.50 and the accuracy fluctuated heavily depending on the cutoff.
However, the ROC curve was stable and the ROC area was above
0.85 for most subsets, which can serve as a golden standard of
the model performance. To handle the bias, we created a balanced
subset by resampling equal numbers of success records to failure
records from the whole database. For such a balanced subset, the
PCA graph showed evident clustering, the probability scatters
showed distinct distributions between success and failure groups,
the optimal cutoff went to 0.53, the accuracy was 83.76 %, and the
ROC area was 0.89, which all supported good performances of the
prediction model (Fig. 2c).



Table 1
The variables or features used for machine learning in this study.

Coefficient Variable Interpretation Source Category

k1 entropy the site entropy calculated from a BLASTP multiple sequence alignment, which correlates negatively with the
site conserve level

xml
file

evolutional
tolerance

k2 rasa the relative accessible surface area of the NAA residue in the protein, which ranges between 0 (fully buried)
and 1 (fully exposed)

cif file steric effects

k3 hsebup the half sphere exposure beta in the stretched direction (radius = 12 Å) of the NAA side chain at a given site
in the protein

k4 hsebdn the half sphere exposure beta in the opposite direction (radius = 12 Å) of the NAA side chain at a given site in
the protein

k5 sstype the secondary structure type of the substitution sitetransformed to 3 dummy variables
(isHelix, isStrand, isTurn)

k6 uaasimi the UAA similarity to the substituted NAA at a given site in the protein, based on the binary fingerprint of
chemical formula

canvas physiochemical
changes

k7 4AlogP the difference between UAA and NAA on atomic logP
Preprocessing: 4AlogP = AlogPUAA – AlogPNAA

k8 4Estate the difference between UAA and NAA on electrotopological states
Preprocessing: 4Estate = EstateUAA – EstateNAA

k9 4PSA the difference between UAA and NAA on polar surface area
Preprocessing: 4PSA = PSAUAA – PSANAA

k10 4Polar the difference between UAA and NAA on molecular polarizability
Preprocessing: 4Polar = PolarUAA – PolarNAA

k11 4HBA the difference between UAA and NAA on the number of hydrogen bond acceptors. Preprocessing:
4HBA = HBAUAA – HBANAA

k12 4HBD the difference between UAA and NAA on the number of hydrogen bond donors. Preprocessing:
4HBD = HBDUAA – HBDNAA

k13 4RB the difference between UAA and NAA on the number of rotatable bonds. Preprocessing:4RB = RBUAA – RBNAA

k14 4MW the relative difference between UAA and NAA on molecular weight
Preprocessing: 4MW = (MWUAA – MWNAA) / MWNAA

k15 cdtype the expanded codon type (TAG, TAA, TGA, or others)transformed to 3 dummy variables
(isAmber, isOchre, isOpal)

other other factors

k16 prooflv the proof level (direct, indirect, or others) of a substitution recordtransformed to 2 dummy variables
(isDirect, isIndirect)
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1.4. Stability of the prediction model

To confirm the stability of the prediction model, we performed
holdout validations by randomly picking 80 % records from the
whole database as training data and using the rest 20 % records
as testing data to plot the graphs. In a typical round of holdout val-
idation (Fig. 3a), we observed splitting trends on the PCA graph and
the probability scatters, with an accuracy of 83.67 % and a ROC area
of 0.86. Then, we performed 100 rounds of holdout validations and
monitored the changes of the key reporting indexes (Fig. 3b). The
optimal cutoff fluctuated around 0.84, the accuracy fluctuated
around 0.80, and the ROC area fluctuated around 0.85 with stan-
dard deviations smaller than 0.06, demonstrating the stable perfor-
mances of the prediction model.

For the stability using balanced records, we randomly resam-
pled equal numbers of success records to failure records from the
database for 100 times to make 100 balanced subsets. By training
and testing the prediction model with these balanced subsets,
the optimal cutoff normally ranged between 0.4 and 0.6 with an
average of 0.49, the accuracy averaged at 0.82, and the ROC area
averaged at 0.88 with small standard deviations, which supported
stable performances of the prediction model on balanced records.

1.5. Timesplit validation of the prediction model

Inspired by the parameter of max_template_date in AlphaFold2,
we decided to include the function of train-test-split at a time
point in the RPDUAA program, termed as the timesplit validation.
By training the model with early records published before 2018-
1-1, and testing the model and plotting the graphs with late
records published after 2018-1-1, we observed splitting trends
both on the PCA graph and probability scatters, with a prediction
accuracy of 70.79 % and an ROC area of 0.82 (Fig. 4a). By perform-
ing train-test-split at another time point, 2019-1-1, similar perfor-
mances were observed with a prediction accuracy of 74.06 % and
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an ROC area of 0.81 (Fig. 4b), which means that early records of
UAA substitutions can predict late records reliably using the pre-
diction model in the RPDUAA program.

Besides the whole database, the timesplit validation could also
be performed on its subsets, as long as the training data and testing
data after splitting are both enough. We performed train-test-split
at 2019-1-1 on a balanced subset, which showed a prediction accu-
racy of 77.08 % and an ROC area of 0.80 (Fig. 4c). Unlike the whole
database and most of its subsets whose optimal cutoffs were usu-
ally above 0.80, the optimal cutoff for a balanced subset was near
0.50. When predicting the outcome of UAA substitutions using the
RPDUAA program, the predicted probability of successful UAA sub-
stitutions should to be compared with the optimal cutoff of the
chosen subset (�0.49 for balanced subsets, �0.84 for the whole
database or other subsets). In summary, the timesplit validations
proved reliable capabilities (ROC area > 0.80) of the prediction
model.

1.6. Experimental validation of the prediction model

To further demonstrate the capability of the model in predict-
ing UAA substitution outcomes, we designed 4 sets of UAA-
incorporated proteins (Fig. 5a) and verified their outcomes exper-
imentally, which made a small laboratory database of 42 records
covering different proteins, sites, codons and UAAs. We selected
10 sites on the AOTH1 protein (Fig. 5b), and substituted each of
them with NAEK (Ne-2-azidoethyloxycarbonyl-L-lysine, Fig. 5c).
Using the RPDUAA program, we predicted the probability of suc-
cessful UAA substitutions across all sites on the ATOH1 protein
(Fig. 5d). Due to the relatively loose structure of ATOH1, the pre-
dicted probabilities were generally above 0.70 for most sites,
implying high tolerances for UAA substitutions across the ATOH1
protein. However, the core structured regions (a-helix between
residues 170–210) of the ATOH1 protein showed smaller proba-
bilities than other unstructured regions, since the former contain



Fig. 2. Performance of the prediction model. Principal component analyses of observed features (left panels), scatter plots of predicted probability (middle panels, where
the error bars denote 25%, 50% and 75% quartiles, and P values for the Mann-Whitney test) and receiver operating characteristic curves (right panels) were shown for (a) the
whole database, (b) the non-predicted PDB subset, and (c) the balanced subset.
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more residue interactions that may hinder UAA substitutions. As
demonstrated by experiments, NAEK was successfully incorpo-
rated into all 7 sites selected from the unstructured regions
(Fig. 5e). Among the 3 sites in the core structured regions, K194
and Y198 tolerated NAEK substitutions well, but V185 showed a
relatively weak efficiency (Fig. 5f). The mass spectrometry further
confirmed the NAEK incorporation at the V185 site of ATOH1
(Fig. 5g). After calculating the UAA incorporation efficiency by
grayscale analysis, we found that the predicted probability by
the RPDUAA program showed a positive correlation (R = 0.6239)
with the UAA incorporation efficiency (Fig. 5h). Besides ATOH1,
we also tested UAA substitutions on multiple structure-solved
proteins including 3Cpro (PDB ID: 3osy, a viral protein), GFP
(PDB ID: 1gfl), BFP (PDB ID: 3 m24), RFP (PDB ID: 1zgo) and
mCherry (PDB ID: 2h5q). We used the reported 1221 records
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(the public whole database from literature) as training data, and
the 42 freshly-prepared records (the private laboratory database)
as testing data to verify the performance of the prediction model
(Fig. 5g). The resulting ROC area was 0.89, indicating that the pre-
diction model had a good diagnostic capability in discriminating
success records from failure ones. At the optimal cutoff of 0.84,
the prediction model showed an accuracy of 78.57 %. The false
positives were mainly observed on the 3osy viral protein, where
amber codons may recover to normal codons during virus propa-
gation according to a relevant research [21] but UAA incorpora-
tions were indirectly reported by virus package in this
experiment. Excluding this viral protein which was proved by
an insensitive method, the accuracy could exceed 90 % as tested
with other normal proteins. For practices of virtual screening,
users can customize or elevate the probability threshold to 0.90



Fig. 3. Stability of the prediction model. (a) Performance in a typical round of holdout validation. Graph definitions, error bars, and the statistical test are the same as
previously described. (b) Changes of the optimal cutoff, accuracy and ROC area in 100 rounds of holdout validations using the whole database. (c) Changes of the optimal
cutoff, accuracy and ROC area in 100 rounds of resampling validations using balanced subsets.
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or 0.95, which will give a dense set of successful UAA substitu-
tions for high confidence.

1.7. Prediction of the UAA incorporation efficiency

Since the UAA incorporation efficiency is an index more mean-
ingful than the predicted probability, we inset a preliminary func-
tion in the RPDUAA program for machine learning directly on the
reported efficiencies. The UAA incorporation efficiency is defined
as the relative ability to incorporate a UAA at a site compared with
incorporating a wild-type NAA there, which is a continuous vari-
able calculated as the expression ratio of UAA-incorporated pro-
teins and wild-type proteins based on the protein yield or
grayscale analysis. In the current database, 124 records possess
an exact UAA incorporation efficiency calculated from the reported
protein yield (the subset with exact yield), while 351 records pos-
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sess a coarse UAA incorporation efficiency that allows both the
protein yield and grayscale analysis of gels or fluorescence (the
subset with coarse yield). The former subset has a better dataset
quality but a smaller sample size than the latter subset.

Using the same set of variables as listed in Table 1, we adopted a
generalized linear model with the log(E + 1) preprocessing to pre-
dict the UAA incorporation efficiency (Fig. 6a). When the model
was trained by the subset with coarse yield, the predicted UAA
incorporation efficiency correlated positively with the detected
UAA incorporation efficiency by experiments, but the correlation
was weak (R = 0.4710), which was partly attributed to the semi-
quantification nature of grayscale analysis (Fig. 6b). When the
model was trained by the subset with exact yield, the positive cor-
relation became clearer and the correlation coefficient improved
fairly (R = 0.6382, Fig. 6c). However, considerable deviations
(±0.1705 or larger) still existed between the predicted and



Fig. 4. Timesplit validation of the predictionmodel. (a) Train-test-split at the time point 2018-1-1 for the whole database. (b) Train-test-split at the time point 2019-1-1 for
the whole database. (c) Train-test-split at the time point 2019-1-1 for a balanced subset. Records before the split time point were used to train the model, while records after
that time point were used to test the model and plot the graphs. Graph definitions, error bars, and the statistical test are the same as previously described.
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detected UAA incorporation efficiencies using this pilot model.
While the probability-based prediction of the UAA incorporation
outcome is well established and systemically evaluated in the
RPDUAA program, it is still challenging to predict the UAA incorpo-
ration efficiency for a general UAA incorporation process, which
may require more high-quality samples and process-affecting vari-
ables beyond Table 1 such as the codon context in the mRNA,
kinetic property of protein biosynthesis, tRNA abundance, syn-
thetase activity, and competition from release factors in host cells.
2. Discussion

This research systematically summarized the reported UAA-
incorporated proteins in the last wo decades into a database for
machine learning, and established a reliable prediction model to
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formulate the rules of UAA substitutions. The RPDUAA program
supported direct analyses of protein information in cif, fasta and
xml files, and registered 172 UAAs in its first release (see Supple-
mentary Guide, Pages 11–43). Users can add their own target pro-
teins or UAAs to the libraries, append new substitution records to
the database, test the performance of the prediction model with
the whole database or one of its subsets, predict the probability
of successful UAA substitutions, and optimize their UAA-
incorporated proteins conveniently in the RPDUAA program. For
example, based on the predicted probability and the full heatmap
(Fig. 5d), uses can find the optimal substitution sites on a given
protein for a given UAA (the fixed UAA strategy), or find the opti-
mal UAAs that may substitute a given site on a given protein
(the fixed site strategy). In previous studies, the selections of UAAs
and substitution sites were mostly based on experience or
mechanical screening with laborious experiments. The RPDUAA



Fig. 5. Experimental validation of the prediction model. (a) Composition of the laboratory database of freshly-designed UAA-incorporated proteins. (b) Structure of the
ATOH1 protein predicted by AlphaFold2. (c) Chemical formula of NAEK. (d) Full probability matrix for all UAAs substituting any site of the ATOH1 protein. The probability was
predicted by the RPDUAA program using the whole database. (e) Western blot images of NAEK-incorporated ATOH1. The NAEK-dependent ATOH1 expressions were an
indicator of successful UAA substitution at a site. (f) Fluorescence images of a downstream mCherry reporter confirming NAEK incorporations in ATOH1 in HEK293T cells.
Scale bar, 100 lm. (g) Mass spectrometry of fragments with NAEK incorporated at the V185 site of ATOH1. (h) Correlation plot between the predicted probability and UAA
incorporation efficiency for the 10 sites of ATOH1. (i) Performances of the prediction model when trained with the whole database from the literature and tested with the
freshly-prepared laboratory records. Graph definitions, error bars, and the statistical test are the same as previously described.
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Fig. 6. Prediction of the UAA incorporation efficiency. (a) Subsets with coarse or exact yields in the database and prediction models in the RPDUAA program. (b)
Performance of the model using the subset of coarse yield. (c) Performance of the model using the subset of exact yield. The solid line represents the linear regression between
the predicted and detected UAA incorporation efficiencies, and the Pearson’s correlation coefficient R is reported.
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program could automate the selections based on artificial intelli-
gence and virtual screening, which is a useful tool for the rational
design of UAA-incorporated proteins. As proved by the timesplit
validations (Fig. 4) or experimental validations (Fig. 5), the
RPDUAA program exhibited a reliable predictive capability. By set-
ting a probability threshold at the optimal cutoff of the chosen sub-
set (�0.49 for balanced subsets, �0.84 for the whole database or
other subsets) or higher (such as 0.90 or 0.95), users can get the
high-confidence candidates of UAA-incorporated proteins for
future investigations.

When evaluating the performance of the prediction model, we
noticed that the range of predicted probability was wide for both
success and failure groups (Fig. 2, middle panels), leading to high
rates of false negatives and false positives. The false positives in
the failure group may be related to the indirect proofs judged from
virus package or protein functions, in which the successful UAA-
incorporated proteins might be mistaken into the failure group
due to the loss of virus packaging competency or other protein
functions [28]. The false negatives in the success group could be
explained by the limitation of predictions based on rigid structures.
The RPDUAA program may suggest some sites which are less suit-
able for UAA substitutions judging from the rigid protein structure
(the static cif file), but the real protein may be more flexible and
tolerant for UAA substitutions. Specially for viral proteins, some
unstable amber codons may recover to normal codons during virus
propagation and UAA incorporations may be misreported even for
those deprecated sites, which is also a cause of false negatives. The
RPDUAA program was less effective in predicting UAA-
incorporated viral proteins than normal proteins, as proved by
the performance on the viral protein subset (ROC area = 0.70)
and the non-viral protein subset (ROC area = 0.81) in Page 51 of
Supplementary Guide. Nonetheless, the prediction model in the
RPDUAA program can well discriminate the majority of success
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records from that of failure ones by automatically setting an opti-
mal cutoff, as indicated by the horizontal cutoff line and bars of the
25 % and 75 % quartiles on each probability graph.

The PRDUAA program predicts the UAA substitutions from sev-
eral factors like evolutional tolerance, steric effects and physio-
chemical changes. In the aspect of steric effects, we extracted the
information of residue exposure or solvent accessibility directly
from the protein structure in the cif or pdb format. However, some
exposed residues may become buried when the protein forms
complexes with other structures or packages with other viral pro-
teins, which will give misleading information for UAA substitution
prediction. This could be solved by directly inputting the protein
complex for prediction. If the protein complex is not available in
PDB, it can be created from docking servers like ZDOCK [29], Patch-
Dock or SymmDock [30], or from multimer protein structure pre-
dictions in AlphaFold2. After transforming to the cif format, the
protein complex can be analyzed by the RPDUAA program for
UAA substitution predictions. The ‘‘Dock/Fold + RPDUAA” pipeline
supports a much larger library of complexed proteins beyond PDB
and offers more accurate information of steric effects for UAA sub-
stitution predictions. The RPDUAA program also embedded some
extra functions, such as using absolute differences when prepro-
cessing physiochemical changes, and appending some in-lab
records to predict from published records to unpublished ones
(see Pages 57–59 of Supplementary Guide). Besides predicting
the probability of successful UAA substitution, the RPDUAA pro-
gram also contained a preliminary function for predicting the
UAA incorporation efficiency. However, the UAA incorporation into
proteins is a multivariate problem far beyond those listed in
Table 1, and the accurate prediction of the UAA incorporation effi-
ciency may require more critical variables, including the codon
context in the mRNA, the kinetic properties, and the specificity of
the synthetase. Since these variables are not always available in
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the literature and some of them are hard to quantify or compare
between different researches, we compromised our model to the
protein structure and amino acid property level in the RPDUAA
program.

The site-specific UAA incorporation technique through genetic
code incorporation has been widely applied in protein engineering
and new drug design. ARX788, an antibody-drug conjugate that
utilizes UAA-enabled conjugation, has demonstrated potent and
selective activities in HER2-low and T-DM1-resistant breast and
gastric cancers [31]. UAA-incorporated replication-incompetent
viruses have been used as candidate vaccines [28]. The introduc-
tion of a proper UAA may give rise to new protein drugs [7], and
the optimal substitution sites on the protein drug also need opti-
mization. To date, about 180,000 solved protein structures have
been deposited in PDB, each protein may contain hundreds or
thousands residues, and approximately 200 UAAs have been
reported in literature, multiplying to billions of candidate UAA sub-
stitutions. The virtual screening functions provided by the PRDUAA
program may help cut the experimental cost and shorten the
development period of UAA-incorporated protein drugs. Moreover,
the UAA incorporation technique has been developed as a thera-
peutic strategy for nonsense mutation diseases [17], and the
RPDUAA program here may supplement this strategy in preselect-
ing the optimal UAA system for personalized therapies of nonsense
mutations that occur at different sites of a protein.

Protein structure prediction tools such as AlphaFold2 have
made impressive progresses [32], but in silico tools involving UAAs
are still rare. To date, AlphaFold2 and RoseTTAFold have not used
UAAs as basic residues. The CHARMM-GUI platform supports
UAA substitutions for PDB manipulations, free energy calculations
or molecular dynamics simulations [33], which are vastly in silico
and not experimentally supervised by UAA incorporation out-
comes or efficiencies. The RPDUAA program we proposed here is
based on the generalized UAA substitutions supervised by the
reported experimental results (Fig. 1a), which supports the predic-
tion of any UAA substituting any site on any protein from existing
experimental proofs, and its libraries of UAAs and proteins are also
extensible to include a broad spectrum of UAAs and proteins as the
users need. Besides, the database of UAA-incorporated proteins or
known UAA substitution sites established in this research may
serves as a potential resource for UAA-involved protein transla-
tions, structure-based computational biology, machine learning
on proteins with special residue modifications, and future struc-
ture predictions of UAA-incorporated proteins.
3. Methods

3.1. Preparation of the database of known UAA sites

We adhered to several criteria of inclusions and exclusions
when preparing UAA substitution records from literature: (1)
Research articles published between 2001 and 2021 were consid-
ered, while records in reviews were traced back to their original
research articles. (2) The article should provide definite informa-
tion of the target protein, the substitution site, the substituted
NAA, the substituting UAA, and the substitution outcome. (3) For
the target protein, a PDB coordinate was normally required and
strongly recommended. If the PDB coordinate was not available,
the full protein sequence was used to predict the required protein
structure with RoseTTAFold (https://robetta.bakerlab.org/) or
AlphaFold2 instead. Protein structure predictions were used spar-
ingly. (4) UAA incorporations through protein biosynthesis or
genetic code expansion were considered as the main study object.
UAA incorporations using auxotrophic strains or ligated UAA-dCA-
tRNA method were considered as other related proofs, while those
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through solid phase peptide synthesis, post-translational modifica-
tions or protein semi-synthesis were not related. (5) Peptides or
small proteins less than 50 residues were excluded. (6) UAA substi-
tutions that lie in the amorphous linker regions of fusion proteins
or any user-defined protein constructs were generally not consid-
ered due to the lack of definite structure information. (7) UAA
incorporations in viral proteins were included, but specially noted.
(8) The UAAs should be L-form just like the NAAs, while D-form
UAAs were not considered.

The cif, fasta, xml and csv files of the involved target proteins
were uniformly named with the PDB ID and placed into a ‘‘pro-
teins” folder as the protein library. The chemical formulae of NAAs
and UAAs were drawn in the Canvas software (version 3.5 in Schro-
dinger 2018 suite) as the NAA&UAA library, with the similarity
matrix and physiochemical properties of NAAs and UAAs exported
to csv files and placed into a ‘‘residues” folder to be easily called by
the RPDUAA program. Finally, the key information of UAA substitu-
tions were collected into the database (also a csv file in the
‘‘residues” folder) using the RPDUAA program. Besides, users can
automate the preparations of cif, fasta, xml and csv files of a pro-
tein just by inputting its PDB ID with an underscore prefix (e.g.,
‘‘_6mh2” to analyze the Herceptin protein) in the RPDUAA
program.

3.2. Development of the RPDUAA program in Python

The RPDUAA program was developed in Python (version 3.9)
and PyCharm (version 2021.1.1). To analyze protein sequences
and structures, BioPython (version 1.78) was used. Secondary
structures [34] were extracted by DSSP (version 3.0.0) [35], an
external executable (https://swift.cmbi.umcn.nl/gv/dssp/HTML/
distrib.html). Numpy (version 1.19.5) and Pandas (version 1.2.4)
were used for the scientific computations and dataframe manipu-
lations. Machine learning and logistic regression were performed
using Scikit-learn (version 0.24.2). Reporting graphs were made
by Matplotlib (version 3.4.2) and Seaborn (version 0.11.2). An exe-
cutable form of the RPDUAA program is available at Github
(https://github.com/ZHR2PKU/RPDUAA) with necessary files and
folders, which is recommended to run on theWindows 10 platform
(64 bit).

3.3. Performance and stability of the prediction model

For all records in the database of known UAA sites, we com-
puted and collected the variables in Table 1 into a feature matrix.
Besides the whole database, we also gathered some records into
special subsets, such as the non-predicted PDB subset and amber
suppression subset. The balanced subset enrolled all the failure
records and equal numbers of success records that were randomly
resampled from the database. Logistic regression was performed
between the UAA substitution outcome (success or failure) and
the feature matrix, using the whole database, special subsets or
randomly selected training records. General performances were
evaluated using a subset simultaneously as training data and test-
ing data. PCA graphs of the feature matrix, scatter plots of the pre-
dicted probability of successful UAA substitutions, and ROC curves
were reported along with some key indexes such as the optimal
cutoff, prediction accuracy and ROC area.

For holdout validations, 80 % records were randomly selected as
the training data from the whole database and the rest 20 % records
as the testing data. The train-test-splits were repeated for 100
times using random seeds 0–99, and the key indexes (optimal cut-
off, prediction accuracy and ROC area) were collected for each
round to evaluate the stability of the prediction model on the
whole database. Besides, the train-test-split can also be performed
at a time point like 2018-1-1, namely the timesplit validation.

https://robetta.bakerlab.org/
https://swift.cmbi.umcn.nl/gv/dssp/HTML/distrib.html
https://swift.cmbi.umcn.nl/gv/dssp/HTML/distrib.html
https://github.com/ZHR2PKU/RPDUAA
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Specially for the balanced subset, equal numbers of success
records to failure ones were randomly resampled from the whole
database for 100 times using random seeds 0-99, and combined
with all the failure records to prepare 100 balanced subsets. Each
balanced subset was used simultaneously as training data and test-
ing data in each round to get the key indexes (optimal cutoff, pre-
diction accuracy and ROC area). Fluctuations of the key indexes in
100 rounds could reflect the stability of the prediction model on
balanced subsets.

For predictions of the UAA incorporation efficiency, a general-
ized linear model was adopted, which can be achieved by the 4e
command in the main menu of the RPDUAA program. The model
was trained by those records with coarse or exact protein yields
in the database. The performance of the model was evaluated by
the positive correlation between the predicted UAA incorporation
efficiency by the RPDUAA program and the detected UAA incorpo-
ration efficiency by experiments.

3.4. Predictions of UAA substitutions for a given protein

The PRDUAA program supports predicting the probability of
successful UAA substitutions for all registered UAA substituting
any site on a given protein. If the protein has a PDB coordinate,
users can automatically prepare its four files (cif, fasta, xml, and
csv) just by inputting its PDB ID with an underscore prefix (e.g.,
‘‘_6mh2” for the Herceptin protein) in the RPDUAA program, which
is quite convenient. If the protein does not have a PDB coordinate,
users need to prepare the protein structure from AlphaFold2 or
RoseTTAFold, or use some docking servers to export the protein
complex, and finally transform the output pdb files to cif files.
Write the protein sequence in a fasta file, visit NCBI (https://
blast.ncbi.nlm.nih.gov/Blast.cgi), BLAST the fasta sequence of the
protein and export the alignment results into a xml file. Rename
the cif, fasta and xml files uniformly with four lowercase letters
or numbers like the PDB ID, place them into the ‘‘proteins” sub-
folder, and use the RPDUAA program to analyze the protein into
a fourth csv file. In this way, the protein was registered into the
protein library and ready for further predictions.

After preparing the four files (cif, fasta, xml, and csv) of a given
protein, users can predict the probability of UAA substitutions in
the RPDUAA program. The prediction model can be trained by
the whole database of known UAA sites (recommended by default),
the balanced subset (cutoff around 0.5), or any other subsets. The
RPDUAA program provides three practical strategies of prediction:
(1) For a given protein and a given UAA, find the optimal substitu-
tion sites; (2) For a given protein and a given substitution site, find
the optimal UAAs; (3) Full probability matrix for all UAAs scanning
all sites of a given protein. After choosing a subset, selecting the
full probability matrix strategy, and inputting the filename of the
protein, a heatmap will emerge showing the predicted probability
of successful UAA substitutions for all registered UAA substituting
any site on the protein. Meanwhile, a detailed csv report contain-
ing the full probability matrix will be exported into the ‘‘predic-
tions” subfolder. Users can sort the probability or set any
threshold according to the optimal cutoff of the chosen subset
(�0.49 for balanced subsets, �0.84 for the whole database or other
subsets).

3.5. Experimental validation using different UAA-incorporated
proteins

The tested target proteins include: the human ATOH1 transcrip-
tional factor (UniProt ID: Q92858); the 3C protease of human
enterovirus 71 (3Cpro, PDB ID: 3osy); the green fluorescent protein
(GFP, PDB ID: 1gfl); the blue fluorescent protein (BFP, PDB ID:
3 m24); the red fluorescent protein (RFP, PDB ID: 1zgo); mCherry
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(PDB ID: 2h5q). The tested UAAs include: 3-(6-acetylnaphthalen-
2-ylamino)-2-aminopropanoic acid (Anap); p-acetyl-L-
phenylalanine (pAcF); Ne-Boc-L-lysine (eBK); Ne-2-azidoethyloxy
carbonyl-L-lysine (NAEK). The tested UAA incorporation systems
include: AnapRS-tRNAEcLeu for Anap incorporation; OMeYRS-
tRNAEcTyr for pAcF incorporation; MbPylRS-tRNAMbPyl for eBK
incorporation; MmPylRS-tRNAMmPyl for NAEK incorporation. The
expanded codons of UAAs may use TAG, TAA or TGA.

Four sets of UAA-incorporated proteins (42 records in total)
were designed: ATOH1-(R96, S115, V185, K194, Y198, E222,
P225, S233, N250, Q258)-TAG ? NAEK; 3Cpro-(Q19, S41, Q42,
V54, I86, T96, T101, N105, Q121, K130, Q146, T152, I160, Q168,
A180)-TAG ? NAEK; GFP-Y39-(TAG, TAA, TGA)?(Anap, eBK, pAcF,
NAEK); Other fluorescent proteins including RFP-R36-TGA ? NAE
K, GFP-K101-TGA ? NAEK, BFP-Q39-TAG ? Anap, GFP-E172-TA
A ? pAcF and mCherry-R149-TAA ? pAcF.

Defined sites on the plasmids of these proteins were mutated to
the assigned stop codon. Then the plasmids of ATOH1, GFP, BFP,
RFP and mCherry were co-transfected into HEK293T cells with
the plasmids of the UAA incorporation system, respectively. The
medium was supplemented with or without 1 mM UAAs to test
the UAA dependency. The ATOH1 expressions was detected by
western blot (ATOH1 antibody: 21215-1-AP, proteintech, 1:3000)
or a downstream mCherry reporter 48 h post-transfection. The
expressions of GFP, BFP, RFP and mCherry were detected by fluo-
rescence microscopy. For 3Cpro, plasmids of the whole enterovirus
71 genome were used with 3Cpro bearing an amber codon at
defined sites. HEK293T cells stably harboring the NAEK incorpora-
tion system were transfected with the linearized enterovirus 71
plasmids and cultured with or without 1 mMNAEK until 90 % cyto-
pathic effects. The NAEK-dependent cytopathic effects or virus
package could indicate successful NAEK incorporations at defined
sites of 3Cpro. The NAEK incorporation into the ATOH1 protein
was confirmed by mass spectrometry (Thermo Lumos). The UAA
incorporation efficiency were analyzed by grayscale of gels or flu-
orescence and normalized by wild-type.

3.6. Statistical analysis

The sample size of the database (1221 records indeed) was pre-
determined to larger than 10 times the column number of the fea-
ture matrix (Table 1). Some criteria of inclusions and exclusions
were used to improve the database quality as aforementioned.
The records were classified into the success group (1064 records)
or the failure group (157 records) according to the experimental
proofs. After machine learning on the database, the confusion
matrix and the ROC curve were generated, along with the accuracy,
sensitivity and specificity of the prediction model. For the pre-
dicted probability of successful UAA incorporations, the 25 %,
50 % and 75 % quartiles were annotated on the scatter plots, and
the nonparametric Mann-Whitney test was performed between
success and failure groups with two-sided P values reported.
P < 0.05 was considered as statistically significant, while
P < 0.0001 was considered as extremely significant. All statistical
tests were two-sided and performed with the Scipy stats module
(version 1.7.0) in Python.

4. Code availability

The RPDUAA program and its code are available at Github
(https://github.com/ZHR2PKU/RPDUAA).
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