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Abstract: Wet explosion pretreatment of hybrid poplar sawdust (PSD) for the production of
fermentable sugar was carried out in the pilot-scale. The effects of pretreatment conditions, such as
temperature (170–190 ◦C), oxygen dosage (0.5–7.5% of dry matter (DM), w/w), residence time
(10–30 min), on cellulose and hemicellulose digestibility after enzymatic hydrolysis were
ascertained with a central composite design of the experiment. Further, enzymatic hydrolysis
was optimized in terms of temperature, pH, and a mixture of CTec2 and HTec2 enzymes
(Novozymes). Predictive modeling showed that cellulose and hemicellulose digestibility of 75.1%
and 83.1%, respectively, could be achieved with a pretreatment at 177 ◦C with 7.5% O2 and a retention
time of 30 min. An increased cellulose digestibility of 87.1% ± 0.1 could be achieved by pretreating
at 190 ◦C; however, the hemicellulose yield would be significantly reduced. It was evident that
more severe conditions were required for maximal cellulose digestibility than that of hemicellulose
digestibility and that an optimal sugar yield demanded a set of conditions, which overall resulted in
the maximum sugar yield.

Keywords: biorefineries; enzymatic hydrolysis; fermentable sugars; hybrid poplar; wet
explosion pretreatment

1. Introduction

The increasing focus on greenhouse gas emissions from fossil energy production, along with the
decreasing resource of fossil fuels, has increased the global interest in finding alternative resources for
the production of fuel, chemicals, and materials. Lignocellulosic materials are a promising feedstock for
the production of industrial chemicals, materials, as well as biofuels. In the United States, more than
one billion tons of lignocellulosic biomass can be produced annually, which can be used for the
production of biofuels to replace the domestic use of fossil fuels and for substituting the use of fossil
fuel for producing chemicals [1]. Currently, about 370 million tons of forest residue is produced for
the production of paper, energy, and other products [2]. Among the lignocellulosic biomass materials,
hybrid poplar (Populus spp.) is considered a promising feedstock for the production of cellulosic
biofuels due to its large genetic diversity, availability for harvest over the whole year, fast growth rate,
as well as higher bulk density as compared to the herbaceous feedstock, which eases the transport
and storage [3].

Molecules 2020, 25, 3396; doi:10.3390/molecules25153396 www.mdpi.com/journal/molecules

http://www.mdpi.com/journal/molecules
http://www.mdpi.com
http://www.mdpi.com/1420-3049/25/15/3396?type=check_update&version=1
http://dx.doi.org/10.3390/molecules25153396
http://www.mdpi.com/journal/molecules


Molecules 2020, 25, 3396 2 of 14

Hybrid poplar (Populus spp.) is being cultivated largely in the Pacific Northwest region of
the United States and has emerged into commercial production, occupying about 50,000 acres [4].
The aboveground biomass yield of a 4 years old hybrid poplar is 11 MgHa−1year−1 [5]. Due to its large
availability, fine tissue, and lower cost, this wood is widely being used for the timber and furniture
industry [6]. During the processing of this hardwood into products, a large amount of sawdust is
produced [7]. This residue could potentially be a cheap and abundant feedstock for the production
of biofuels. However, very few studies have been done on the use of hybrid poplar sawdust as a
feedstock for biofuel production along with the potential for producing cellulosic sugars from this raw
material. This material contains a mixture of bark and left-over woody materials after removal of the
inner woody core for producing the specific bio-products.

Poplar sawdust (PSD) could potentially be an ideal substrate for the conversion of its
carbohydrates into intermediate fermentable sugars and then for the subsequent production of
fuels and chemicals, using microbial processes. This is partly due to its reduced particle size and high
content of carbohydrates, such as cellulose and hemicellulose (~70%), along with low ash content.
Moreover, this feedstock is widely available at a cheaper cost and will not, in any way, compete with
human or animal consumption [8,9]. However, as compared to the industrial technologies developed
for the conversion of sucrose and starch-rich materials to biofuels, a pretreatment step is necessary
for this type of feedstock to achieve efficient hydrolysis of the carbohydrates into fermentable sugars.
During the pretreatment, the rigid structure found in the cell wall is disrupted, and the major polymers,
such as cellulose, hemicellulose, and lignin, can be accessed by cellulolytic enzymes [10–14]. The content
of lignin and the degree of crystallinity of cellulose are major factors, which determine the efficiency of
the enzymatic hydrolysis of lignocellulosic material [15,16]. Therefore, different types of pretreatments,
such as alkali pretreatment [16], hydrothermal treatment [17], steam explosion pretreatment [18],
dilute acid pretreatment [19], irradiation pretreatment [20], wet explosion [21], organic solvent
pretreatment [22], hot compressed water pretreatment [23], and ionic liquids (ILs) pretreatment [24],
have been used for improving enzymatic hydrolysis. However, different pretreatments have different
advantages and disadvantages, such as risks of environmental pollution, high cost of chemicals added,
lower efficiency, and strict operating parameters, which not only makes the pretreatment process costly
but is further reducing the feasibility of the pretreatment process to be commercialized [18].

Recently, the wet explosion pretreatment method [25,26] has been advanced to pilot scale [27],
where it was shown to outperform existing thermochemical pretreatment methods for processing
softwood forest residues [27] and other agricultural residues [21,28]. In the wet explosion (WEx)
method, biomass is exposed to an oxidizing agent (e.g., pure oxygen, air, or H2O2) under high
temperature and pressure for a total of 20 to 30 min. Besides its effectiveness in increasing carbohydrate
hydrolysis, this method offers additional advantages, such as minimal water use, no requirement
for chemical recovery/detoxification, the minimum formation of degradation products, and higher
lignin solubility [10,21,28–30]. Currently, hemicellulose is being fractionated by using dilute acids,
bases, or enzymatic hydrolysis. But the cost of enzymatic hydrolysis limits the production of sugars
from hemicellulose at the industrial scale. Besides, this additional separation step is required for the
removal of the acid catalysts before the utilization of sugar monomers. However, the wet explosion
pretreatment can be used for selective hydrolysis of the hemicellulose fraction of biomass. High solids
concentration is beneficial for lowering the cost of pretreatment and for increasing the sugar yield after
enzymatic hydrolysis. The wet explosion pretreatment process can be operated at high solids level,
and enzyme hydrolysis can further be done with higher solids level of pretreated material compared
to several other pretreatment methods due to the low concentrations of inhibitors developed during
this pretreatment [31]. Overall, the efficacy of pretreatment is largely influenced by biomass species.

The wet explosion pretreatment has been studied widely for agricultural residues and softwoods,
where it has shown promising results, but, previously, it has not been studied for hardwood.
Therefore, this study is the first one where hardwood is used. The process optimization is done
for maximizing the formations of cellulosic sugars from this material. The optimization will further
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focus on reducing the formation of various aldehydes formed by the degradation of monomeric sugars
during the pretreatment process. The formation of these inhibitory products not only reduces the yield
of sugars during pretreatment, but it also hinders the bacterial and yeast fermentation process in
concentration as low as 0.25% w/w [32].

In the present study, the process parameters of WEx pretreatment was tested in a pilot-scale
setup during the pretreatment of poplar sawdust. The central composite design methodology
was used to design a series of experiments to evaluate the effects of the process parameters
on enzymatic saccharification of pretreated poplar sawdust (PPSD). The pretreatment conditions,
including temperature, the dosage of oxygen, and residence time, were statistically analyzed to identify
the optimal combination of parameters by evaluating responses using response surface methodology.
Further, the conditions, such as temperature and pH, for successful enzymatic saccharification of the
pretreated material with commercial enzymes were optimized. The surface hydrophobic properties of
the lignocellulosic biomass slurry differ from pure cellulose, which is typically used commercially for
activity testing.

2. Results and Discussion

2.1. Composition of Poplar Sawdust

The chemical composition of poplar sawdust (PSD) is shown in Table 1. The total carbohydrate
content of PSD accounts for 60.9%, consists of glucan, xylan, galactan, arabinan, and mannan of 41.8%,
14.9%, 0.9%, 0.6%, and 2.7% of the total weight (oven-dry basis), respectively. Further, PSD consists
of a 3.6% acetyl group and 31.9% total lignin (acid-soluble and insoluble) on an oven-dry basis.
Extractives in PSD measured in sequential extraction with both water and ethanol in which the
extractives were found to be 2.1% and 3.9%, respectively. While glucan and xylan contents in the poplar
sawdust were found to be lower than that of milled biomass of whole hybrid poplar, as previously
reported [33], the lignin content of the poplar sawdust residues was found to be higher. This could be
due to the content of bark residues with higher lignin content in the poplar sawdust sample used in
this study.

Table 1. Chemical composition of poplar sawdust (PSD) raw biomass.

G/100g Dry Matter *

Glucan 41.8
Xylan 14.9

Galactan 0.9
Arabinan 0.6
Mannan 2.7
Acetyl 3.6

Total lignin 31.9
Acid soluble lignin 4.2

Acid insoluble lignin 27.7
Total extractives 5.9
Water extractives 2.1

Ethanol extractives 3.9

* Dry matter of PSD (as received)=95.8% of the total solids; volatile solids=99.1%; ash=0.9% (structural inorganics = 0.6%,
soil = 0.3%).

2.2. Effect of Wet Explosion Pretreatment on Poplar Sawdust

The optimization of wet explosion (WEx) pretreatment of poplar sawdust for subsequent enzymatic
hydrolysis was based on the experimental design of 17 pretreatment runs (Table 2) performed in
pilot-scale, with an initial dry-solid concentration of 30%. The process parameters, such as temperature
(T, 170–190 ◦C), oxygen dosage ([O2], 0.5–7.5% of dry matter (DM)), and residence time (t, 10–30 min),
were treated as factors to design the experiments. To assess process variability, three runs (8, 9,
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and 10) were executed at the central point of process parameters, i.e., T = 180 ◦C, [O2] = 4% of DM,
and t = 20 min. The mean value and standard deviation of the DM content of the PSD for the central
runs were 28.3%± 1.3. DM content after the pretreatments appeared to be lower in all the pretreatments,
except for the runs 3, 4, 7, and 13, where DM contents were slightly above 30%.

2.2.1. Composition of the Liquid Fraction

The composition of the liquid fraction of PSD after wet explosion pretreatment was one of the
parameters examined in this study to evaluate the effects of process parameters. After the pretreatments
at a high solid concentration (30% DM), the PSD hydrolyzates resulted in a liquid containing a mixture
of compounds, including monomers (glucose, xylose, galactose, arabinose, and mannose), oligomers,
organic acids (e.g., acetic acid), and furans, such as hydroxymethylfurfural (HMF) and furfural.
The dilute acid hydrolysis of the liquid fractions was performed to hydrolyze the oligomers into
monomers and to quantify the total sugars as monomers using HPLC analysis. The concentrations
of total monomeric sugars after dilute acid hydrolysis of the liquid fraction obtained from the WEx
pretreatment of PSD under various conditions are shown in Table 2. Further, the degradation products
as generated after pretreatment and found in the liquid phase are also reported in Table 2.

Maximum solubilization of total carbohydrate occurred in the pretreatments carried out at median
temperatures (T = 180 ◦C). The effects of other parameters on the solubilization of carbohydrates
were determined by quantifying the total sugar concentration in the liquid fraction right after the
pretreatment, as shown in Figure 1, at a temperature of 180 ◦C. As displayed in the response surface
plot (Figure 1), the highest concentration of total sugars in the liquid fraction could be achieved with an
oxygen loading of above 4%. According to the modeled data, a residence time greater than 22 min had
an adverse effect on the total sugar concentration of the liquid fraction, and a reduction of the overall
sugar concentration was observed. This could primarily be due to the degradation of sugars into other
products during longer residence times. Interestingly, the hemicellulosic sugars are found mostly in
the oligomeric form in the liquid fraction; for example, the concentration of xylooligosaccharides was
2–3 times higher than for the xylose monomer. The release of hemicellulosic sugars in the form of
oligomers contributes to the reduction of sugar degradation products, such as organic acids, HMF, and
furfural [34,35]. Both cyclic and acyclic mechanisms involved in the degradation of glucose and xylose
into HMF and furfural, respectively, are enhanced by the availability of free mono-sugar. Consequently,
the formation of most degradation products, such as acetic acid, HMF, and furfural, in traditional dilute
acid pretreatment is multiplied by several folds when compared with hydrothermal pretreatment [36].
The composition of the aforementioned degradation products found in the liquid fraction of PSD
is shown in Table 2. As observed, acetyl groups from the side chain of hemicellulose were the first
to be hydrolyzed at elevated temperatures, followed by arabinan and xylan. Further, an increase in
acetic acid concentration in the reaction under such conditions causes further autohydrolysis of the
lignocellulosic materials and improve the overall effect of temperature and residence time on biomass
structural degradation [37].

In WEx, the provision of an exothermal process at temperatures above 170 ◦C due to the addition
of oxygen not only reduced the heating requirements [26,37] but was also found to be effective in
minimizing the formation of degradation products through better process efficiency at lower process
severity. As expected, the highest concentrations of acetic acid, HMF, and furfural of 8.3, 0.9, and
2.2 g/100 g (oven-dry basis), respectively, were found in the pretreatment carried out at the harshest
conditions applied in this study (T = 190 ◦C, t = 30 min, and [O2] = 7.5% of DM). Although these
degradation products are known to be inhibitory at higher concentrations for subsequent biological
conversion processes [36,38], at lower concentrations, these products can be metabolized and used as
a carbon source for microorganisms [39]. Interestingly, the concentration of potential inhibitors was
found even under the harshest conditions applied in our study to be within the acceptable range [32]
for upstream biological processes as well as downstream processing.



Molecules 2020, 25, 3396 5 of 14

Table 2. Conditions used for wet explosion (WEx) pretreatment at 30% initial dry matter. Soluble sugars and degradation products were measured in the liquid phase
after dilute acid hydrolysis.

Run Temp., ◦C Time,
min.

O2, %
DM

% DM of
after WEx

Glucose
(g/L)

Xylose
(g/L)

Galactose
(g/L)

Arabinose
(g/L)

Mannose
(g/L)

Acetate
(g/100 g DM)

HMF (g/100 g
DM)

Furfural
(g/100 g DM)

1 170 10 0.5 28.9 1.9 9.8 1.9 1.5 1.5 0.9 0 0
2 170 10 7.5 29.1 2.8 21.0 3.2 2.5 2.7 1.2 0 0
3 170 20 4.0 30.1 3.0 29.5 3.9 2.3 3.7 1.7 0 0.1
4 170 30 0.5 31.5 2.6 23.7 2.8 1.4 3.5 1.5 0 0.2
5 170 30 7.5 25.7 4.4 34.3 4.1 1.8 5.7 3.0 0 0.4
6 180 10 4.0 29.2 2.8 26.4 3.5 1.4 3.5 1.5 0 0.1
7 180 20 0.5 30.2 2.8 28.9 2.9 1.3 3.6 2.0 0 0.4

8 (central) 180 20 4.0 27.0 3.9 33.7 3.8 1.8 5.7 3.1 0.1 0.5
9 (central) 180 20 4.0 29.5 3.6 31.2 3.5 1.7 5.2 3.0 0.1 0.6
10 (central) 180 20 4.0 28.3 4.0 31.9 3.7 1.8 5.6 3.1 0.1 0.6

11 180 20 7.5 28.4 7.0 32.7 3.8 1.8 6.7 4.8 0.2 1.0
12 180 30 4.0 28.6 6.7 33.1 4.0 1.8 7.4 6.3 0.3 1.2
13 190 10 0.5 30.7 3.5 33.0 3.6 1.3 4.9 2.6 0.1 0.5
14 190 10 7.5 28.2 5.0 32.6 3.7 1.7 6.3 3.7 0.1 0.6
15 190 20 4.0 26.9 6.0 25.0 3.2 1.5 6.8 5.3 0.3 1.5
16 190 30 0.5 26.6 4.0 19.4 2.6 1.4 5.6 5.3 0.3 1.8
17 190 30 7.5 27.5 13.0 9.0 1.9 1.2 5.0 8.3 0.9 2.2
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Figure 1. The concentration of total monomeric sugars after the dilute acid hydrolysis of the liquid
fraction obtained after wet explosion pretreatment of poplar sawdust at median temperature (180 ◦C)
at different O2 concentration and residence time.

2.2.2. Enzymatic Hydrolysis of Pretreated Poplar Sawdust

The pretreated poplar sawdust samples were digested with a mixture of enzymes (Cellic® CTec2
and Cellic® HTec2 kindly provided by Novozymes, Franklinton, NC, USA) at initial enzyme dosages of
16.7 mg enzyme proteins (EP)/g DM, of which 11.7 mg EP from CTec2 (mainly cellulolytic activity) and
5.0 mg EP from HTec2 (mainly hemicellulolytic activity), were applied for all the pretreated samples
and monitored for cellulose digestibility. These commercial enzymes are capable of hydrolyzing the
carbohydrate polymers into monomeric solutions, while the non-digestible compounds, such as lignin,
remain as an insoluble residue. The efficiency of the pretreatment for lignocellulosic biomass can be
evaluated based on the sugar yields after enzymatic hydrolysis [21,33]. The cellulose digestibility after
the enzymatic hydrolysis of pretreated PSD at different residence times (10–30 min) was calculated
from the percentage of glucan obtained after the hydrolysis of original glucan input [21]. In the
initial screening of pretreated samples, the highest glucan yield of 87.1% ± 0.1 was obtained under
pretreatment performed at 190 ◦C with 30 min residence time and 7.5% O2 of DM (run#17). Figure 2
depicts the response surface model of cellulose digestibility after the enzymatic hydrolysis of pretreated
PSD. All the parameters tested in this study had an influence on the glucan yield, while the temperature
was the key factor. It is apparent that the impact of temperature on cellulose digestibility increases with
the increase in the concentration of O2 regardless of the residence time. With the same temperature
of 190 ◦C, cellulose digestibility increased from 56.5% ± 0 in run 13 to 87.1% ± 0.1 in run 17, with an
increase in O2 concentration from 0.5% to 7.5% at 30 min residence time. However, the hemicellulose
digestibility/yield was found to be significantly lower in run 17 (32.7% ± 0). This could be due to the fact
that increasing the pretreatment severity would result in increased degradation of hemicellulosic sugar.
On the other hand, the maximum hemicellulose digestibility of 90.8% ± 0 was achieved in run 5 with a
temperature of 170 ◦C, 7.5% O2 concentration, and 30 min residence time. The results for each response
of cellulose digestibility and hemicellulose digestibility with the predicted p-values (p < 0.0001) and the
coefficient of determination (R2) are depicted with the fitted correlation of actual and predicted values
in Figure 3. The prediction model for both cellulose digestibility and hemicellulose digestibility after
enzymatic hydrolysis showed a satisfying correlation coefficient (R2 = 0.97). The maximum desirability
(0.76) in the predictive model showed a cellulose digestibility of 75.1% and hemicellulose digestibility
of 83.1%, which were achieved at a temperature of 177 ◦C with 7.5% O2 concentration and 30 min
residence time. Although this cellulose digestibility (75.1%) was lower than the values obtained in
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optimal conditions for cellulose hydrolysis, nonetheless, the cellulose digestibility (75.1%) found in
this study was still higher than the values obtained by Kim et al. [40] on hybrid poplar using liquid hot
water pretreatment at 200 ◦C for 10 min at 15% solids. In their studies [40], total monomeric sugar
yield (glucose and xylose) reached 67% after 72 h of hydrolysis when 40 Filter Paper Units (FPU)
cellulase per gram glucan was used, which is significantly higher enzyme loadings compared to our
study. With 15 FPU cellulase per gram glucan, the glucose yield was only 54% after 120 h of enzymatic
hydrolysis [40]. The results of cellulose and hemicellulose digestibility are comparable with other
lignocellulosic feedstocks pretreated by wet explosion pretreatment, as shown in Table 3.
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Table 3. Comparison of biomass digestibility with other feedstock pretreated by wet explosion pretreatment.

Feedstock Pretreatment Conditions Digestibility Reference

Sugarcane bagasse 185 ◦C, 10 min, 16% of DM 87% cellulose [21]
Loblolly pine 170 ◦C, 22 min, 25% of DM 96% cellulose and nearly, 100% hemicellulose [31]
Wheat straw 180–185 ◦C, 15 min, 14% of DM 70% cellulose, 68% hemicellulose [41]
Wheat straw 180–185 ◦C, 15 min, 14% of DM 69% cellulose, 55% hemicellulose [41]
Miscanthus 170 ◦C, 5 min, 15% of DM 56% glucose, 32% xylose [42]

Winter rye straw 195 ◦C, 15 min, 6% of DM 49% cellulose, 11% hemicellulose [43]
Oilseed rape straw 195 ◦C, 15 min, 6% of DM 58% cellulose, 10% hemicellulose [43]

Faba bean straw 195 ◦C, 15 min, 6% of DM 43% cellulose, 10% hemicellulose [43]
hybrid poplar sawdust 177 ◦C, 30 min, 7.5% O2, 30% of DM 75.1% Cellulose, 83.1% hemicellulose This study
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2.2.3. Enzymatic Hydrolysis Optimization

The enzymatic hydrolysis conditions, such as temperature, pH, and CTec2/HTec2 ratio,
were screened to determine the effects of the parameters on glucose yields. Typically, pure cellulose is
used as a substrate to evaluate the optimal conditions for enzymatic saccharification. However, the surface
hydrophobic properties of pure cellulose differ significantly from lignocellulosic biomass, especially after
lignocellulosic biomass undergoes thermochemical pretreatment under elevated temperatures. It was
also previously shown that pH has an effect on the amounts of cellulases, which are bound productively
to cellulose, making up a fraction that does not participate in cellulose hydrolysis due to nonproductive
attachment with lignin [44]. PPSD sample obtained in run 17 was digested with a mixture of enzymes,
(Cellic® CTec2 and Cellic® HTec2) with 3 different ratios (4:0, 3:1, and 2:2) at a total of 8.4 mg EP/g
DM, was tested in a temperature range between 40 ◦C and 55 ◦C and a pH range between 4.5 and 5.5,
and incubated for 72 h. The low enzyme dosage was chosen to closely observe the effect of the variable
conditions applied. As shown in Figure 4, the maximum cellulose digestibility could be achieved using
the mixture of enzymes of CTec2 and HTec2 with a ratio of 3:1 under the conditions of pH 5.5 and
hydrolysis temperature of 47.4 ◦C. According to the statistical analysis, the desirability of 0.973 could
be achieved using the set of conditions for enzymatic hydrolysis. Overall, using this optimal set of
conditions for enzymatic hydrolysis, the cellulose digestibility of pretreated poplar sawdust could be
further enhanced by 8.4% on top of the achieved sugar yields while using the recommended conditions
from the enzyme provider.
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3. Materials and Methods

3.1. Raw Materials

Hybrid poplar (Populus spp.) sawdust (PSD) used in the study was obtained from Upper Columbia
Mill (UCM) in Boardman, OR, USA, processing lumber products. The original poplar sawdust dry
matter (DM) was determined to be 95.8% (volatile solids = 99.1% of total solids (TS); ash = 0.9%).
The poplar sawdust was powdery with a particle size of 2–4 mm and was used as obtained without
further size reduction. The chemical composition is shown in Table 1.

3.2. Compositional Analysis

The moisture, carbohydrates, acid-insoluble lignin (Klason lignin), acid-soluble lignin, and ash
contents of original raw materials were determined by analytical procedures developed by the National
Renewable Energy Laboratory (NREL) [45,46]. The first stage hydrolysis of 0.3 g samples of biomass was
performed with 3.0 mL of 72% (w/w) H2SO4 for 1 h at 30 ◦C in a water bath. The 84 mL of deionized water
(DI) was added to dilute the hydrolyzates to 4% H2SO4 (w/w) concentration and autoclaved at 121 ◦C
for 1 h. Sugar monomers were analyzed on an Aminex HPX-87H column (Bio-Rad, Hercules, CA, USA)
at 60 ◦C with 4 mmol H2SO4 as eluent with a flow rate of 0.6 mL/min. Composition analysis was carried
out in triplicates, and sugar contents were quantified by comparison with sugar calibration standards.
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3.3. Wet Explosion Pretreatment

The wet explosion pretreatment (WEx) of poplar sawdust was performed in a pilot-scale set-up
that includes a 100 L stainless steel pressure reactor equipped with an anchor-shaped scraper type
mixer. The target temperature was reached by direct steam injection, replacing residual air in the
headspace. The mixing speed of 50 rpm was maintained during the heating period (approx. 10 min).
The final temperature was maintained with an external oil heater until the reaction was terminated.
Oxygen was purged into the reactor, and an elevated mixing speed of 75 rpm was applied. After the
predetermined residence time, the reaction was terminated by opening the discharge valve into a
250 L flash tank, initiating a sudden decompression of the materials in the reactor. In each run, the
100 L pretreatment reactor was impregnated with 4 kg (oven-dry basis) of poplar sawdust, and tap
water was added to reach a solid concentration of 30%. The pretreatment conditions applied for the
series of runs are shown in Table 2. A sample was collected to carry out liquid analysis for sugars,
organic acids, and furans. Enzymatic hydrolysis experiments were conducted on pretreated slurry
without any solid–liquid separation to minimize process steps.

3.4. Design of Experiment

The wet explosion pretreatments of PSD were performed at temperatures ranged from 170–190 ◦C
based on the preliminary experiments and available literature data [21,27]. Oxygen dosage used
in this study varied in the range of 0.5–7.5% of DM (dry matter, w/w), with a residence time of
10–30 min. A central composite design (Table 2), including three central points of the factors, was used
to design the experiments. A series of 17 runs with different operational conditions was suggested in
order to generate regression reports of the factors and responses using response surface methodology.
The yields of glucan, xylan, and total carbohydrate after the enzymatic hydrolysis of the pretreated
samples were determined to evaluate the optimal set of parameters for the pretreatment. In addition,
monomeric and oligomeric sugars, acetic acid, and furans (5-hydroxymethylfurfural and furfural)
were further evaluated.

3.5. Analysis of Liquid Fraction after Pretreatment

The liquid fraction of pretreated poplar sawdust (PPSD) from each pretreatment run was analyzed
for monosaccharides (glucose, xylose, and arabinose), acetic acid, 5-hydroxymethylfurfural (HMF),
and furfural by an HPLC system equipped with an Aminex HPX-87H column (Bio-Rad, Hercules,
CA, USA), as described in compositional analysis subsection. The acid hydrolysis of the liquid was
carried in Eppendorf tubes using 4% H2SO4 (w/w) at 99 ◦C for 4 h and neutralized using an equivalent
amount of barium hydroxide. Dilute acid hydrolysis of the liquid samples was carried out in triplicates,
and the samples were always filtered using a 0.45 µm filter (PTFE membrane, Acrodisc® syringe filters,
13 mm, Pall® Life Sciences, Pensacola, FL, USA) before chromatographic analysis.

3.6. Enzymatic Hydrolysis

Enzymatic hydrolysis of PPSD samples was performed with a mixture of Cellic® CTec2 and
Cellic® HTec2 (Novozymes, Franklinton, NC, USA). Initial enzyme dosages of 16.7 mg enzyme
proteins (EP)/g DM, of which 11.7 mg EP from CTec2 and 5.0 mg EP from HTec2, were applied for
all the pretreated samples. The enzyme proteins of CTec2 and HTec2 were determined to be 265
and 235 mg EP/mL, respectively, using Pierce® BCA® protein assay kit following the company’s
procedure (Thermo-Fisher Scientific, Rockford, IL, USA). Five grams of oven-dry substrate were
supplemented with 5 mL 1 M citrate buffer (pH = 5.0) and aforementioned enzyme mixtures and then
added into DI water to achieve a 5% (w/w) consistency of solution. One milliliter of sodium azide
solution (2%, w/w) was used in the media to inhibit microbial contamination. However, 5% consistency
of solution with enzyme dosages of a total of only 8.4 mg EP/g DM was used in order to optimize
the enzymatic hydrolysis conditions, such as pH, temperature, and enzyme mixtures, incubated at
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50 ◦C. Enzymatic hydrolysis optimization experiments were carried out at 40/45/50/55 ◦C, according to
experimental design, in an incubator shaker (the lab companion IS-971 [R/RF] floor model incubated
shaker, Jeiotech Co. Ltd., Daejeon, Korea) at 180 rpm for 72 h. After the enzymatic hydrolysis, the
hydrolyzate sample was centrifuged at relative centrifugal force (RCF) of 20,817× g for 10 min at 4 ◦C
and filtered (0.45 mm) for HPLC analysis. All the experiments were performed in duplicate using
250 mL screw cap glass vial with an active volume of 100 mL. Reported values were corrected for the
sugar contribution from the enzyme mixture, as found in the blanks.

3.7. Statistical Data Analysis

The design of experiments and the experimental data were analyzed using JMP Pro statistical
software (SAS, version 11.0). Total solubilized carbohydrates, organic acids, HMF, and furfural in
liquid fraction and as post-pretreatment responses were assessed. Further, the yields of predominant
sugars—glucan and xylan—in terms of cellulose and hemicellulose digestibility after the enzymatic
hydrolysis were evaluated as responses of the examined factors (temperature, time, and oxygen
dosage). The analysis was carried out in a fitted correlation using second-degree interaction under
response surface macros and standard least-square personality with an emphasis on effect leverage.

4. Conclusions

This was the first time that WEx was used to pretreat poplar sawdust. In this study, we optimized the
wet explosion pretreatment conditions for poplar sawdust for the optimum production of fermentable
sugars. After the enzymatic hydrolysis, the highest total sugar yields (from the conversion of 75.1%
cellulosic and 83.1% hemicellulosic) could be achieved at pretreatment conditions of 177 ◦C with 7.5%
O2 and 30 min residence time. However, cellulosic sugar yield increased with up to 87.1% by using an
operational temperature of 190 ◦C. However, the hemicellulosic sugar yield would decrease in these
conditions compared to the use of lower temperatures, and sugar yield of 90.8% for the hemicellulose
fraction could be achieved at 170 ◦C. Furthermore, the overall cellulose digestibility could be enhanced
by 8.4% when using CTec2:HTec2 in a 3:1 relation at 47.4 ◦C and pH 5.5, which is different from the
conditions described as optimal by Novozymes, the enzyme provider.
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