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Abstract

Stimulation of CD40 or Toll-Like Receptors (TLR) has potential for tumor immunotherapy. Combinations of CD40 and TLR
stimulation can be synergistic, resulting in even stronger dendritic cell (DC) and CD8+ T cell responses. To evaluate such
combinations, established B16F10 melanoma tumors were injected every other day X 5 with plasmid DNA encoding a
multimeric, soluble form of CD40L (pSP-D-CD40L) either alone or combined with an agonist for TLR1/2 (Pam3CSK4 ), TLR2/6
(FSL-1 and MALP2), TLR3 (polyinosinic-polycytidylic acid, poly(I:C)), TLR4 ( monophosphoryl lipid A, MPL), TLR7 (imiquimod),
or TLR9 (Class B CpG phosphorothioate oligodeoxynucleotide, CpG). When used by itself, pSP-D-CD40L slowed tumor
growth and prolonged survival, but did not lead to cure. Of the TLR agonists, CpG and poly(I:C) also slowed tumor growth,
and the combination of these two TLR agonists was more effective than either agent alone. The triple combination of
intratumoral pSP-D-CD40L + CpG + poly(I:C) markedly slowed tumor growth and prolonged survival. This treatment was
associated with a reduction in intratumoral CD11c+ dendritic cells and an influx of CD8+ T cells. Since intratumoral injection
of plasmid DNA does not lead to efficient transgene expression, pSP-D-CD40L was also tested with cationic polymers that
form DNA-containing nanoparticles which lead to enhanced intratumoral gene expression. Intratumoral injections of pSP-D-
CD40L-containing nanoparticles formed from polyethylenimine (PEI) or C32 (a novel biodegradable poly(B-amino esters)
polymer) in combination with CpG + poly(I:C) had dramatic antitumor effects and frequently cured mice of B16F10 tumors.
These data confirm and extend previous reports that CD40 and TLR agonists are synergistic and demonstrate that this
combination of immunostimulants can significantly suppress tumor growth in mice. In addition, the enhanced effectiveness
of nanoparticle formulations of DNA encoding immunostimulatory molecules such as multimeric, soluble CD40L supports
the further study of this technology for tumor immunotherapy.
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Introduction

A number of immunostimulants, such as anti-CTLA4 antibody

[1], have been shown to be efficacious in treating established

tumors in mice and several of these agents have advanced to

clinical trials in humans. Recently, it has been shown that the local

application of Toll-Like Receptor (TLR) agonists may have

antitumor effects [2,3,4,5]. For example, imiquimod cream

(AlderaTM) is effective for lentigo maligna (an in situ form of

melanoma) [6] and basal cell carcinoma [7]. Equally promising in

mice but difficult to apply in humans is the use of CD40

stimulation. Numerous studies have shown that agonistic antibody

to CD40 can have major antitumor effects either on its own

[8,9,10,11,12] or when combined with TLR agonists

[13,14,15,16]. However, agonistic anti-CD40 antibody can be

toxic, especially if used repeatedly [12,17]. CD40L itself has been

used in several circumstances. As a single-trimer, soluble protein

(sCD40LT, AvrendTM, Immunex/Amgen), systemic therapy had

significant antitumor effects, but also produced dose-limiting

hepatic toxicity [18]. Efforts to deliver CD40L by injecting

adenoviral vectors directly into tumors have shown promise

[19,20]. Alternatively, the co-delivery of CD40L along with

defined tumor antigens may produce strong antitumor effects

[21,22].

From an immunological point of view, most of these

immunostimulants activate dendritic cells from a resting, tolero-
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genic state to that of a fully effective antigen-presenting cell. In so

doing, these immunostimulants counteract the deactivating effects

of tumors on the dendritic cells in their immediate environment

[23,24,25]. A recent insight is that DC activation is not a simple

on/off switch but rather is a tunable pathway leading to

qualitatively and quantitatively different outputs. For IL-12p70

production by DCs, for example, Napolitani et al. [26] found that

the combination of two TLR agonists (e.g., poly(I:C) for TLR3

and R-848 for TLR7/8) was markedly synergistic, and the

addition of CD40L led to a further 10- to 100-fold increase in IL-

12p70 production. Zheng et al. showed the antitumor effects of

CpG plus poly(I:C) stimulation of DC-tumor cell electrofusion

hydrids [27]. Wells et al. have shown the antitumor effects of a

combination of agonistic anti-CD40 antibody, CpG, poly(I:C),

and IFN-c delivered as a emulsion in squalene and Tween 80 [28].

These finding support earlier reports that CD40 stimulation

combined with TLR agonists is capable of inducing strong

antitumor CD8+ T cell responses [13,14].

The present study was undertaken to examine the effects of

combinations of TLR agonists along with a new form of CD40L

that dramatically enhanced CD8+ T cell responses in a murine

DNA vaccine model [29]. This form of CD40L was produced by

fusing the extracellular domain of CD40L with the body of

surfactant protein D (a spontaneously multimerizing molecule)

resulting in a 4-trimer soluble protein encoded by the plasmid

pSP-D-CD40L. In these previous studies, SP-D-CD40L led to

enhanced CD40 activation and increased immune activation both

in vitro and in murine vaccine models [29,30]. In the present

study, we used the B16F10 melanoma because it is a frequently

studied, poorly immunogenic, spontaneously metastasizing tumor

model that is very difficult to treat using immunotherapy [31].

Significantly, pSP-D-CD40L, CpG, and poly(I:C) showed activity

when injected directly into established tumors every other day X 5.

Synergy between these two TLR agonists and synergy between

pSP-D-CD40L and TLR agonists were observed. In addition,

enhanced delivery of pSP-D-CD40L in nanoparticles formed with

cationic polymers increased the antitumor effects, indicating that

DNA delivery into tumors is a surmountable barrier to this type of

immunotherapy. Taken together, these studies show that DNA

delivery of multimeric soluble CD40L is a practical means for

providing CD40 stimulation in vivo.

Materials and Methods

Tumor Immunotherapy Plasmids
The construction of the CD40L and GITRL plasmids was

previously described [29,32]. The following murine plasmids were

tested: pTr-CD40L, encoding 1-trimer soluble CD40L; pAcrp30-

CD40L, encoding a 2-trimer soluble form of murine CD40L; pSP-

D-CD40L, encoding a 4-trimer soluble form of murine CD40L;

pSP-D-GITRL, encoding a 4-trimer soluble form of murine

GITRL; and pcDNA3.1(+) (Invitrogen, Carlsbad, CA) empty

vector as a control.

Plasmid preparation
Plasmids were propagated in E. coli strains XL1 blue or TOP10.

Supercoiled plasmid DNA was isolated by anion-exchange

chromatography resin (EndoFree Plasmid MaxiKit, QIAgen,

Inc, Valencia, CA). Initial experiments indicated that the empty

control vector pcDNA3.1 isolated by this method was capable of

inducing an antitumor effect in mice, despite the fact that it was

negative for endotoxin (,0.1 EU/ml) by Limulus Assay (QCL-

1000, BioWhittaker, Walkersville, MD). Consequently, an addi-

tional purification step using Triton X-114 detergent extraction

was used for the experiments shown in Figs. 1, 3–6 [33].

To prepare Triton X-114 detergent (Sigma, St. Louis, MO), it

was pre-equilibrated by adding 10 volumes TE buffer (10 mM

TRIS-HCl, 0.1 mM EDTA, pH 8.0), vortexed, incubated at 4uC
for 6 hours, and then held at 37uC overnight. The later

temperature is above the cloud point of Triton X-114, which

then separates into a sublayer. At this point, the upper aqueous

phase and any turbid material at the interface were removed and

the detergent sublayer was harvested. This procedure was

repeated a total of three times. The resulting buffer-equilibrated

Triton X-114 was then stored below its cloud point at 4uC.

To use Triton X-114 after completing the EndoFree kit

purification protocol above, plasmid DNA was suspended in

endotoxin-free TE buffer (pH 8.0) at a concentration of 0.8 mg/

ml. Endotoxin-free 3M sodium acetate, pH 5.2 (Sigma) was added

to a final concentration of 0.3 M. Then a total of 0.03 volumes of

pre-equilibrated Triton X-114 were added to the DNA solution

(e.g., 30 ml per 1 ml) and the sample was vortexed thoroughly.

After incubation below the Triton X-114 cloud point on ice for 15

minutes, the sample was heated to 37uC for 10 minutes to allow

the two phases to separate, followed by centrifugation at 400 x g

for 2 minutes at room temperature. The upper aqueous phase

containing the DNA was then transferred to a new tube and

another two cycles of extraction were performed for a total of three

detergent extractions. Plasmid DNA in the final upper aqueous

phase was precipitated by the addition of 0.7 volumes of room

temperature isopropanol, followed by centrifugation at

13,000 rpm in a microcentrifuge for 10 minutes. The DNA pellet

was then washed with cold 70% ethanol (endotoxin free), air-dried

briefly, and dissolved in endotoxin-free TE buffer (pH 8.0) at 4uC
for 1–2 days. The final plasmid concentrations were typically 5–

7 mg/ml. The control pcDNA3.1 plasmid prepared in this

manner had minimal antitumor effects, confirming the removal

of an immunostimulatory contaminant in the initial plasmid DNA

prepared using the EndoFree kit. Prior to injection into mice,

plasmid DNA was diluted in Dulbecco’s calcium- and magnesium-

free phosphate buffered saline (PBS) to a concentration of 1 mg/

ml (50 mg per 50 ml injection).

EndoFree DNA without Triton X-114 processing was used in

the experiment in Fig. 2. As shown, pcDNA3.1 plasmid prepared

in this manner slowed tumor growth but did not significantly

prolong survival. Nevertheless, to avoid this potentially confound-

ing effect, all other experiments were performed using EndoFree

DNA processed by the Triton X-114 extraction protocol above.

Also, whenever plasmid DNA was loaded into 0.5 ml insulin

syringes, the 28G needle was first removed with pliers before

drawing up the DNA in order to avoid shearing the supercoiled

plasmids, following which the needle was reattached for injection

into mice.

Polymer DNA nanoparticles
Polyethylenimine (PEI) nanoparticles were made using In Vivo

JetPEITM and 10% glucose solution (Q-Biogene Inc., Montreal,

Canada). First, the 10% glucose solution was diluted to 5% glucose

using endotoxin-free sterile water for injection (Baxter, Deerfield,

IL). Then the plasmid DNA stock in TE buffer (5–8 mg/ml) was

diluted with 5% glucose solution to a final concentration of 1 mg

DNA/ml volume. Separately, one part In Vivo JetPEITM stock was

diluted in 9 parts 5% glucose solution and mixed. Then, for each

mouse injected, 50 ml of DNA solution was mixed with 50 ml of In

Vivo JetPEITM solution, pulse vortexed, quick spun in a

microcentrifuge, and then allowed incubate at room for at least

for 15 minutes prior to use. Tumors were injected with 100 ml of

CD40L Nanoparticles and TLRs
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this mixture consisting of 50 mg plasmid DNA at a final

concentration of 0.5 mg/ml in isotonic 5% glucose. This corre-

sponds to an N/P ratio of 10:1, i.e., 10 nitrogen residues of PEI

per DNA phosphate.

Solid C32 polymer was synthesized at MIT and shipped on dry

ice to San Diego. It was dissolved at 100 mg/ml in cell-culture

grade sterile DMSO (Sigma-Aldrich, St. Louis, MO) at room

temperature for 2 hours, following which the hygroscopic solution

was aliquoted and stored at 280uC until use. C32 plasmid DNA

nanoparticles were prepared shortly before use. The following

steps yielded 500 ml of nanoparticle solution which is sufficient to

inject 100 ml/tumor in 5 mice, and the actual amounts were scaled

up proportionally according to the number of mice used. First,

using a 1.5 ml microcentrifuge tube, plasmid DNA was added to

sterile water for injection to make a final DNA concentration of

5 mg/ml in a volume of 50 ml. In a separate microcentrifuge tube,

sterile water was used to prepare 25 mM sodium acetate from a

commercial solution of 3 M sodium acetate, pH 5.2 (Sigma-

Aldrich). Then 75 ml of the 25 mM sodium acetate solution was

added to the tube containing 50 ml of DNA. Because the DNA was

diluted from a stock dissolved in TE pH 8.0 (as opposed to DNA

prepared in water as originally described by Anderson et al. [34]),

there was a concern that the TRIS buffer could raise the pH in

subsequent steps. Consequently, an additional 3 ml of 3 M sodium

acetate, pH 5.2 was added to this 125 ml DNA-containing

mixture. Then the tube was pulse vortexed to mix and quick

spun to position the solution at the bottom of the tube. Second, in

a separate microtube, the C32 solution was prepared at room

temperature by combining 75 ml of cell-culture grade DMSO and

50 ml of the C32 stock solution (100 mg/ml in DMSO), pulse

vortexed to mix, and then quick spun. Next, 125 ml of this C32

solution was added to the tube containing 125 ml of the DNA/

sodium acetate solution, gently mixed by hand, and then quick

spun. The resulting 250 ml solution was allowed to incubate at

room temperature for 5 minutes. Lastly, 280 ml of calcium- and

magnesium-free PBS was added to the 250 ml of C32 DNA mix,

pulse vortexed, quick spun, and then 500 ml was loaded into a

syringe for the injections (the extra 30 ml of PBS volume assured

that a full 500 ml could be loaded into the syringe).

TLR Agonists
TLR agonist compounds were prepared following their

manufacturer’s instructions. TLR1/2 agonist Pam3CSK4 (Invivo-

Gen, San Diego, CA) was suspended at 1 mg/ml in PBS and

administered at 5 mg per injection. TLR2/6 agonist FSL-1

(InvivoGen) was suspended at 0.2 mg/ml in PBS and adminis-

tered at 1 mg per injection. The synthetic mycoplasmal lipoprotein

and TLR2/6 ligand MALP2 (InvivoGen) was suspended in PBS at

a concentration of 0.2 mg/ml and administered at 3 mg per

injection. TLR3 agonist poly(I:C) (GE Amersham, Piscataway, NJ)

was prepared by adding 20 ml PBS to the 50 mg in the vial,

incubating at 60uC for 20 minutes, and then placing the vial in a

beaker containing 100 ml water at room temperature to allow the

RNA strands to slowly hybridize. Following this, the 2.5 mg/ml

solution was aliquoted and stored at 280uC. Just prior to use, the

poly(I:C) stock was diluted 1:5 in PBS to provide a 500 mg/ml

Figure 1. Antitumor effects of plasmids for multimeric, soluble CD40L and GITRL on established B16F10 melanoma tumors. B16F10
cells were injected s.c. in C57BL/6 mice. When the tumors were $4 mm in diameter, they were injected every other day X 5 with 50 mg of plasmid
DNA. Three forms of CD40L were tested as fusion proteins (see text): 1-trimer soluble CD40L (pTr-CD40L); 2-trimer CD40L (pAcrp30-CD40L); and 4-
trimer CD40L (pSP-D-CD40L). Additionally, a 4-trimer form of GITRL (pSP-D-GITRL) was tested for comparison. The negative control injections were
either PBS or the empty expression plasmid pcDNA3.1. Panel A – Treatment with pSP-D-CD40L or pSP-D-GITRL slowed the growth of
established B16F10 tumors. Each graph shows 5 mice per group for each treatment where day 0 indicates the time when the tumor became
$4 mm and injections began and ending when fewer than 3 mice in each group remain alive. Injections continued every other day X 5, ending on
day 8 (arrows). There was a significant reduction in tumor size (mean6SEM, n = 5) compared to control pcDNA3.1 or PBS using 2-trimer pAcrp30-
CD40L, 4-trimer pSP-D-CD40L, and 4-trimer pSP-D-GITRL on day 8 as measured before the final injection (p,0.05 by Student’s t test). Panel B –
Treatment of established B16F10 tumors with pSP-D-CD40L significantly prolonged survival. While treatment with plasmids for all 3
forms of CD40L and 4-trimer GITRL showed a trend toward enhanced survival, this was only statistically significant for the 4-trimer pSP-D-CD40L
plasmid (p,0.01 by log-rank test). Consequently pSP-D-CD40L was selected for further study.
doi:10.1371/journal.pone.0007334.g001
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working solution of which 25 mg was administered per injection.

TLR4 agonist monophosphoryl lipid A (MPL), a detoxified form

of lipid A (Avanti Polar Lipids, Alabaster, AL), was dissolved in

50% ethanol at 1 mg/ml and administered at 10 mg per injection.

TLR7 agonist imiquimod acetate (Sequoia Research Products,

Oxford, UK) was suspended in particulate form in a mixture of

1.5% Methylcellulose and 0.5% Tween 80 [35] at a concentration

of 10 mg/ml and administered at 25 mg per injection. TLR9

agonist CpG 1018 59-TGACTGTGAACGTTCGAGATGA-39

(all DNA linkages phosphorothioate), a B Class CpG, was a gift of

Dr. Eyal Raz [36] or was purchased from Trilink Biotechnologies

(San Diego, CA) as a reverse phase-HPLC purified product. The

lyophilized CpG 1018 powder was resuspended in water at a

concentration of 5 mg/ml and stored at 280uC until use. Just

prior to use, the CpG stock was diluted 1:5 in PBS to provide a

500 mg/ml working solution of which 25 mg was administered per

Figure 2. A screen of TLR agonists showed that CpG and poly(I:C) had additional antitumor effects when combined with 4-trimer
CD40L plasmid DNA. Panels A and B – The combination of 4-trimer pSP-D-CD40L with CpG or poly(I:C), but not other TLR agonists
tested, slowed the growth of established B16F10 tumors. As before, tumors that were $4 mm in diameter were injected with pSP-D-CD40L
in combination with selected TLR agonists every other day X 5 (arrows). There were no apparent additive effects of Pam3CSK4 (TLR1/2), Malp2 (TLR2/
6), FSL1 (TLR2/6), MPL (TLR4), and imiquimod (TLR7) (Panel A, mean6SEM, n = 5). The addition of poly(I:C) (TLR3) to pSP-D-CD40L showed a
significantly stronger effect on tumor growth than pSP-D-CD40L alone from day 14 (Panel B, p,0.05 by Student’s t test). CpG was clearly active when
added to pSP-D-CD40L as compared to pSP-D-CD40L alone from day 14 (Panel B, p,0.01 by Student’s t test). Panels C and D – The addition of
CpG to pSP-D-CD40L resulted in a further survival benefit for mice with established B16F10 tumors. As expected from the tumor
growth data, there was no increase in survival when Pam3CSK4, Malp2, FSL1, MPL, or imiquimod were added to pSP-D-CD40L treatment (Panel C).
While the addition of poly(I:C) to pSP-D-CD40L showed a trend toward improved survival, this was not statistically significant when compared to pSP-
D-CD40L alone (Panel D). In contrast, the addition of CpG to pSP-D-CD40L showed a clear survival benefit when compared to pSP-D-CD40L alone
(Panel D, p,0.01 by log-rank test).
doi:10.1371/journal.pone.0007334.g002
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injection. With the known exception of MPL, all solutions were

endotoxin-free. The volume of the TLR agonist injections was

held constant at 50 ml, using PBS as necessary to adjust the total

amount to this volume.

Tumor Cell Lines
B16F10 melanoma from C57BL/6 mice [37] was obtained

from the American Type Culture Collection (ATCC), Manassas,

MD. Cells were cultured in RPMI 1640, 2 mM L-glutamine, and

10% FBS (HyClone, Thermo Fisher Scientific, Waltham, MA),

and were negative for mycoplasma and other adventitious agents

by PCR testing (IMPACT II, RADIL, University of Missouri).

Tumor Initiation and Immunotherapy
Mice were studied under a protocol approved by the

Institutional Animal Care and Use Committee of the VA San

Diego Healthcare System, and the ‘‘rinciples of laboratory

animal care’’(NIH publication No. 85–23, revised 1985) were

followed. Cultured tumor cells were detached from flasks using

trypsin/EDTA followed by neutralization with cold RPMI +10%

FBS and pelleting at 300 x g for 6 minutes. The cells were then

washed 3 times with cold PBS and resuspended at 56106 cells/

ml in PBS. To initiate tumors, a total of 56105 cells (0.1 ml) were

injected subcutaneously into the abdomen of 6–8 week old female

C57BL/6 mice (The Jackson Laboratory, Bar Harbor, ME).

When the s.c. tumors became palpable and measured $4 mm in

diameter (determined as the mean of two orthogonal measure-

ments), the mice were eartagged and considered to be at day 0 of

the treatment protocol. Prior to performing the injections into

tumors, mice were first lightly anesthetized with isoflurane gas.

Then a total of 100 ml of DNA solution or 50 ml of TLR agonists

were injected into or around the tumor using a 0.5 ml insulin

syringe with a 28 gauge needle. When combinations of plasmid

DNA and TLR agonists were used, the DNA was injected on

days 0, 2, 4, 6, and 8, and the TLR agonists were injected the

next day on days 1, 3, 5, 7, and 9. This schedule was based on a

report that dendritic cells are best stimulated when TLR

stimulation follows CD40 stimulation rather than the reverse or

simultaneously [38]. For all treatments, peritumoral injections

were repeated every other day for a total of 5 plasmid DNA

injections. The tumor diameter in two orthogonal dimensions

was measured with an electronic caliper beginning on the day of

initial injection and every other day until the endpoint was

reached. Mice were euthanized when tumors became $15 mm

in mean diameter or ulcerated. Survival was calculated as the

number of days from the first injection on day 0 when the tumors

were $4 mm in diameter until the mice were either found dead

or required euthanasia.

Tumor Histology
Tumor cells were injected s.c. (56105 per mouse) on the

abdomen and allowed to grow to at least 7 mm in diameter. Mice

were then given peritumoral injections of immunostimulatory

compounds every other day X 5 (as detailed above) and then

euthanized two days later on day 10 by pentobarbital injection.

The tumors were excised and divided so that one half was fixed in

1% paraformaldehyde and embedded in paraffin, and the other

half was flash frozen in OCT compound (Tissue-Tek, Thermo

Fisher Scientific). Serial sections (10 mm in thickness) were

obtained from the paraffin-embedded tissue and processed for

hematoxylin and eosin staining. For immunofluoresence micros-

copy, the OCT-embedded tissue was cut into 10 mm serial sections

with a cryostat and stained by standard antibody methods. The

following antibodies were used: fluorescein-conjugated CD11c

clone HL3 (BD Pharmingen, San Diego, CA); phycoerythrin (PE)-

conjugated CD8 clone 53–6.7 (BD Pharmingen); and biotinylated

F4/80 clone BM8 (eBioscience, San Diego, CA) which was used

with PE-conjugated streptavidin (BD Pharmingen). Slides were

examined with a Zeiss Axioskop microscope and images were

recorded using an Optronics CCD camera. Duplicate tumors were

evaluated for each condition.

Statistics
In order to compare tumor growth, the geometric mean tumor

diameters of surviving mice were compared on the days stated

using Student’s t test (Prism 4.0 Software, GraphPad Systems, San

Diego, CA). To compare Kaplan-Meier survival plots, a log-rank

test (Mantel-Haenszel method) was used to determine the

significance of the differences in survival between groups. A p

value of ,0.05 was considered significant.

Results

Characteristics of the B16F10 melanoma model in C57BL/
6 mice

We deliberately chose B16F10 melanoma as a treatment-

resistant tumor model that could be used to discriminate between

strong immunotherapy regimens. B16F10 is ideal for this purpose

because it is (1) poorly immunogenic, (2) lacks foreign antigens,

(3) fast growing, (4) highly metastatic, and (5) rapidly fatal. (1)

B16F10 is poorly immunogenic. Of all of the B16 sublines tested,

B16F10 has the lowest level of surface MHC Class I and almost

unmeasurable amounts of antigen processing machinery com-

ponents (TAP1, LMP2, LMP7, LMP10, PA28a, and PA28b),

although these proteins could be significantly upregulated by

treatment with interferon-c [39]. (2) B16F10 lacks foreign

antigens that are likely to be recognized by the immune system.

Instead, its principal rejection antigen is tyrosinase-related

protein 2 (TRP2), a self-antigen that tends to elicit low affinity,

poorly functional CD8+ T cell responses [40]. In contrast, some

studies use B16F10 transfected with chicken ovalbumin, a foreign

antigen that is sometimes maintained in cells using the neo gene

for G418 selection which is itself a strong antigen for immune

rejection [41]. Even green fluorescent protein (GFP) is a foreign

antigen in mice [42]. The presence of such foreign antigens can

artifactually increase the antigenicity of otherwise poorly

immunogenic tumor cells and thereby confound the results of

an immunotherapy study. (3) B16F10 is fast growing compared

with many tumors commonly studied. As a result, B16F10 is

harder to treat than tumors formed from either parental B16 cells

or more slowly growing variants of this tumor cell line such as

B16-BL6. For example, B16-BL6 was used in the original

description of therapeutic vaccination with irradiated GM-CSF-

transfected tumor cells and blocking antibody to CTLA-4. In that

study, 104 B16-BL6 tumor cells were injected to initiate a tumor

and the treatment had to be given by day 4 postinjection at which

time the tumors were barely measurable [43]. In the present

study, in contrast, tumors were initiated by injecting 50X more

cells (56105 rapidly growing B16F10 cells) and treatment was

delayed for 5–7 days until the tumors were $4 mm in mean

diameter. (4) B16F10 is highly metastatic by design. Fidler

originally derived the B16F10 subline by injecting parental B16

cells intravenously, harvesting tumor cells from a lung metastasis,

and then repeating this procedure for a total of 10 cycles [44]. (5)

B16F10 is rapidly fatal, generally within 10 days of s.c. injection

under the conditions employed here. To be effective, this means

that an antitumor immunotherapy must induce strong immunity

very quickly in order to overtake the tumor’s rapid growth.
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For established B16F10 melanoma, local treatment with
plasmid DNA for multimeric soluble CD40L, pSP-D-
CD40L, slowed tumor growth and prolonged survival

Previous studies have shown that CD40L is most effective when

it clusters its receptor, CD40, on the membranes of responding

cells [45,46]. In our previous study [29], we used the pcDNA3.1

expression vector to prepare plasmids encoding soluble CD40L

with varying degrees of valency by fusing the extracellular domain

(ECD) of CD40L with multimerization scaffolds selected from

other proteins. A plasmid for 1-trimer soluble CD40L, pTr-

CD40L, was produced by fusing an N-terminal isoleucine zipper

to the CD40L ECD, similar to the widely studied sCD40LT

(AvrendTM Immunex/Amgen) [47]. A plasmid for 2-trimer

CD40L, pAcrp30-CD40L, was produced by fusing the body of

Acrp30 (a V-shaped molecule with two trimeric arms) with the

CD40L ECD [48]. A plasmid for 4-trimer CD40L, pSP-D-

CD40L, was produced by fusing the body of surfactant protein D

(an X-shaped molecule with four trimeric arms) with the CD40L

ECD. In the previous DNA vaccine study [29], the adjuvant

activity of soluble CD40L was directly proportional to the number

of trimers per molecule (4.2.1), with pSP-D-CD40L being most

active.

To determine if soluble CD40L multivalency was also

important in the tumor immunotherapy setting, established

B16F10 tumors were injected peritumorally with PBS alone,

control empty expression plasmid pcDNA3.1, or plasmids for the

three soluble forms of CD40L: 1-trimer pTr-CD40L; 2-trimer

pAcrp30-CD40L; and 4-trimer pSP-D-CD40L. An alternative

TNF superfamily (TNFSF) molecule, GITRL, was also tested as a

4-trimer soluble protein construct (pSP-D-GITRL) [29].

As shown in Fig. 1A, tumor growth was significantly slowed

after peritumoral injections of plasmids for 4-trimer CD40L (pSP-

D-CD40L) as compared to empty vector (beginning on day 8

tumor size measurements differed at the p,0.05 level by Student’s

t test). If PBS was used for comparison, then 2-trimer CD40L

(pAcrp30-CD40L) and 4-trimer GITRL (pSP-D-GITRL) also

appeared to slow tumor growth from day 8 (p,0.05). However,

PBS is an unsatisfactory control because DNA itself may have mild

immunostimulatory effects [49,50]. As shown in Fig. 1B, there was

a trend toward prolonged survival with all of the TNFSF

molecules, but statistical significance with this small number of

animals (n = 5/group) was only reached using 4-trimer pSP-D-

CD40L (p,0.01, log-rank test compared with PBS or pcDNA3.1).

For this reason, the 4-trimer version of soluble CD40L (pSP-D-

CD40L) was selected for further studies.

For established B16F10 melanoma, pSP-D-CD40L
combined with either CpG or poly(I:C) resulted in
stronger antitumor effects than pSP-D-CD40L alone

Both in vitro [26,51,52,53] and in vivo studies [13,14,54,55]

have noted a more than additive effect of combining agonistic anti-

CD40 antibody with TLR agonists such as CpG oligonucleotide,

poly(I:C) and derivatives of the TLR7 agonist imiquimod.

However, due to the potential toxicity of agonistic anti-CD40

antibody treatment [17], the application of agonistic anti-CD40

antibodies to humans may be problematic [8]. In contrast, we

observed no toxic effects when pSP-D-CD40L was used as an

adjuvant in the prior DNA vaccine study [29]. Consequently,

synergistic interactions between pSP-D-CD40L and TLR agonists

were sought. Established B16F10 tumors were treated with a

combination of pSP-D-CD40L (50 mg injected peritumorally

every other day X 5) with or without selected TLR agonist

compounds, prepared and dosed as described in Methods. As

shown in Figs. 2A and 2B, most of the TLR agonists tested failed

to improve upon the antitumor effects of pSP-D-CD40L alone.

We cannot rule out that many of these TLR agonists would have

been more effective if they had been formulated or administered

differently. In contrast, the combination of pSP-D-CD40L + CpG

or pSP-D-CD40L + poly(I:C) significantly inhibited tumor growth

(Fig. 2C, p,0.01 and p,0.05 respectively from day 14 by

Student’s t test). The finding that poly(I:C) synergized with pSP-D-

CD40L is similar to the report of Liu et al. that poly(I:C) combined

with agonistic CD40 antibody protected mice from J558

plasmacytoma tumors [14]. There was a trend toward a further

survival advantage when CpG or poly(I:C) was added to pSP-D-

CD40L, but this difference was only statistically significant with

CpG using this small number of animals (Fig. 2D, p,0.01 by log-

rank test comparing pSP-D-CD40L with pSP-D-CD40L + CpG,

n = 5/group).

For established B16F10 melanoma, pSP-D-CD40L
combined with two active TLR agonists resulted in
increased antitumor activity

Napolitani et al. reported that the triple combination of cells

bearing membrane CD40L plus two different TLR agonists (LPS

+ poly(I:C), LPS + R848, or poly(I:C) + R848) could produce even

stronger DC stimulation than that seen with CD40L and a single

TLR agonist [26]. It was suggested that the combination of a

MyD88 pathway agonist with a TRIF pathway agonist was

important for the TLR synergy observed [26,56]. To test this

possibility in the B16F10 tumor system, various combinations of

pSP-D-CD40L, CpG, and poly(I:C) were injected into established

B16F10 tumors every other day X 5 (Fig. 3). All injections

containing one or more of the three immunostimulants inhibited

tumor growth (Figs. 3A, 3B, and 3C, p,0.01 from day 12 by

Student’s t test compared with pcDNA3.1). Importantly, the triple

combination of pSP-D-CD40L + CpG + poly(I:C) was signifi-

cantly better at slowing tumor growth when compared to the

double combination of CpG + poly(I:C) without pSP-D-CD40L

(substituting pcDNA3.1 instead, Fig. 3C, p,0.05 from day 24 by

Student’s t test). Similarly, a significant survival advantage was

seen with all compound combinations compared to pcDNA3.1

empty plasmid vector (Fig. 3D, 3E, and 3F, p,0.01 by log-rank

test). Additionally, the triple combination showed a trend to

improved survival beyond that induced by any two combinations

of pSP-D-CD40L, CpG or poly(I:C), although this did not reach

statistical significance in the small number of animals used in this

study (Fig. 3F, n = 5/group). Interestingly, in the mice cured of

B16F10 melanoma in 11 experiments, there was no autoimmune

loss of pigmentation (vitiligo) even after four months of

observation.

Mice cured of tumors were resistant to rechallenge with
the same tumor type

There are many possible antitumor mechanisms that could

account for the effects shown in the previous experiments. To

determine if immunological memory was generated during tumor

eradication, mice cured of B16F10 for greater than 90 days were

resistant to rechallenge with the homologous tumor cell line (data

not shown). In a related study of AB1 mesothelioma treatment

with pSP-D-CD40L and TLR agonists, the cured mice were

resistant to homologous AB1 rechallenge but not to a heterologous

A20 tumor challenge [57]. Taken together, these data indicate

that a specific memory response was present after tumor cure and

argue against a long lasting non-specific increase in non-immune

antitumor mechanisms.
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Figure 3. Combinations of pSP-D-CD40L, CpG, and poly(I:C) showed strong antitumor effects on established B16F10 melanoma.
Given the promising data of Fig. 2, further studies were done to determine the relative contributions of pSP-D-CD40L, CpG, and poly(I:C) and the
effects of using them in a triple combination. Twelve groups of mice (5/group) were studied in parallel. For display purposes, the data are grouped
into three rows of graphs focusing on CpG (top row), poly(I:C) (middle row), and CpG + poly(I:C) (bottom row). Panels A, B, and C – While each
individual agent slowed tumor growth, the most significant antitumor effect was produced by the combination of pSP-D-CD40L +
CpG + poly(I:C). Panel A shows that CpG alone significantly slowed tumor growth compared to either PBS or pcDNA3.1 alone from day 12 (p,0.01
by Student’s t test, mean6SEM, n = 5). In this fully controlled experiment, however, it was clear that the addition of pSP-D-CD40L to CpG produced no
further antitumor effects (p.0.05). Similarly, Panel B shows that poly(I:C) alone significantly slowed tumor growth when compared to PBS or
pcDNA3.1 alone from day 12 (p,0.01). Again, however, the combination of pSP-D-CD40L + poly(I:C) produced no further antitumor effects (p.0.05).
Interestingly, as shown in Panel C, the double combination of CpG + poly(I:C) significantly reduced tumor growth beyond that produced by CpG
alone (p,0.05 on day 24 on the combination as compared to CpG alone). The addition of pSP-D-CD40L to the two TLR agonists, CpG and poly(I:C),
produced an even stronger antitumor effect (Panel C, p,0.05 on day 24 comparing the triple combination to CpG + poly(I:C)). Panels D, E, and F –
For survival, the addition of pSP-D-CD40L did not increase the antitumor effects seen with CpG alone. All three agents (pSP-D-CD40L,
CpG, and poly(I:C)) improved survival as single therapies. From pairwise comparisons, the survival benefit was greatest with CpG and less prominent
with pSP-D-CD40L and poly(I:C). The combination of CpG + poly(I:C) improved survival further compared to poly(I:C) alone (p,0.05 by log-rank test).
Although the effects on tumor growth indicated that the double combination of TLR agonists CpG + poly(I:C) was better than each alone, this was
not reflected in the survival data. Similarly, the superiority of the triple combination of pSP-D-CD40L + CpG + poly(I:C) seen in the tumor growth
studies was not statistically significant from the survival data.
doi:10.1371/journal.pone.0007334.g003
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CD8 T cell infiltration is associated with successful tumor
immunotherapy

Given the possible role of adaptive immunity in tumor

eradication, tumor sections were analyzed for the presence or

absence of immune cells, including DCs, CD8+ T cells, and

macrophages. B16F10 tumors were treated with pSP-D-CD40L +
CpG + poly(I:C) five times as detailed in Materials and Methods,

followed by tumor dissection two days later. At this time point, the

tumors treated with pSP-D-CD40L + CpG + poly(I:C) had an

increased number of necrotic areas compared to PBS treated

tumors, as shown by hematoxylin and eosin staining (Fig. 4A).

These cells were identified as necrotic because there was no

significant increase in apoptosis compared to baseline as detected

by TUNEL staining (data not shown).

To identify immune cells within the tumors, frozen sections

were stained for the presence of CD11c+ DCs, CD8+ T cells, and

F4/80+ macrophages (Figs. 4B–4D). Tumors treated with pSP-D-

CD40L + CpG + poly(I:C) showed a decrease in intratumoral

dendritic cells (Fig. 4B). This may have resulted from the

activation of these cells followed by their migration to the

tumor-draining lymph nodes (TDLNs) [58]. Consistent with this

interpretation, there was an influx of CD8+ T cells (Fig. 4C),

suggesting a role for CD8+ T cell mediated activity in the anti-

tumor activity observed. In a related study of AB1 mesothelioma, a

dense tumor for which pSP-D-CD40L injections were not very

effective, we observed a large macrophage infiltration [57]. CD40-

activated macrophages could potentially mediate tumor cell death

by expressing TRAIL, although no evidence for TRAIL was found

in a study of B16 melanoma treated with agonistic anti-CD40

antibody plus CpG [59]. However, very little macrophage influx

was seen in the present study of B16F10 tumors (Fig. 4D),

suggesting fine differences in the mode of tumor eradication that

could be related to differences in the microenvironment of these

different tumor types.

Enhanced pSP-D-CD40L DNA delivery using
polyethylenimine (PEI) or C32 nanoparticles combined
with CpG and poly(I:C) led to very strong antitumor
effects and long-term tumor-free survival

As previously shown by Anderson et al., intratumoral injection

of ‘‘naked’’ DNA is a very inefficient way to express a plasmid

transgene in tumors. However, intratumoral injection of nano-

particles formed from plasmid DNA and cationic polymers such as

PEI is dramatically better at producing transgene expression. C32,

a novel poly(beta-amino esters) cationic polymer, is even more

effective than PEI for intratumoral injection [34]. Consequently,

these DNA delivery agents were studied in the B16F10 tumor

model.

In Vivo JetPEITM is a commercial preparation of polyethyle-

nimine that has been optimized for in vivo transfection [60]. In

Fig. 5, nanoparticles formed using JetPEITM and plasmid DNA

were compared with injections of plasmid DNA alone. As before,

intratumoral injections of pSP-D-CD40L alone slowed tumor

growth (Fig. 5A) and prolonged survival (Fig. 5B), and the

antitumor effect was markedly augmented by combination with

CpG and especially CpG + poly(I:C). Remarkably, however, pSP-

Figure 4. Tumor-dependent differences in the immunohistology of induced tumor regression. Panel A – Histology of control and
treated tumors. Tumors were injected every other day X 5 with PBS as a control or with the triple combination of pSP-D-CD40L + CpG + poly(I:C). As
shown in Figure 3, the triple combination slowed the growth of tumors, and occasionally led to tumor eradication. Two days after the last injection,
tumor tissue was processed for histology by staining with hematoxylin and eosin. Tumors treated with PBS showed areas of spontaneous necrosis
suggesting that the rapidly growing tumor cells often outgrow their blood supply. After treatment with the triple combination, large areas of necrotic
tissue appeared containing fragmented cells and nuclear remnants consistent with a cell death process that exceeded the availability of phagocytic
macrophages to clear the debris (see Panel D). Panel B – CD11c antibody staining for dendritic cells. B16F10 tumors injected with PBS as a
control contained identifiable CD11c+ dendritic cells. After treatment with the triple combination, even fewer dendritic cells were found in the
tumors. Panel C – CD8 antibody staining. For tumors injected with PBS as a control, relatively few CD8+ T cells were seen. However, following
injections with the triple combination, there was a marked increase in intratumoral CD8+ T cells in all tumor sections examined. Panel D – F4/80
antibody staining for macrophages. Tumors injected with PBS as a control contained relatively few F4/80+ macrophages and there was no
appreciable increase in F4/80+ macrophages following treatment with the triple combination.
doi:10.1371/journal.pone.0007334.g004

CD40L Nanoparticles and TLRs

PLoS ONE | www.plosone.org 8 October 2009 | Volume 4 | Issue 10 | e7334



D-CD40L delivered as a PEI nanoparticle had dramatically

improved antitumor activity. PEI pSP-D-CD40L nanoparticles

controlled tumor growth nearly as well as the triple combination of

pSP-D-CD40L naked DNA plus CpG and poly(I:C). Even more

striking, PEI pSP-D-CD40L nanoparticles combined with CpG +
poly(I:C) strongly reduced B16F10 tumor growth and lead to long-

term, tumor-free survival of ,40% of mice in repeated

experiments. These cured mice remained tumor-free for over a

year, did not have vitiligo or other signs of autoimmunity, and

resisted re-challenge with B16F10 melanoma.

While these results with PEI pSP-D-CD40L nanoparticles were

exciting, other experiments indicated that PEI nanoparticles made

with pcDNA3.1 control plasmid DNA also had low-level

antitumor activity. Furthermore, scarring was observed at the site

of PEI nanoparticle injection, confirming the cytotoxicity of PEI

previously reported by others [61]. Given these limitations, we also

tested C32, a novel poly(beta-amino esters) polymer that was

selected from a polymer library based on its superior in vitro

transfection activity. More importantly, as shown by Anderson et

al., gene expression form intratumoral injections of C32 plasmid

DNA nanoparticles was 4-fold stronger than with PEI nanopar-

ticles and 26-fold stronger than intratumoral injection with naked

DNA. Also, unlike PEI, C32 is nontoxic to cells in vitro [34].

As shown in Fig. 6, C32 nanoparticles also enhanced the

antitumor effects of pSP-D-CD40L when combined with CpG +
poly(I:C). In this case, C32 pSP-D-CD40L nanoparticles were not

significantly better than that of pSP-D-CD40L naked DNA either

in terms of tumor growth (Fig. 6A) or survival (Fig. 6B), a

reproducible finding in three experiments. However, combining

C32 pcDNA3.1 nanoparticles with CpG + poly(I:C) led to very

significant antitumor effects. Indeed, C32 pcDNA3.1 nanoparti-

cles combined with CpG + poly(I:C) was nearly as effective as pSP-

D-CD40L naked DNA combined with CpG + poly(I:C) both in

terms of tumor growth (Fig. 6A) and prolongation of survival

(Fig. 6B). However, consistently superior antitumor activity was

found using C32 pSP-D-CD40L nanoparticles combined with

Figure 5. PEI nanoparticle delivery of pSP-D-CD40L slowed tumor growth and prolonged survival. The data shown are representative of
three independent experiments. Panel A – Antitumor effects of PEI plasmid DNA nanoparticles prepared with pSP-D-CD40L alone or in
combination with CpG or CpG + poly(I:C). The role of DNA transfection efficiency was tested by preparing nanoparticles formed from PEI and
pSP-D-CD40L plasmid DNA. Intratumoral injections of PEI pSP-D-CD40L nanoparticles led to significantly slower tumor growth (p,0.05 on day 10)
when compared to the injection of naked pSP-D-CD40L plasmid alone. Panel B – Survival benefit of PEI pSP-D-CD40L nanoparticle
injections in combination with CpG + poly(I:C). As expected from the tumor growth data, pSP-D-CD40L formulated with PEI was able to
enhance mouse survival when combined with CpG and poly(I:C) TLR agonists. This combination therapy resulted in long-term-tumor free survival of
2/5 mice (p,0.01 compared to pcDNA3.1)).
doi:10.1371/journal.pone.0007334.g005
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CpG + poly(I:C), indicating that C32 enhanced the effects of pSP-

D-CD40L when combined with CpG + poly(I:C). From these

data, we conclude that the C32 nanoparticle system may have an

important role in advanced tumor immunotherapies based on

pSP-D-CD40L in combination with TLR agonists.

Discussion

These studies were undertaken to test the hypothesis that

immune activators could induce significant antitumor effects in

immunocompetent mice without using added tumor antigens.

Two categories of agents were selected for study: CD40L and

TLR agonists. Numerous studies have shown that strong CD40

stimulation can lead to the eradication of established tumors

[8,9,10,12,20,62]. Particularly noteworthy was the demonstration

by van Mierlo et al. that agonistic anti-CD40 antibody leads to the

rejection of tumors formed by malignant cells that themselves lack

the CD40 receptor, indicating that a primary effect of this

treatment is on the host immune response and not necessarily on

the tumor cells themselves [12]. Expanding upon this concept,

Hanks et al. constructed transgenic mice with DCs expressing a

CD11c promoter-driven CD40 intracytoplasmic construct that

could be multimerized by the addition of a cell-permeable

chemical crosslinker. In the TRAMP-C model of spontaneous

prostate tumor formation, the simple addition of the chemical

crosslinker that only activated CD40 downstream pathways in

dendritic cells was sufficient to lead to tumor eradication [62]. One

potential mechanism of CD40 antitumor activity is through Th17

cells. CD40 stimulation has been shown to generate IL-23 and IL-

6 which promote the activity of Th17 cells and can lead to anti-

B16-F10 activity [63,64]. Also, when CD8+ T cells are elicited by

CD40-stimulated DCs, these cells do not express the negatively

acting PD-1 surface protein, in contrast to other methods of DC

activation [65]. These studies underscore the potential significance

of CD40 stimulation as the foundation of an antitumor

immunotherapy, and also prove the requirement for CD40

multimerization to provide optimal DC activation.

A number of studies have shown that many effects of CD40

stimulation are significantly magnified by an additional TLR

stimulus. For example, CD40 stimulation alone induced DCs to

produce only modest levels of IL-12p70, whereas the addition of

Figure 6. C32 nanoparticle delivery of pSP-D-CD40L slowed tumor growth and prolonged survival. The data shown are representative
of three independent experiments. Panel A – Antitumor effects of C32 nanoparticles prepared with pSP-D-CD40L plasmid vs. control
pcDNA3.1 plasmid either alone or in combination with CpG or CpG + poly(I:C). The role of DNA transfection efficiency was tested by
preparing nanoparticles formed from C32 and pSP-D-CD40L or C32 and control pcDNA3.1 plasmid DNA. Intratumoral injections of C32 pSP-D-CD40L
nanoparticles plus CpG + poly(I:C) led to significantly slower tumor growth when compared to the injection of naked pSP-D-CD40L plasmid + CpG +
poly(I:C) (p,0.01 on day 24). Panel B – Survival benefits of C32 pSP-D-CD40L nanoparticle injections in combination with CpG +
poly(I:C). As expected from the tumor growth data, injections of nanoparticles formulated with C32 and pSP-D-CD40L enhanced survival when
combined with CpG + poly(I:C) TLR agonists. Although this survival benefit was not significantly better than a similar combination using pcDNA3.1
nanoparticles instead of pSP-D-CD40L nanoparticles (p.0.05), it was significantly better than pSP-D-CD40L naked DNA plus CpG + poly(I:C) (p,0.01).
doi:10.1371/journal.pone.0007334.g006

CD40L Nanoparticles and TLRs

PLoS ONE | www.plosone.org 10 October 2009 | Volume 4 | Issue 10 | e7334



TLR agonists to CD40 stimulation resulted in very high levels of

IL-12p70 production [26,53,66]. Consistent with this CD40/TLR

synergy in vitro, Ahonen et al. showed that CD40 stimulation

combined with various TLR agonists could be used to generate

exceptionally strong CD8 responses in vaccinated mice [13]. Their

more recent studies showed that tumor antigen plus agonistic anti-

CD40 antibody combined with a TLR7 agonist reduced B16F10

lung metastases in mice, though the treatment began only four

days after the intravenous injection of tumor cells, rather than

being tested on established tumors [67]. To understand the

mechanism of combined therapy, Zhu et al. established a role for

MyD88-dependent and independent pathways in the interplay

between different TLR agonists [68], a hypothesis that could also

be applied to MyD88-independent, CD40-mediated stimulation.

Taken together, these studies provided the rationale for combining

CD40L with TLR agonists in the present study.

A principal result was that pSP-D-CD40L has antitumor

activity when injected directly into the tumor bed. This route of

injection was modeled after numerous studies showing that

peritumoral injections of radioactive tracers quickly localize to

the tumor draining lymph nodes (TDLNs), a technique that is in

wide use for ‘‘sentinel node biopsies’’ in breast cancer surgery.

There is a great deal of evidence that TDLNs contain dendritic

cells already charged with tumor antigens [14,69,70,71,72]. In this

case, the protein expressed from pSP-D-CD40L injected into the

tumor bed would either be carried by lymphatics to the TDLNs,

or the plasmid DNA itself could travel to the TDLNs for uptake

and expression by DCs there. In either case, this is a very

inefficient way to introduce CD40L into a host. Studies by

Anderson et al. using a luciferase plasmid have shown that direct

intratumoral injections of naked DNA led to very little gene

expression but that this could be greatly augmented by

nanoparticle-mediated DNA delivery [34]. Consequently, the

demonstration here that pSP-D-CD40L as naked DNA slowed the

growth of B16F10 melanoma likely underestimates the true

potential of this molecule. As shown by the studies with PEI

(Fig. 5) and C32 (Fig. 6) nanoparticles, improved methods of DNA

delivery are essential to define the full potential of pSP-D-CD40L

for tumor immunotherapy.

Given this caveat, it is remarkable that CD40L/TLR agonist

synergies were detected. For B16F10 melanoma, the antitumor

effect of combined CpG + poly(I:C) was enhanced by the addition

of pSP-D-CD40L naked DNA (Fig. 3A). Another result of this

study was the effectiveness of TLR agonists as antitumor agents, as

previously described in other reports. In an initial screen for

synergy with pSP-D-CD40L, several agents showed no demon-

strable effects (Pam3CSK4, Malp2, FSL1, MPL, imiquimod).

These are hydrophobic compounds whose formulation may not

have been optimal for this mode of delivery. Nevertheless, this

schedule of repeated administration of TLR agonists is in line with

the results of Yang et al. who found that TLR agonists could

induce antitumor effects but only if they were repeatedly

administered [5]. However, the limitation to 5 treatments over

an 8 day period described in the present study was somewhat

arbitrary, and the effects of a longer treatment protocol remain to

be examined.

CpG emerged as an impressive antitumor TLR agonist in these

studies, as previously described. Vicari et al. combined intratu-

moral CpG injections with systemic anti-IL10R antibody leading

to the eradication of established B16F10 melanoma [4], an effect

that depended upon endogenous CD40L [73]. Also, the combined

administration of CpG and poly(I:C) synergistically elicited strong

IL-12 production and antitumor activity against lung metastases

[74]. However, there is a species difference for the expression of

TLR9, the receptor for CpG, which is present on both myeloid

and plasmacytoid DCs in the mouse but is restricted to

plasmacytoid DCs in humans [75]. As a result of this difference,

it has been argued that conclusions drawn from murine studies of

CpG might be difficult to translate to human clinical trials. It is

reassuring, therefore, that at least two pathways in humans have

been shown to lead from CpG-initiated immunostimulation of

TLR9+ plasmacytoid DCs to the activation of TLR9- myeloid

DCs. Gerosa et al. found that CpG-activated human plasmacytoid

DCs activated NK cells which in turn matured myeloid DCs for

antigen presentation and for IL-12p70 production through a

pathway that was at least partially dependent on NK cell-myeloid

DC cell-cell contact [76]. Similarly, Gautier et al. found that type I

interferon production from CpG-stimulated human plasmacytoid

DCs could enhance IL-12p70 production by myeloid DCs [77].

The activity of poly(I:C) as an antitumor agent replicates many

previous studies performed over the past 40 years [78]. While

poly(I:C) is usually considered to be a dsRNA stimulator of TLR3

that leads to Type I interferon production, it is also an activator of

MDA5, a helicase containing a CARD motif that can lead to IL-

1beta processing and secretion [79]. The exact pathway by which

poly(I:C) is acting in the present system remains to be established.

The histological studies that were performed are consistent with

current concepts on how an intratumoral treatment might lead to

tumor rejection. The apparent decrease in intratumoral CD11c+
DCs following treatment (Fig. 4B) is consistent with DC activation,

a shift to CCR7 expression, and chemotaxis through lymphatics to

the TDLNs [58]. Giuducci et al demonstrated such DC

movements using FITC-labeled beads as a tracer within 6 hours

of initiating immunotherapy with intratumoral AdCCL16 and

systemic CpG and anti-IL-10R antibody in TSA breast tumors in

mice [73]. The appearance of CD8+ T cells in the tumors is

consistent with the recognized antitumor effects of these cytotoxic

cells (Fig. 4C).

Finally, nanoparticles formed from plasmid DNA and cationic

polymers such as PEI or C32 can play a crucial role in augmenting

the effectiveness of certain immunostimulatory combinations.

While both polymers augment plasmid-directed gene expression

after intratumoral injection, C32 was shown to be significantly

stronger than PEI, and also C32 lacks the cytotoxicity caused by

PEI [34]. Using either PEI or C32, pSP-D-CD40L-containing

nanoparticles were superior to control pcDNA3.1-containing

nanoparticles when used in combination with CpG + poly(I:C)

(Figs. 5 and 6).

However, there are fine differences between PEI and C32. PEI

enhances the antitumor activity of pSP-D-CD40L by itself

(compare pSP-D-CD40L naked DNA with PEI pSP-D-CD40L

nanoparticles in Fig. 5). In contrast, C32 does not increase the

antitumor activity of pSP-D-CD40L by itself (compare pSP-D-

CD40L naked DNA with C32 pSP-D-CD40L nanoparticles in

Fig. 6). There are two possible explanations for this difference.

First, neither polymer is immunologically neutral. PEI was recently

reported to be a strong TLR5 agonist that activates cells through a

MyD88-dependent pathway [80], much like flagellin which is the

prototypic TLR5 agonist. Likewise, C32 was shown to be an

adjuvant for CD8+ T cell responses following intramuscular DNA

vaccination using complexes of C32 and a plasmid for HIV gp120.

In that case, C32 was used at a 2:1 ratio of polymer to DNA rather

than the 20:1 ratio used in the present study [81]. Second, both

cationic polymers are designed to help the plasmid DNA escape

degradation in the lysosome and thereby favor the release of DNA

into the cytoplasm. Such lysosomal damage could lead to

activation of the NALP3 inflammasome pathway and result in

the production of immunostimulants including IL-1b and IL-6 by
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dendritic cells [82]. In this regard, it is possible that PEI and C32

nanoparticles differ in their ability to activate the inflammasome

pathway following intratumoral injection. As a further complexity,

CD40L has been shown to downregulate NALP3-mediated

inflammasome activation in macrophages, thereby suppressing

the inflammasome-triggered release of inflammatory cytokines

[83]. Perhaps this CD40-mediated inflammasome suppression is

offset by the strong stimulation provided by CpG + poly(I:C) in a

way that maintains the release of IL-1b and IL-6. Such complex

interactions could underlie the need for combinations of

immunostimulants to produce the strong antitumor effects

observed in these experiments.

Antitumor immune responses are frequently associated with

autoimmunity. In the case of B16F10 melanoma, autoimmunity

takes the form of loss of pigment (vitiligo) caused by immune

damage to normal melanocytes [31]. Although the combination

therapy described here had significant antitumor effects on

B16F10 melanoma, vitiligo was not seen. This is only the fifth

report of a method to induce significant anti-melanoma immune

responses without eliciting autoimmune vitiligo [84,85,86,87]. The

only toxic effect noted was a transient 2–3 fold increase in spleen

size in the CpG treated mice consistent with previous reports that

CpG induces extramedullary hematopoiesis in this organ [88].

In conclusion, the B16F10 melanoma model is an extremely

difficult tumor to treat using immunotherapy approaches [89],

which makes it an excellent system to identify immunotherapy

formulations strong enough to translate into a clinical benefit for

humans. Using this system, intratumoral injections of plasmid

DNA encoding multimeric soluble CD40L (pSP-D-CD40L)

demonstrated antitumor activity under certain circumstances

and were especially effective when combined with TLR3 and

TLR9 agonists. Many other TNF superfamily molecules have

been found to have antitumor potential [90] and these could also

be tested against B16F10 tumors using an adaptation of these

methods (as an example, note the antitumor effects shown for pSP-

D-GITRL in Fig. 1). The combination immunotherapy protocol

described herein was non-toxic and did not elicit autoimmune

effects such as vitiligo. A transient increase in spleen size related to

CpG was the only negative effect detected. These results show the

potential of immunostimulatory combinations for antitumor

therapy and encourage further experiments to delineate the

optimal use and role of each component in pSP-D-CD40L

nanoparticle plus CpG and poly(I:C) approach.
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