
Function of the tryptophan metabolite, L-kynurenine, in human
corneal endothelial cells

Nermin Serbecic,1 Imad Lahdou,2 Alexander Scheuerle,3 Romana Höftberger,4 Fahmy Aboul-Enein5

(The first two authors contributed equally to this work.)

1Department of Ophthalmology, Medical University of Vienna, Vienna, Austria; 2Institute of Immunology, Department of
Transplantation Immunology, University of Heidelberg, Heidelberg, Germany; 3University Eye Hospital Heidelberg, INF400,
Heidelberg, Germany; 4Institute of Neuropathology, Medical University of Vienna, Vienna, Austria; 5SMZ-Ost Donauspital,
Department of Neurology, Vienna, Austria

Purpose: Penetrating keratoplasty has been the mainstay for the treatment of blindness and is the most common form of
tissue transplantation worldwide. Due to significant rates of rejection, treatment of immunological transplant reactions is
of wide interest. Recently in a mouse model, the overexpression of indoeleamine 2,3 dioxigenase (IDO) was led to an
extension in corneal allograft survival. L-kynurenine is a tryptophan metabolite, which may render activated T-cells
apoptotic and therefore might modulate an allogenous transplant reaction. The function of L-kynurenine in the human
cornea remains unclear. We analyzed the expression levels of IDO in human corneal endothelial cells (HCECs) and
downstream tryptophan/kynurenine mechanisms in cell culture.
Methods: An immunological activation profile was determined in proliferation assays of monocytes from healthy donors.
Reversed-phase high pressure liquid chromatography (HPLC), western blot, real time polymerase chain reaction (PCR),
and microarray analyses were used. The expression of IDO and immunological infiltration of rejected human corneal
allografts (n=12) were analyzed by immunohistochemistry.
Results: We found IDO and an associated tryptophan/kynurenine transporter protein exchange mechanism upregulated
by inflammatory cytokines in HCECs. The inhibition of T-cell proliferation might depend on rapid delivery of the
tryptophan metabolite, L-kynurenine, to the local corneal environment. Microarray analysis gives evidence that the large
amino acid transporter 1 (LAT1) transporter protein is responsible for this mechanism.
Conclusions: Our data support that adequate levels of functional L-kynurenine might contribute to the maintenance of a
relative immune privilege in the ocular anterior chamber, thereby contributing to the preservation of corneal allogeneic
cells.

With over 60,000 procedures performed worldwide each
year, corneal transplantation is the most common form of solid
tissue engraftment. Penetrating keratoplasty (PKP) has been
the mainstay of treatment for blindness due to corneal
diseases. Keratoconus, inherited disorders, scarring caused by
infections (herpes simplex virus), trauma or chemical injury,
and opacification following cataract surgery [1-3] are many
examples of clinical indications for corneal transplantation.
Despite being an immune privileged site, all reports indicate
that immunological rejection remains the leading barrier to
long-term corneal graft survival (10–15 years). Significant
portion of corneal failure is due to allogeneic rejection [4].
Although rejection can occur in any of the three corneal layers
(epithelium, stroma, or endothelium), the single layered
endothelium is the major contributor toward allograft failure
the majority of time [5]. In addition, the natural decrease of
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human corneal endothelial cells (HCECs; >4,000 HCECs/
mm2 at birth versus 2,500 HCECs/mm2 in adulthood) is
further exacerbated by the loss of HCECs as a consequence
of cell apoptosis during ex vivo storage of corneal grafts or
following the transplant procedure itself or early
postoperative inflammation. Other factors such as a slow-rate
of endothelial attrition (~4% a year) that are not associated
with any overt rejection episodes can also confound the loss
of endothelial layer function [4].

Due to the nonregenerative capacity of the endothelial
layer, its loss due to an alloimmune attack can often lead to
blindness when the density of endothelial cells falls below a
critical value of 500 cells/mm2 [4,6]. It is therefore essential
for nature to develop a specific mechanism to allow for
appropriate corneal protection from immunological insults.
Endothelial apoptosis might take place, especially in an
environment with high nitric oxide [7]. Understanding the
mechanism will ultimately afford to develop a novel strategy
to combat the allorejection in clinical transplantation. One of
recently identified pathways to modulate T-cell response
during allogeneic transplant rejection is through an
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immunosuppressive enzyme, indoleamine 2,3-dioxygenase
(IDO), which degrades tryptophan into kynurenine. IDO can
be induced by interferon gamma (IFN-γ) in various cell types
including vascular or corneal endothelial cells [8,9]. However,
the exact mechanism by which tryptophan degradation in the
anterior chamber mediates its potential tolerogenic effects has
yet to be defined. Overexpression of IDO can prolong
allograft survival of various organs including murine corneas
[8,10,11].

The purpose of our study was to investigate IDO
expression in human corneal endothelial cells (HCECs) and
the functional role of the tryptophan/kynurenine downstream
pathway on allogeneic T-cell proliferation and HCEC
survival.

We compared the expression levels of IDO in HCECs and
their biological function, namely the L-kynurenine levels, to
inactivate TNF-α dependent T-cell responses. Consequently,
we identified a tryptophan/kynurenine exchange mechanism,
which is upregulated in HCECs by inflammatory cytokines.
We propose that adequate L-kynurenine levels might be
important in the maintenance of a relative immune privilege
in the ocular anterior chamber.

METHODS
Cell culture: The human corneal endothelial cell line was
obtained from the Hamburg Eye Bank, University of
Hamburg, Department of Ophthalmology, Hamburg,
Germany (Dr. J. Bednarz) as previously published [12]. The
cells were grown in RPMI 1640 (Promocell, Heidelberg,
Germany) supplemented with 10% heat-inactivated fetal
bovine serum (Promocell), 1% L-glutamine (Promocell), 1%
penicillin/streptomycin mix (Promocell) in six-well plates
(Cellstar; Greiner Bio-One, Essen, Germany). In some cases,
the cells were stimulated with either interferon gamma (IFN-
γ) and/or tumor necrosis factor alpha (TNF-α). Prior to
stimulation, HCECs were grown to a density of 5.0×105 cells
per well. They were then stimulated in a humidified
atmosphere of 5% CO2 for three days in six-well plates at the
following concentrations: 500 ng/ml IFN-γ, 100 units/ml
TNF-α, or 500 ng/ml IFN-γ together with 100 units/ml TNF-
α.
High performance liquid chromatography: Culture
supernatants were harvested to quantify the concentration of
L-tryptophan and L-kynurenine using reversed-phase high
pressure liquid chromatography (HPLC) as described
previously [13]. The samples were deproteinized with 2.4 M
perchloric acid for 5 min. After centrifugation (1,000x g for
15 min at 4 °C), supernatants were transferred into new tubes.
The pH value adjusted to 7.0, and the 100 µl filtered
supernatant was injected into a C-18 column (Supelco,
Aschaffenburg, Germany). Samples were eluted with PBS
over 30 min. Tryptophan was monitored by means of its native
fluorescence at the excitation wavelength of 285 nm and

emission wavelength of 360 nm whereas L-kynurenine was
detected simultaneously by ultraviolet (UV) absorption at the
wavelength of 230 nm. The peaks of L-kynurenine and L-
tryptophan were identified following their comparison with
the retention time of previously determined standard
compounds. Quantification was based on the ratios of the peak
areas of the compound to the internal standard [13].

To determine whether the decrease of L-tryptophan and
the increase of L-kynurenine were caused by IDO, we probed
for this enzyme on protein and mRNA levels.
Electrophoresis and quantitative immunoblotting assay: Cell
lysates were prepared by re-suspending 1×106 HCECs first in
a 250 µl lysis buffer (PBS, 1% Nonidet P-40, 0.5% sodium
deoxycholate, 0.1% SDS, 100 ng/ml PMSF, 66 ng/ml
aprotinin). Total proteins (50 µg/sample) were boiled for 10
min at 95 °C. Protein samples were separated on 10% SDS-
polyacrylamide gel (BioCat, Heidelberg, Germany) and then
transferred to polyvinylidene difluoride membranes
(Immobilon Transfer Membrane; Millipore, Schwalbach,
Germany) using standard electrophoretic transfer methods.
To prevent nonspecific binding, the membranes were
incubated with blocking buffer according to the kit
instructions (WesternBreeze® WB7104, WB7106, WB7108;
Invitrogen, Karlsruhe, Germany) and then incubated with
IDO monoclonal antibody (MAB5412; Chemicon, Hofheim,
Germany) at room temperature for 1 h.

This was followed by a washing step and the incubation
of the blots with the secondary antibody with Alexa Fluor 680
goat anti-mouse IgG(H+L) at room temperature for 1 h
(Invitrogen, Karlsruhe, Germany). Bands were visualized
detected using the Li-Cor-Odyssey scanner; Li-Cor, Bad
Homburg, Germany. Quantization was performed using the
Odyssey image software (Li-Cor). Bands were quantified
using a dilution series of human recombinant IDO protein (0.3
µg, 1.5 µg, and 3.0 µg) as described above [14]. Recombinant
IDO protein was purchased from Millipore.

For the detection of large amino acid transporter 1
(LAT1) protein, cell lysates were generated as described
above. The cells have been used in the following conditions:
unstimulated HCECs, HCECs stimulated with IFN-γ, HCECs
stimulated with IFN-γ+TNF-α, and HCECs stimulated with
TNF-α. As a positive control, we used the liver cell line,
HUH-7, as previously described [15]. The primary incubation
was performed using the rabbit-anti-human antibody directed
against LAT1 (AbD Serotec, Duesseldorf, Germany) for 1 h
at room temperature. This was followed by a washing step and
the incubation of the blots with the secondary antibody with
Alexa Fluor 680 goat anti-rabbit IgG (Invitrogen) at room
temperature for 1 h. Bands were visualized as described
above.
RNA extraction and quantitative real-time RT-PCR: Total
RNA was isolated using RNeasy-plus Mini Kit spin columns
(Qiagen Gmbh, Hilden, Germany). Quantification of total
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RNA was performed in a NanoDrop (ND-1000; NanoDrop
Technologies, Wilmington, DE) spectrophotometer. The
quality of the RNA obtained was proved using the RNA 6000
Nano Assay on an Agilent 2100 Bioanalyzer (Agilent
Technologies, Palo Alto, CA). All samples were used only at
the highest quality (Figure 1B).

One microgram of total RNA was used for cDNA
synthesis by reverse transcription. First strand synthesis was
performed with the SuperScriptIII, First-Strand Synthesis
SuperMix for quantitative reverse transcription polymerase
chain reaction (qRT–PCR) module (Invitrogen). The protocol
provided by the enzyme manufacturer (Invitrogen) was
strictly followed except in the omission of DTT, which was
found to reduce the efficiency of real-time PCR [16].

The real-time PCR analysis was performed with the
SYBR GreenER Two-Step Qrt-PCR Kit Universal
(Invitrogen) on an Applied Biosystems-7500 real-time PCR
machine (Applied Bioscience, Darmstadt, Germany).
Glycerinaldehyde-3-phosphate-dehydrogenase (GAPDH)
was used as an endogenous control gene to normalize for
varying starting amounts of RNA. The following
oligonucleotides (MWG Biotech) were used: GAPDH sense
primer 5′-GAA GGT GAA GGT CGG AGT-3′ and the
antisense primer 5′-AGA TGG TGA TGG GAT TTC-3′ and
the IDO-1 sense primer 5′-CAG CTG CTT CTG CAA TCA
AA-3′ and the antisense primer 5′-AGC GCC TTT AGC AAA
GTG TC-3′. The instrument settings were as follows: initial
denaturation step of 10 min at 95°C, followed by 40 cycles of
two-step PCR (denaturation 95 °C for 10 s, annealing and
extension 60 °C for 60 s) after 2 min at 50 °C with an initial
denaturation step of 10 min at 95 °C. For the detection of LAT1
mRNA, we used the following oligonucleotides (MWG
Biotech): sense primer 5′-CTT CCT CAA GCT CTG GAT
CG-3′ and the antisense primer 5′-CCA CGA TGT ACT GCG
ATG AA-3′. The same machine settings as described above
were used in this case as well. Relative quantification was
calculated as published before [17].
Microarray analysis: To be able to probe for coexpressed
genes in the corneal endothelial cells, we used the Affymetrix
Gene Chip microarray system (High Wycombe, UK). The
cDNA library was obtained as described above for real-time
PCR. The microarray analysis was performed by Atlas
Biolabs (Berlin, Germany) using the Affymetrix Gene Chip
U133 Plus 2.0 according to the manufacturer’s instructions.
Data and clustering analyses were determined using Microsoft
Excel for Mac, Version 12.1.3 (Microsoft, Redmond, WA)
spreadsheets and the online analyzing facilities of the
European Bioinformatics Institute/UK [18].
Proliferation assays: To probe for functional activity of the
IDO detected in HCECs, we performed a set of T-cell
proliferation assays.

Isolation of peripheral blood mononuclear cells from
healthy donors—Peripheral blood mononuclear cells

(PBMCs) were isolated from heparinized blood by density
gradient centrifugation on lymphocyte cell separation
medium (Lymphodex; Inno-Train Diagnostik, Kronberg,

Figure 1. IDO mRNA was quantified by real-time PCR. A: Products
show the results from RNA extracted from four pooled corneal
endothelial cell cultures. IDO mRNA levels are normalized to
GAPDH. Higher levels of IDO mRNA expression are seen in pools
of HCECs that have been stimulated with 500 ng/ml IFN-γ and 500
ng/ml IFN-γ+100 U/ml TNF-α for three days. The y-axis indicates
IDO mRNA fold change. The x-axis presents the difference in four
pool treatments. Lane 1, unstimulated; lane 2, 500 ng/ml IFN-γ; lane
3, 100 U/ml TNF-α; lane 4, 500 ng/ml IFN-γ + 100 U/ml TNF-α.
B: The bottom panels show examples of the determination of RNA
using the Bioanalyzer: unstimulated HCECs (top), IFN-γ treated
HCECs (middle), and IFN-γ/TNF-α treated HCECs (bottom).
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Germany) [13]. Cells were then washed three times in PBS,
and cell viability was assessed by trypan blue.

Generation of human monocyte-derived dendritic
cells from peripheral blood mononuclear cells of healthy
donors—Dendritic cells (DC) were generated according to a
standard protocol as previously described [13]. Briefly,
PBMCs were isolated from heparinized blood from healthy
donors by density gradient centrifugation on lymphocyte cell
separation medium (Lymphodex; Inno-Train Diagnostik).
After washing, the cells were incubated in Petri dishes (Nunc,
Wiesbaden, Germany) at 37 °C and 5% CO2 for 90 min and
gently washed. The non-adherent T-cells were removed. The
adherent monocytes were then cultured in the presence of
1000 U/ml recombinant human interleukin-4 (IL-4;
Promocell) and 666 U/ml granulocyte-macrophage colony-
stimulating factor (GM-CSF; Sigma-Aldrich Chemie,
Taufkirchen, Germany) in RPMI 1640 supplemented with
10% fetal calf serum (FCS), 2 mM L-glutamine (Promocell),
and penicillin (100 U/ml)/streptomycin (100 mg/ml; Gibco
BRL Life Technologies, Eggenstein, Germany). Cytokines
(IL-4 and GM-CSF) were replenished every two to three days
by removing half the volume of the medium and adding back
the same volume of fresh medium containing cytokines. On
day 6 of culture, non-adherent T-cells (immature DCs) were
collected by moderate aspiration and seeded into 24 or 96 well
plates (Nunc). For maturation, the cells were treated for 48 h
with a cytokine cocktail comprising 1 µg/ml prostaglandin E2
(PGE2; Sigma-Aldrich), 1000 U/ml interleukin-6 (R&D
Systems, Wiesbaden, Germany), 10 ng/ml TNF-α (Sigma-
Aldrich), and 10 ng/ml interleukin-1 (Roche Diagnostics,
Mannheim, Germany). The method was used as previously
published [19].

Direct alloresponse of T-cells toward HCECs—To
determine whether the IDO produced by the corneal
endothelial cells was functionally active, we set up a direct T-
cell proliferation assay. Responder CD4+ T-cells (1×105 cells/
well) were stimulated with 1×104 irradiated (90 Gray) HCECs
in 96 well plates for three days. Proliferation was measured
following an 18 h pulse with 3H-thymidine (10µl at 5µCi/ml;
GE Healthcare, Buckinghamshire, UK).

Effect of conditioned HCEC supernatant on T-cell
proliferation—To investigate in the L-Kynurenie produced
by HCEC following L-Trylpotohane breakdown through IDO
induced HCECs could have the power to suppress the
activation of cellular immune response.

Unstimulated or stimulated HCECs (with IFN-γ, TNF-
α, or a combination of both) were cultured for 72 h, then their
supernatants were harvested. A proliferation assay was
performed by resuspending target cells (mature DCs) and
effector cells (allogeneic PBMCs) with the differently pooled
supernatants. Co-culturing of mDCs and allogeneic PBMCs
were set up (1:10) in triplicate in 96 well plates in a total
volume of 200 µl/well. The plate was incubated for 72 h at
37 °C in a humidified 5% CO2 atmosphere. Cell proliferation

was measured by an 18 h pulse with 3H-thymidine (10 µl
~5 µCi/ml, Amersham Pharmacia Biotech).

Proliferation assays were measured in a beta-counter
(Inotech Biosystems, Lansing, MI) with calculation of the
counts per minute (cpm) as published before [13]
ELISA for the detection of TGF-β in tissue culture
supernatant: Supernatants were harvested from cells either
untreated or treated with IFN-y, TNF-α, or a combination of
both as described before. Cells were been cultured for 72 h at
37 °C. We used a sandwich enzyme linked immunosorbent
assay (ELISA; TGF-β2 Quantikine ELISA Kit; R&D system)
for quantitative determination of TGF-β2 in cell culture
supernatants following the manufacturer’s instructions. The
optical density of each well was determined using a microplate
reader (Tecan) with a wavelength set to 450 nm. All
measurements have been done in triplicate.
Immunohistochemistry: Immunohistochemistry was
performed on formalin-fixed and paraffin-embedded rejected
human corneal specimens (n=12) with essentially the same
protocols and well classified primary antibodies as described
in detail previously [20,21]. In addition, a monoclonal
antibody directed against IDO (anti-IDO, MAB5412;
Chemicon, Hofheim, Germany) was used.
Apoptosis assay: HCECs were assessed for apoptosis using
flow cytometry staining for annexin-V conjugated with
fluoresceinisothiocyanate (FITC). The reagents were
obtained from BD Biosciences (Heidelberg, Germany) and
used following the manufacturer’s instructions.
Determination of the apoptosis rate was performed as
previously described [22].
Statistical analysis: Mean values with standard deviation are
given for all data. Statistical differences were calculated using
a two-tailed and paired t-test. All statistical analyses were
performed using GraphPad Prism version 4.00 for Windows
(GraphPad Software, San Diego, CA). A value of p<0.05 was
regarded as statistically significant.

RESULTS
IDO, L-kynurenine, and L-tryptophan levels in HCECs: To
monitor IDO activity in HCECs, we used HPLC to measure
the levels of L-tryptophan and its metabolite, L-kynurenine,
in the culture supernatants (Figure 2A,B). Cultured HCECs
were stimulated with IFN-γ, TNF-α, or a combination of both
(IFN-γ/TNF-α). The supernatant of unstimulated and TNF-α-
stimulated HCECs showed no L-kynurenine production. In
supernatants of HCECs stimulated by IFN-γ and by both IFN-
γ and TNF-α, L-kynurenine was found (27.8±1.37 µmol/ml
and 25.0±0.8 µmol/ml , respectively; Figure 2A). The
difference of L-kynurenine levels between the IFN-γ
stimulated or IFN-γ/TNF-α stimulated HCECs and the
unstimulated HCECs or TNF-α stimulated HCECs was
significant (p<0.03). Highest L-tryptophan levels were found
in unstimulated HCECs (30.2±1.8 µmol/ml) and in
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supernatants of TNF-α stimulated HCECs (23.8±3.4 µmol/
ml) while the L-tryptophan concentrations were significantly
reduced in the supernatants of IFN-γ stimulated HCECs
(0.6±0.04 µmol/ml) and in supernatants of IFN-γ/TNF-α
stimulated HCECs (0.7±0.1 µmol/ml; Figure 2B). Again, no
statistical differences were found between the IFN-γ/TNF-α
and the IFN-γ stimulated group, or between the unstimulated
HCECs and the TNF-α stimulated HCECs.
IDO upregulation in HCECs by cytokine stimulation: To
further demonstrate that the L-kynurenine produced by IFN-γ
and/or TNF-α and L-tryptophan degradation were caused by
IDO, we determined IDO mRNA and protein levels with
western blot analysis and RT-PCR.

HCECs were stimulated using the same conditions as
described above, and the total protein was extracted. Using
SDS-PAGE, western blot analysis, and recombinant IDO
protein for the purpose of quantification, IDO protein was
analyzed. We were not able to detect IDO in unstimulated or
TNF-α stimulated HCECs, but we did detect strong protein
expression with western blot in IFN-γ (0.55 µg/ml) and IFN-
γ/TNF-α stimulated (0.53 µg/ml) HCECs (Figure 3A,B).

This was followed by a quantitative RT-PCR of the
HCECs grown in the same conditions as described above.
RNA was extracted and analyzed on a Bioanalyzer (Agilent

Technologies, Waldbronn, Germany). For the reverse
transcription and generation of the cDNA library, only the
RNA with the highest quality was used (Figure 1B). The
results shown are normalized against the housekeeping gene,
GAPDH. Stimulation of HCECs with IFN-γ results in a 112
fold increase of IDO expression. An even higher IDO
expression (160 fold) was seen using the cytokine cocktail of
IFN-γ and TNF-α (Figure 1A). The difference between these
two groups was statistically significant (p<0.05). In contrast,
only a threefold upregulation of IDO was detected in HCECs
stimulated by only TNF-α. The difference was very significant
(p<0.01) when comparing the IFN-γ stimulated HCECs and
IFN-γ/TNF-α stimulated HCECs with the unstimulated and
TNF-α stimulated cells.

To sum up, HCECs treated with IFN-γ/TNF-α or just
IFN-γ showed the highest IDO mRNA and protein levels in
contrast to untreated HCECs or HCECs treated with only
TNF-α.

T-cell proliferation assays: In the next step, we determined
the possible effect of L-tryptophan and IDO activity on T-cell
proliferation. IDO degrades L-tryptophan to L-kynurenine,
which might induce apoptosis in T-cells. It has to be noted that
IDO-dependant apoptosis is independent from the antigen
[23]. Highest levels of T-cell proliferation were found in

Figure 2. Functional activity of IDO was
determined by measuring the
concentration of L-kynurenine and L-
tryptophan in the tissue culture
supernatant of pooled HCECs. HCECs
were treated with 500 ng/ml IFN-γ, 100
U/ml TNF-α, 500 ng/ml IFN-γ+100 U/
ml TNF-α, or without any of the
cytokines. After 72 h, the cell culture
supernatants were harvested, and the
concentrations of L-kynurenine (A) and
L-tryptophan (B) were detected by
HPLC. The difference between the IFN-
γ or cocktail stimulated HCECs versus
the unstimulated or TNF-α only
stimulated HCECs was highly
significant (p<0.03). The
chromatograms (C) show the total free
L-kynurenine (top) and L-tryptophan
(bottom) of stimulated HCECs. As
indicated by arrows, the retention times
are different regarding L-kynurenine
and L-tryptophan. Interestingly, below
L-kynurenine, no further downstream
metabolites of the IDO pathway were
detected. Furthermore, no L-kynurenine
(0.0 µmol) was detected in the
unstimulated group or in the TNF-α
stimulated group. The bars shown do
represent the mean±standard deviation
(SD).
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unstimulated HCECs (4478 cpm) and in HCECs stimulated
with TNF-α alone (5,439 cpm). The stimulation with IFN-γ
or IFN-γ/TNF-α resulted in decreased T-cell proliferation
(IFN-γ, 1567 cpm; IFN-γ/TNF-α, 1649 cpm). Again, the
difference was statistically significant (p<0.05) when
comparing IFN-γ and IFN-γ/TNF-α stimulated cells with the
unstimulated and TNF-α stimulated cells. No significant
difference was detected between the IFN-γ and IFN-γ/TNF-α
stimulated cells.

In the next step we antagonized the IDO effects with 1-
methyl Tryptophan (1-MT), which was added to cultured

Figure 3. Quantitative determination of IDO protein in HCECs. The
top panel shows the quantification of A. HCECs were unstimulated
(A: lane 1) and stimulated with 500 ng/ml IFN-γ (A: lane 2), 100 U/
ml TNF-α (A: lane 3), or IFN-γ+100 U/ml TNF-α (A: lane 4) for 72
h. An undetectable protein band was found in unstimulated HCECs
(A: lane 1) and stimulated HCECs with 100 U/ml TNF-α (A: lane 3).
Obvious upregulation of protein expression is seen in cytokine
stimulation with 500 ng/ml IFN-γ for 72 h (A: lane 2) and 500 ng/ml
IFN-γ+100 U/ml TNF-α for 72 h (A: lane 4). The bottom panel shows
the IDO control protein at 0.3 µg (B: lane 5), 1.25 µg (B: lane 6), and
2.5 µg (B: lane 7). For the detection of the bands, protein of three
independent experiments has been pooled. Thus, no error bars will
be shown.

unstimulated (4,000 cpm) and stimulated (IFN-γ, 3,422 cpm;
TNF-α, 3,820 cpm; and IFN-γ/TNF-α, 3,649 cpm) HCECs,
and performed allogeneic lymphocyte proliferation assays.

The obtained results for IFN-γ and TNF-α/IFN-γ on T-
cell proliferation could be attributed to the IDO enzymatic
activity. All experiments were performed in triplicate.
Sandwich ELISA for the detection of TGF-β2 in tissue culture
supernatants: To clarify a possible effect of HCEC-derived
TGF-β on T-cell proliferation as proposed by the late Streilein
group in a murine model [24], we determined the level of
TGF-β2 in tissue culture supernatants by performing a
sandwich ELISA in unstimulated HCECs and HCECs
stimulated with TNF-α, IFN-γ, and a combination of both.
TGF-β was neither found in the unstimulated condition, nor
in the case of solitary IFN or IFN/TNF stimulated cells. Only
a mild TGF-β2 level (7 pg/ml) was seen in the TNF-α
stimulated condition (Table 1).
IDO downstream metabolites generated from HCECs
effectively block T-cell proliferation: To be able to
differentiate whether the upregulated IDO itself or the
downstream metabolites of the IDO pathway (such as L-
kynurenine) together with a low tryptophan medium was
responsible for the inhibition of the T-cell proliferation, we
used a modified T-cell proliferation assay. An allogeneic T-
cell reaction was started as a co-culture of mDCs and T-cells
in all cases. We measured the T-cell proliferation by adding
the supernatants from HCECs either unstimulated (M1) or
stimulated with IFN-γ (M2), TNF-α (M3), or IFN-γ/TNF-α
(M4). The IFN-γ (2,425±152 cpm) and the IFN-γ/TNF-α
(3,509±181 cpm) supernatants were highly effective in
blocking proliferation of the T-cells. However, supernatants
from TNF-α treated cells (10,918±69 cpm) and untreated cells
M1 (11,187±721cpm) had no effect on T-cell proliferation
(Figure 4B).
Re-supplementation of the conditioned medium using L-
tryptophan: To determine whether the low tryptophan or the
produced L-kynurenine was responsible for the reduction T-
cell proliferation, we supplemented the preconditioned
supernatant to L-tryptophan. Only a slight – however
significant – restoration of the T-cell proliferation up to
4×103 cpm could be registered as L-Kynurenine (L-Kyn) was
not depleted from the supernatant. Thus, T-cell proliferation
did not reach the level as shown in Figure 4B (Figure 4C).
This gives evidence that both tryptophan deprivation and
mainly an increase of L-kynurenine levels would lead to the
observed inhibition of T-cell proliferation.
Apoptosis of HCECs with L-kynurenine: HCECs were
assessed for apoptosis using flow cytometry staining for
annexin-V. Untreated HCECs would present an apoptosis rate
of 3%±1.3%. The addition of 10, 20, and 40 µmol/ml L-
kynurenine did slightly extend the apoptosis rate to 5.92%
±1.5%, 6.23%±2.3%, and 7.34%±2.5%, respectively
(p<0.05). This only shows a minor increase in the apoptosis
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rate with the rate always below the 7.5% limit, revealing no
substantial cytotoxic effect on HCECs at high concentrations
(Figure 4D).
Upregulation of LAT1 transporter, CD74, HLA-DRA, and
HLA-DRB1 under proinflammatory conditions: As
stimulation of HCECs using inflammatory cytokines such as
IFN-γ and TNF-α causes upregulation of numerous genes, we
used Affymetrix microarray analysis to probe for several
genes known to be associated with the IDO metabolic pathway
and immunoregulation (Figure 5C). In this setting, we could
demonstrate a fourfold upregulation of the LAT1 transporter
system upon stimulation with IFN-γ and a 3.85 fold
upregulation following stimulation with the cocktail of IFN-γ
and TNF-α. However, the stimulation with TNF-α alone only
caused a 1.9 fold upregulation. In terms of antigenicity, we
found high expression of HLA-DRA and HLA-DRB1 (5 to 6
fold upregulation) following stimulation with IFN-γ but only
low expression following stimulation with TNFa. It is
important to note that in the murine system, IFN-γ alone was
not sufficient to upregulate the expression of class II [25].
Similarly, CD74 (also a member of the HLA-DR family)
showed a 7.5 fold upregulation following either IFN-γ or IFN-
γ/TNF-α stimulation but no upregulation following only TNF-
α stimulation (Figure 5A).

To conclude, the results of our cell culture experiments
and T-cell proliferation assays suggest that the IDO found
upregulated in HCECs by stimulation with proinflammatory
cytokines is biologically active by degrading L-tryptophan to
its key metabolite, L-kynurenine, leading to a suppression of
T-cell proliferation and potential cytoprotection in HCEC
apoptosis.

The upregulation of LAT1 could also be confirmed on
the protein level (Figure 5B) and as well on RNA level in a
quantitative real-time PCR analysis (Figure 5D). On the
mRNA level, we found an upregulation of LAT1 up to 5.7 fold
upon IFN-γ stimulation and 13 fold following the combined
stimulation of IFN-γ and TNF-α.
Immunohistochemistry for IDO and immune cells: We
performed immunohistochemistry (IHC) in rejected corneas
(n=12). IHC must be regarded as proof of concept as the power
is per se limited due to the specimens available. Principally,
human tissue can only be obtained either from already

completed rejections or from donor grafts that have not been
used for transplantation for quality reasons. Different from
rejection in animal models, humans will need to be treated
immediately and extensively with immunosuppressive drugs
such as steroids or cyclosporine, often on a long-term therapy
regimen to minimize inflammatory response during
subsequent often reversible rejection episodes of varying
duration. This seems to be the reason why the corneal full
thickness anatomy of the presented histologic specimens
appear to be more intact and relatively uneroded by leucocyte
infiltration. Furthermore, not all corneal grafts have the same
tendency to reject as is the case with keratoconus compared
to transplanted grafts into recipient corneas that are inflamed.
Accordingly, to test the hypothesis of a possible
immunomodulatory contribution of endothelium-derived
IDO/kynurenine on maintaining corneal immune privilege, it
is obvious to choose the slides with relatively undisturbed
endothelial histology due to their lower propensity for
rejection.

The pattern of IDO expression varied. Rejected corneal
transplants showed high IDO expression. IDO was found in
the corneal endothelial cells or in the corneal epithelial layer,
depending on the underlying corneal disease and predominant
site of immune reaction. In contrast, IDO was found to be
absent or only scantly expressed in the non-rejected controls
(Figure 6A-D).

DISCUSSION
The kinetics of corneal graft failure is different from those of
vascularized organ grafts [4]. Generally, corneal
allotransplantation is highly successful in the short term
outcome with graft survival rates of 90% one year after
surgery [2]. In most cases, immunosuppression is limited to
the topical application of corticosteroids. As HLA class I and
class II-DR matching between donor and recipient had no
convincing benefit for graft survival, it is not routinely
performed [2]. The cornea is regarded to be an
immunologically privileged site, which might prolong corneal
graft survival, due to the lack of vessels and immunologic
properties of the corneal endothelial, stroma, and epithelium
[4].

In the context of corneal allograft, the endothelial
monolayer in direct juxtaposition with the anterior chamber

TABLE 1. DETECTION OF TGF-β IN TISSUE CULTURE SUPERNATANT.

TGF-β in culture supernantants Units (pg/ml)
HCECs (unstimulated) Not detected
HCECs+IFN-γ Not detected
HCECs+TNF-α 7.0±1
HCECs+IFN-γ+TNF-α Not detected

Neither in unstimulated nor in IFN-γ or IFN-γ/TNF-α stimulated cells any TGF-β has not been detected in the unstimulated or
the IFN-γ or IFN-γ/TNF-α stimulated cells. In contrast, TNF-α stimulated cells showed a mild TGF-β level.
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Figure 4. Analysis of conditioned HCECs. A: Determination of direct alloresponse of conditioned HCECs toward T-cells is shown. T-cells
were either unstimulated or stimulated using IFN-γ or TNF-α or a combination of both. No significant T-cell proliferation could be obtained.
HCECs need stimulation of IFN-γ to upregulate class II molecules. As this co-occurred with an upregulation of IDO, a significant induction
of T-cell proliferation could not be detected. However, using 1-MT to inhibit IDO, a good proliferation of T-cells up to more than 3×103 cpm
was seen (Lane 6 and 10). B: The effect of IDO-induced tryptophan metabolites on the proliferation of effector cells (PBMCs) is shown in
this panel. Mature DCs were incubated (1×104 cells/well) for 72 h with allogeneic PBMC cells (1×105 cells/well) in three different T-cell
culture supernatants of HCECs stimulated with 500 ng/ml IFN-γ, 100 U/ml TNF-α, or 500 ng/ml IFN-γ + 100 U/ml TNF-α. The positive
control consisted of culturing PBMC cells with allogeneic DCs in cell culture supernatant of unstimulated HCECs, and the negative control
consisted of PBMCs or mDCs alone in different pools of HCECs. T-cell proliferation was determined by 3[H]-Thymidin incorporation (cpm)
after three days of culturing. We can show that the conditioned medium taken from HCECs stimulated with IFN-γ and IFN-γ/TNF-α led to a
significant suppression of T-cell proliferation. C: Re-supplementation of the conditioned medium as described in B using L-tryptophan is
shown. To determine whether the low tryptophan or the produced L-kynurenine was responsible for the reduction in T-cell proliferation, we
supplemented the pre-conditioned supernatant to L-tryptophan. Only a slight yet significant restoration of the T-cell proliferation up to
4×103 cpm could be registered. However, the T-cell proliferation did not reach the level as shown in B as L-Kyn was not depleted from the
supernatant. D: Apoptosis assay using flow cytometry for Annexin V was used to determine dose-dependant toxicity of L-kynurenine toward
HCECs. We did see a slight and insignificant increase in apoptosis supplementing the HCEC supernatant to L-kynurenine at 10, 20, and 40
µmol/ml.
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constitutes the vulnerable target of an attack by intraocular
immune effector cells during rejection episodes [26]. Even
though the corneal endothelium is only a single layer in
thickness and expresses only scant quantities of MHC
antigens, it is vulnerable to immunological attack [27].
Among the multiple and redundant mechanisms that operate
in the effector phase of corneal graft rejection, the T-cell
mediated response is considered to be of the most important
cause of graft loss following rejections. In addition, corneal
endothelial cells have distinct molecular strategies to reduce
their antigenic visibility to CD4+ and CD8+ effector T-cells

and to alter the functional program of responding T-cells. As
part of the corneal immune privilege, it is known to have a
unique pattern of MHC class I and II expression [5,28]. For
example, in the murine system, IFN-γ is not sufficient to
upregulate class II expression, but a cocktail of cytokines is
sufficient to do so [25]. Although MHC class I antigen
expression on the murine corneal endothelium is known to be
weak, the endothelial layer is functionally immunogenic and
antigenic for allospecific cytotoxic T-lymphocyte (CTL)
responses. That is, allogeneic corneal endothelium stimulates

Figure 5. Microarray analysis of HCECs for LAT1 transporter protein, CD74, HLA-DR, and HLA-DRB1 and western blot analysis. A: All
results shown are normalized against the control (unstimulated HCECs). We could demonstrate a fourfold upregulation of the LAT-1
transporter system upon stimulation with IFN-γ (together with a 2.7 fold upregulation of the class II surface antigens) and a 3.85 fold
upregulation following stimulation with the cocktail of IFN-γ and TNF-α. However, the stimulation with TNF-α alone only caused a 1.9 fold
upregulation. B: Semi-quantitative western blot analysis of LAT1 protein: 1=protein ladder (250 D-10 kDa (Bio-Rad), 2=unstimulated HCECs,
3=HCECs stimulated with IFN-γ, 4=HCECs stimulated with IFN-γ+TNF-α, 5=HCECs stimulated with IFN-γ, TNF-α+Prostaglandin E2 (as
a control to antagonize the stimulatory effects of IFN-γ+TNF-α), 6=HCECs stimulated with IFN-γ, TNF-α+Prostaglandin E2+1-MT,
7=HCECs stimulated with TNF-α, 7=HUH-7 liver cell line as control. C: The bottom panel shows the exemplary clustering analysis of our
Affymetrix assay. D: Upregulation of LAT1 following stimulation with IFN-γ, TNF-α and IFN-γ, TNF-α was detected by quantitative real-
time PCR. The data shown are normalized against the copy numbers determined from unstimulated HCECs.
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robust CTL responses in vivo and is susceptible to CTL-
mediated lysis in vitro [29,30].

In our human system, however, we found that IFN-γ is
sufficient to stimulate class II expression as previously seen
in vascular endothelial and epithelial cells [31]. However, at
this stage, it is unclear why there is a fundamental difference
between the human and mouse system.

Several reports have demonstrated IFN-γ mediated
upregulation of IDO in the murine system [32,33]. This has
been shown to have an anti-inflammatory effect in various
models including corneal transplantation [8]. Our data
indicate that HCECs can constitutively express
immunoreactive IDO protein.

Interestingly, in the set-up without any IFN-γ and/or
TNF-α stimulation, there is no biologically active IDO as

determined by an assay for L-kynurenine (Figure 2). IDO
from unstimulated cells were only found on the RNA level but
not on the protein level and thus were not found potent enough
to result in a significant inhibition of T-cell proliferation.
However, upon stimulation using proinflammatory cytokines,
T-cell proliferation could be inhibited. This effect could be
reversed by inhibiting upregulated IDO using 1-MT. The
human endogenous IDO activity following an immunologic
attack of the corneal endothelium represents an innate
mechanism of HCECs for immunological modulation as
previously shown in a mouse model [8].

More significantly, using microarray analysis (Figure 5),
we demonstrate that an L-amino acid transporter protein is
upregulated in HCECs by inflammatory cytokines. This
transporter is known to exchange tryptophan for kynurenine,

Figure 6. Immunohistochemistry for IDO and CD3+ and CD8+ lymphocytes in the corneal endothelium. A-B: IDO; C: CD3+ T – lymphocytes;
D: CD8+ T - lymphocytes. Magnification A-D is 400X; inlays in A-D represent twofold enlarged details from respective images marked by
arrows. A: non-rejected cornea negative for IDO (A) and no T-cell infiltration (data not shown); B-D: rejected cornea transplant positive for
IDO (B) with infiltration of CD3 + T-lymphocytes (C; arrow, arrowhead) and CD8+ T-lymphocytes (D; arrow and arrowhead) within IDO-
positive (B) cornea. B-D are images from serial sections.
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thereby coupling tryptophan starvation in the T-cell
microenvironment with kynurenine-induced T-cell inhibition
(Figure 4B,C). Conversely, IDO-producing HCECs that are
expressing the LAT-transporter system mostly maintain their
cell viability, only showing a slight apoptotic increase after
accumulated exposition to L-kynurenine (Figure 4D). We
attribute this to the strict counter-exchange of tryptophan and
the IDO downstream metabolic products (L-kynurenine).

Nevertheless, the question arises whether the kynurenine
levels found to be suppressive in our cell cultures reflect the
concentrations at the site of production in vivo [5,34]. As a
matter of fact, the low serum blood levels of the tryptophan
catabolite, kynurenine (1–3 μmol), do not necessarily exclude
the existence of high levels at defined sites of the body. This
has previously been evidenced in the placenta or murine
cornea, thereby creating a local site of immunosuppression
toward fetal tissue during mammalian gestation or grafted
tissue, respectively [35].

In addition, the basal level of tryptophan in the serum is
mainly controlled by the homeostatic enzyme, IDO (it’s
expression is mainly confined to the liver and is not induced
or regulated by signals from the immune system). In contrast,
the inducible expression of IDO is subject to complex
regulation by an array of immunologic signals including IFN-
γ and TNF-α and can be induced by such signals in various
cell types including HCECs (Figure 4) [8,36]. Applying this
phenomenon to in vivo conditions would implicate that
relatively low kynurenine concentrations may be sufficient for
the suppression of the T-cell response due to the fact that under
the condition of human corneal graft failure, the exposure time
is obviously markedly longer than the duration of cell cultures
used in the present study. Hence, as part of a relevant
biological property of HCECs, significantly lower kynurenine
concentrations might be effective in their T-cell inhibitory
potential at concentrations that probably could be achieved in
the extracellular microenvironment while at the same time
preserving HCEC viability (Figure 4D) [8,36].

So our model must make the assumption that the tissue
microenvironment that surrounds the grafted tissue is not in
equilibrium with the blood and that those local concentrations
of tryptophan or its cytotoxic catabolites can vary markedly
from that observed in the plasma. Given that previous mouse
studies [8] indicate that IDO-overexpressing corneal
endothelial cells (CECs) can induce immunosuppression in
vivo, the admittedly artificial culture model might
nevertheless yield clinically relevant insights. It is therefore
conceivable that the tryptophan-kynurenine exchange by this
strictly local cycle presented in our study on HCEC may
account for an endogenous immunosuppressive mechanism
during allograft rejection comparable to the previously
observed murine model of allograft rejection [8]. This may
operate as part of a negative feedback loop to limit local
immune responses underlying ocular immune privilege by

supporting the two-pronged inactivation of neighboring T-
cells. By depriving T-cells of the local tryptophan pool and
increasing the kynurenine concentrations, a self-limiting
immune protection mechanism for resting postmitotic HCECs
might be constituted (Figure 4). As Th1 CD4+ T lymphocytes
are selectively sensitive to IDO-mediated tryptophan
deprivation [37] in HCECs, the following L-kynurenine-
dependent block of cell cycle progression of these cells might
ultimately prolong survival of grafted corneal tissue [8].

If this is functional in vivo in the human system, the
mechanism delineated by our findings might have far reaching
consequences for immunoregulation and for the pathogenesis
of corneal graft failure. The ability of the cornea to promote
immunologic unresponsiveness by deflecting the systemic
immune response away from a Th1 pathway might be an
integral component of the immune privilege of corneal
allografts during proinflammatory environment. This may
represent a novel adaptation by the anterior chamber to
preserve vision by avoiding immunogenic inflammation in the
effective suppression of donor antigen-reactive Th1 activity.
Recently, it has also been shown that constitutive expression
of CD95L on the corneal endothelium is critical to its immune
privileged status by triggering apoptosis in naïve alloreactive
T-cells. Accordingly, when grafted to a heterotopic site and
in the absence of the corneal epithelium, CD95L prevents
allosensitization and renders murine endothelial cells and
stroma resistant to immune destruction following allograft
rejection directed at MHC alloantigens. Full thickness
allogeneic corneas, however, were rejected acutely due to the
overpowering epithelial immunogenicity [5,28]. The presence
of CD95L in the human corneal endothelium is already well
known [38,39].

Our current human model expand the survey of the
corneal immune privilege by demonstrating that effective
inhibition of T-cell proliferation depends additionally on rapid
delivery of the cytotoxic tryptophan metabolites (L-
kynurenine) to the local environment of HCECs (following
adequate upregulation of IDO). This is likely to be the case in
rejecting corneal tissue thereby comprising an in vivo
mechanism of maintaining ocular immune privilege in the
anterior chamber (Figure 6). In this case, the HCECs do not
only rely on passive mechanisms but also upregulates an
active carrier system (LAT1) for the transport of tryptophan
inside the cell and for the delivery of the cytotoxic metabolites
to the outside compartment in an attempt to limit the amount
of T-cell induced corneal tissue rejection.

If the human immune system utilizes IDO-producing
HCECs for suppression of deleterious immune reactions as a
means of active down-regulation of Th1 immune responses to
alloantigenic cells introduced into the anterior chamber of the
eye, then therapeutic induction of IDO, namely the possibility
that IDO transfection of tissue allografts might lead to a
reinforcement of this innate mechanism. In this setting the
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induction of tolerance in a human transplant might be
attempted. As a result, corneal rejection episodes could
possibly be delayed or prevented as has already been
demonstrated in murine corneal transplants [8]. Therefore,
manipulating immune responses to improve clinical outcomes
on account of the limited accessibility of donor grafts
worldwide is an important challenge in improving organ/
tissue transplantation rates. Whether IDO need to be delivered
to the entire graft or just to a population of tolerogenic antigen
presenting cells (APCs) requires further investigation.
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