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Abstract: Small heat shock proteins (sHSPs) are ubiquitous ATP-independent chaperones that play
essential roles in response to cellular stresses and protein homeostasis. Investigations of sHSPs reveal
that sHSPs are ubiquitously expressed in numerous types of tumors, and their expression is closely
associated with cancer progression. sHSPs have been suggested to control a diverse range of cancer
functions, including tumorigenesis, cell growth, apoptosis, metastasis, and chemoresistance, as well as
regulation of cancer stem cell properties. Recent advances in the field indicate that some sHSPs have
been validated as a powerful target in cancer therapy. In this review, we present and highlight current
understanding, recent progress, and future challenges of sHSPs in cancer development and therapy.
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1. Introduction

Although small heat shock proteins (sHSPs) were recognized as protein chaperones several
decades ago, they have received considerably less attention for a long time than other heat shock
proteins (HSPs). Small heat shock proteins are a class of the superfamily of HSPs with low molecular
weight (12–43 kDa) that are ubiquitously expressed in all forms of life. Besides the molecular chaperone
activity to prevent the formation of harmful protein aggregates in response to cellular stress, sHSPs are
involved in diverse cellular functions such as protein degradation, stress tolerance, cell movement,
cell death, cell differentiation, signal transduction, and cell development. As a consequence, sHSPs
have important implications in physiological and pathological conditions. In recent years, growing
evidence has shown that sHSPs play important roles in various types of cancer, and some sHSPs
such as Hsp27 have been proposed to be therapeutic targets for cancer. Thus, understanding sHSPs’
functions and roles in human cancers and elucidating how their malfunction is linked mechanistically
to cancers will help identify potential anticancer drug targets, develop effective chemotherapeutic
drugs and other therapeutic strategies, and then improve cancer therapy. In this review, we summarize
our current understanding of the role of sHSPs in cancers, as well as discuss anticancer drugs and
current therapeutic strategies targeting sHSPs.

2. Small Heat Shock Proteins (sHSPs)

Small heat shock proteins are a ubiquitous family of ATP-independent molecular chaperones with
low molecular mass. Molecular chaperones are proteins that assist other proteins in folding but are
not components of these final structures [1,2]. They are classified by their molecular weight into the
following families: Hsp110s, Hsp90s, Hsp70s, Hsp60s, Hsp40s, sHSPs, and CCT (TRiC) [3]. sHSPs
exist in all kinds of life and play a key role in cellular stress responses.
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Like all sHSPs, the primary structures of human sHSPs are characterized by a conserved, structured
α-crystallin domain (ACD) flanked by a highly variable amino-terminal region (NTR) and a short
flexible carboxy-terminal region (CTR) [4]. The ACD is thought to be essential for the dimerization
and function of sHSPs [5]. The NTR is generally hydrophobic [6] and involved in oligomer formation
of sHSPs and the interaction with substrate proteins [7]. The CTR is polar, flexible, and plays a key
role in the stability and assembly of oligomers [8]. Under in vitro conditions, human sHSPs are often
found to exist in a range of oligomeric states, although a few of them, such as HspB6, are reported to
be stable and exist as dimers with chaperone activity [9,10]. Recently, HspB1 was reported to exist as
phosphorylated monomers, which are from a progressive dissociation of HspB1 oligomers induced by
palytoxin in MCF-7 cells and could play a protective role against palytoxin-induced cell death [11].
Similarly, another study showed that oligomer dissociation required only Ser90 phosphorylation of
mammalian HspB1, while activation of thermoprotective activity required the phosphorylation of both
Ser90 and Ser15 [12]. Further studies are required for understanding the role of phosphorylation of
HspB1 in the interconversion of HspB1 ultrastructures between oligomeric/dimeric/monomeric forms
and the regulation of its functions.

The human sHSPs contain 10 members, including HspB1 (Hsp27), HspB2 (myotonic dystrophy
kinase-binding protein, MKBP), HspB3 (Hsp17), HspB4 (αA-crystallin), HspB5 (αB-crystallin), HspB6
(Hsp20), HspB7 (cardiovascular Hsp, cvHsp), HspB8 (Hsp22), HspB9 (cancer/testis antigen 51, CT51),
and HspB10 (outer dense fiber protein 1, ODFP1). Some (HspB1, HspB5, HspB6, HspB8) are ubiquitously
expressed in various tissues, while others are expressed in specific tissues (Table 1). In eukaryotes,
the expression of sHSPs is under the control of the heat shock factor (HSF) transcription factors,
which can initiate transcription of sHSPs genes and upregulate the expression of sHSPs in response to
stress [13,14]. Moreover, sHSPs themselves are sensitive to their conditions, and their expression of
proteins is coordinated by cellular conditions [15].

Table 1. Human small heat shock proteins (sHSPs) and their expression 1.

Protein Name Alternative Names Molecular Mass (kDa) Tissue Expression

HspB1 Hsp27, Hsp25, Hsp28 22.8 Ubiquitous
HspB2 MKBP 20.2 Cardiac and skeletal muscle
HspB3 Hsp17 17.0 Cardiac and skeletal muscle
HspB4 αA-crystallin 19.9 Eye lens
HspB5 αB-crystallin 20.2 Ubiquitous
HspB6 Hsp20, p20 17.1 Ubiquitous
HspB7 cvHsp 18.6 Cardiac and skeletal muscle
HspB8 Hsp22 21.6 Ubiquitous
HspB9 CT51 17.5 Testis

HspB10 ODF1 28.4 Testis
1 Table is based on Kampinga et al. [16] and Mymrikov et al. [17].

sHSPs are best known as molecular chaperones that bind various non-native (misfolded or
unfolded) substrate proteins, prevent their uncontrolled aggregation, and facilitate the refolding of
these proteins independently or by the cooperation of ATP-dependent chaperones. Usually, sHSPs do
not exhibit refolding activities but capture the unfolded proteins and stabilize them in sHSP/substrate
complexes. Refolding and release of bound substrates are under the help of other ATP-dependent
chaperones [18–20]. In addition, sHSPs are involved in a growing number of other cellular functions,
including cell protection, cellular signaling, cell differentiation, cell movement, cell apoptosis, and cell
development [21,22]. Whether and how the chaperone and nonchaperone activities of sHSPs are
related raise questions for the future. Pathologically, sHSPs have been reported to be linked to a
number of diseases, such as cataracts, neurological disorders, myopathies, multiple sclerosis, aging,
and cancers [21,22].
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3. Functions of Small Heat Shock Proteins in Cancers

Although the original focus on the role of sHSPs revealed its chaperone functions, work over
several decades has shed light on their important roles in cancers. Hsp27 (HspB1) was initially found
to be expressed in meningiomas [23]. Increasing findings indicate that sHSPs are expressed in diverse
malignancies and have been linked to several hallmark features of cancer, including tumorigenesis,
cell growth, apoptosis, metastasis, and chemoresistance, as well as cancer stem cells.

3.1. Expression of Small Heat Shock Proteins in Cancers

Small heat shock proteins are ubiquitously expressed in numerous types of tumors, including head
and neck (HspB1, HspB5) [23,24], breast (HspB1, HspB2, HspB5, HspB8) [25–30], cervical (HspB1) [31],
colonrectal (HspB1, HspB5, HspB6, HspB9) [32–35], esophageal (HspB9) [35], gastric (HspB1,
HspB5, HspB8) [36–38], larynx (HspB1, HspB5) [39,40], liver (HspB1, HspB5) [41,42], lung (HspB1,
HspB5, HspB9) [35,43–45], oral (HspB5) [46], ovarian (HspB1, HspB8) [47,48], pancreatic (HspB4,
HspB9) [35,49,50], prostate (HspB1) [51], renal (HspB1, HspB5, HspB7) [52–54], testis (HspB9) [35],
cancers and glioblastoma (HspB1, HspB5) [55,56], and osteosarcoma (HspB5, HspB8) [57,58].

Increased levels of sHSP expression were identified in breast (HspB1, HspB2, HspB5) [25–29],
cervical (HspB1) [31], colorectal (HspB1, HspB5) [32,33], gastric (HspB1, HspB5, HspB8) [36–38],
glioblastoma (HspB1, HspB5) [55,56], larynx (HspB1, HspB5) [39,40], liver (HspB5) [42], lung (HspB1,
HspB5) [43,45], oral (HspB5) [46], osteosarcoma (HspB5) [57], ovarian (HspB8) [48], prostate
(HspB1) [51], renal (HspB1, HspB5) [52,53], and testis (HspB9) [35] cancers. Conversely, decreased
expression of sHSPs was observed in colorectal (HspB6) [34], pancreatic (HspB4) [49,50], and renal
(HspB7) [54] cancers. Additionally, sHSP expression is closely associated with the progression of cancers
and poor clinical outcomes. We summarized the levels of sHSP expression in various cancers (Table 2).

Table 2. sHSP expression in cancers.

sHSPs (Alias) Type of Cancers Expression
Status Functions Reference

HspB1 (Hsp27)

Breast cancer Overexpression

Oncogenic

[25,26]
Cervical cancer Overexpression [31]

Colorectal cancer Overexpression [32]
Gastric cancer Overexpression [36]
Glioblastoma Overexpression [55]
Larynx cancer Overexpression [39]
Lung cancer Overexpression [43]

Prostate cancer Overexpression [51]
Renal cancer Overexpression [52]

HspB2 (MKBP) Breast cancer Overexpression Oncogenic [27]
HspB3 (Hsp17) No data No data No data No data

HspB4 (αA-crystallin) Pancreatic cancer Underexpression Tumor suppressive [49,50]

HspB5 (αB-crystallin)

Breast cancer Overexpression

Oncogenic

[28,29]
Colorectal cancer Overexpression [33]

Gastric cancer Overexpression [37]
Glioblastoma Overexpression [56]
Larynx cancer Overexpression [40]
Liver cancer Overexpression [42]
Lung cancer Overexpression [45]
Oral cancer Overexpression [46]

Osteosarcoma Overexpression [57]
Renal cancer Overexpression [53]

HspB6 (Hsp20) Colorectal cancer Underexpression Tumor suppressive [34]
HspB7 (cvHsp) Renal cancer Underexpression Tumor suppressive [54]

HspB8 (Hsp22) Gastric cancer Overexpression Oncogenic [38]
Ovarian cancer Overexpression [48]

HspB9 (CT51) Testis cancer Overexpression Oncogenic [35]
HspB10 (ODFP1) No data No data No data No data
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3.2. Tumorigenesis

Recent studies have indicated that sHSPs are related to the transformation into neoplastic cells.
sHSPs can enhance or suppress tumorigenesis and cancer progression. Overexpression of HspB5
in human mammary epithelial cells (MECs) led to morphological, physiological transformation,
and carcinomas formation in vivo [28]. Moreover, MECs with HspB5 overexpression showed neoplastic
characteristics, including enhancing cell growth, migration and invasion, and inhibiting apoptosis.
Conversely, HspB4, HspB6, and HspB7 are reported to suppress tumorigenesis in pancreatic, colorectal,
and renal cancer, respectively [34,49,50,54]. In addition, HspB7 expression alteration was reported
to be controlled by epigenetic regulation [54]. DNA hypermethylation is inversely correlated with
the mRNA level of HspB7, and 5-aza-2′-deoxycytidine (5-Aza-dC) treatment elevated the expression
of HspB7 [54]. These data suggested that methylation-dependent expression regulation of HspBs
may be important for tumorigenesis of cancer cells. However, the mechanisms governing HspBs
expression are not fully understood. Interestingly, HspB4 (αA-crystallin) and HspB5 (αB-crystallin)
are two isoforms of α-crystallin, while existing evidence indicates that they may play different roles in
tumorigenesis: HspB4 acts as a suppressor, and HspB5 acts as a promoter. Further investigation of the
mechanism will clarify the divergent roles of sHSPs in tumorigenesis.

3.3. Cell Growth, Death, and Tumor Development

sHSPs have been identified to play a pivotal role in cell proliferation and survival and cancer
progression. HspB1 can enhance or inhibit cell proliferation and growth and tumor development.
Studies have shown that overexpression of HspB1 promotes cell proliferation and growth of breast
cancer cells in vitro [15]. However, HspB1 was also suggested as a suppressor for cell proliferation
in human testis tumor cells [59]. HspB5 overexpression has been reported to promote tumor growth
of xenografts derived from breast cancer cells [60]. Another sHSP protein, HspB8, has been recently
identified to enhance cancer progression. The knockdown of HspB8 expression inhibited in-vitro cell
proliferation of breast cancer cells [61], while HspB8 overexpression enhanced cell proliferation and
growth of breast cancer [61]. Interestingly, studies have suggested that HspB8 might play an important
role in estrogen response and breast cancer progression. HspB8 is regulated by estrogen and can
augment cancer cell progression by estrogenic stimuli [62–64], suggesting HspB8 might be a target
associated with ER-positive tumors. However, the molecular mechanism should be further explored.

sHSPs protect cells from death by preventing the aggregation of denatured proteins and interacting
with various components of the death-associated signaling pathways. Growing evidence suggests that
most of the sHSPs (HspB1, HspB2, HspB5) possess an antiapoptotic activity and inhibit apoptotic cell
death in various malignancies. The expression of HspB1, HspB2, and HspB5 is reported to be associated
with resistance to apoptosis in human breast cancer cells [27,60] and oral verrucous carcinoma [65].
Overexpression of HspB1, HspB2, and HspB5 inhibits apoptosis in breast cancer cells [27,60,66].
Moreover, knockdown of HspB1 in-vitro induced apoptotic cell death, whereas HspB1 upregulation
reduced apoptosis and enhanced tumorigenic potential in-vivo in glioblastoma multiforme [67].
Exceptionally, HspB6 was recently recognized to induce apoptosis in colorectal cancer [34]. Additionally,
HspB8 is suggested to have either pro- or antiapoptotic effects in a context-dependent manner [68,69].
Several mechanisms for sHSPs regulating apoptosis by integrating with different signaling pathways
have been suggested, including extrinsic and intrinsic apoptosis (Figure 1): (a) sHSPs (HspB2) inhibit
the extrinsic apoptotic pathway by inactivating caspases-8, 10 [27]; (b) sHSPs (HspB1, HspB5) inhibit
the activation of caspase-3 to block apoptosis [67,70,71]; (c) sHSPs (HspB1, HspB5) can regulate bax,
bak, and other members of the Bcl-2 family or interact with Bcl-2 to sequester its translocation to
mitochondria, thereby preventing the activation of the intrinsic apoptotic pathway [72,73]; (d) sHSPs
(HspB1) block cytochrome c [74] and Smac [75] released from mitochondria or bind with cytochrome c
released from mitochondria [76], then preventing the activation of caspase-9 and caspase-3; (e) sHSPs
(HspB1, HspB5) inhibit the p53-dependent activation of the Bcl-2 family members, thus indirectly
inhibiting its proapoptotic effect against apoptotic Bcl-2 proteins [77,78]; (f) sHSPs (HspB1) can also
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interact with protein kinase C (PKC) delta type [79] or nuclear factor of kappa light polypeptide gene
enhancer in B-cell inhibitor (IkB), alpha [80], thereby inhibiting caspase-3 activation. It is important to
note that the phosphorylation states of sHSPs have been reported to regulate cancer cell death. Early
studies have shown that both phosphorylated and unphosphorylated HspB1 inhibit apoptosis [77,78].
Recently, several studies have indicated that phosphorylation of HspB1 increases apoptosis in leukemia
cells [70], and phosphorylation of both HspB1 and HspB5 increases apoptosis in breast cancer
cells [73,81]. It is given that sHSPs undergo a number of post-translational modifications (PTMs)
under physiologic and pathologic conditions (e.g., phosphorylation, acetylation, and glycosylation).
In addition, these PTMs alter sHSP structure, then modulate apoptotic activity by interacting with
different proteins and playing significant roles in regulating cell survival. However, our understanding
of how these PTMs impact sHSPs’ apoptotic function is clearly incomplete. Thus, the significance and
roles of sHSPs’ PTMs in cancer cells will need further investigation.
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Figure 1. Small heat shock proteins (sHSPs) regulate apoptosis in the extrinsic and intrinsic apoptotic
pathways. sHSPs inhibit activation of caspase-8, -10 (a) or caspase-3 (b) to block apoptosis. sHSPs
inhibit activation of the intrinsic apoptotic pathway by interacting with bax, bak, or other members of
the Bcl-2 family (c), or by inhibiting cytochrome c and Smac release from mitochondria, or binding
with cytochrome c (d), or by inhibiting the p53-dependent activation of the proapoptotic Bcl-2 family
members (e). sHSPs also interact with PKC or IkB to inhibit caspase-3 activation (f).

In addition, sHSPs play cytoprotective roles against apoptosis induced by oxidative stress in
cancer cells, and their high expression in cancer cells results in cancer cell radio- and chemoresistance.
As a byproduct of oxygen metabolism, reactive oxygen species (ROS) induce oxidative stress, damage
macromolecules such as proteins, lipids, and nucleic acids, and, therefore, trigger apoptotic pathways
and result in cell death. Cells use the antioxidant system (e.g., antioxidant enzymes, GSH, and CoQ as
internally synthesized antioxidants, and vitamin E and carotenoids as externally supplied antioxidants)
to neutralize free radical cellular damage and maintain normal redox homeostasis. Unlike normal cells,
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many cancer cells develop efficient antioxidant systems to defend against oxidative damage caused by
ROS to prevent cell death. Studies have shown that the expression of HspB1 can significantly decrease
cellular the ROS level and upregulate the total glutathione level [82,83]. HspB1 may act in different
ways to modulate cell intracellular redox status: (a) decreasing free radical production by reducing the
activities of enzymes, including superoxide dismutase (SOD) [84,85] and catalase [85,86], or decreasing
of intracellular iron to prevent its participation in free radical formation [87]; (b) scavenging free
radicals by modulating the activity of antioxidant enzymes such as glucose 6-phosphate dehydrogenase
(G6PDH) [88,89], glutathione reductase (GR) [90], and glutathione peroxidase (GPx) [85,90] to increase
reduced glutathione (GSH) levels and downregulate ROS; (c) activating transcription factors, such as
nuclear factor erythroid 2-related factor 2 (NRF2), thereby activating their target antioxidative
enzymes [91]. Consistent with the abovementioned mechanisms, increased levels of sHSPs, together
with multiple antioxidant molecules, including superoxide dismutase (MnSOD), thioredoxin reductase
2 (TXNRD2), glutathione (GSH), glutathione peroxidase (Gpx), were identified in thyroid tumors [92].
In fact, all antioxidants work cooperatively as a complex network to maintain optimal redox balance.
The roles of sHSPs in redox regulation in different cancer cells and how sHSPs coordinate the antioxidant
defense network to protect against oxidative stress-induced cell death will need further investigation.
Furthermore, current reports indicate that HspB1 is associated with therapeutic resistance in colon [93],
liver [94], and head and neck [95] cancer cells through the regulation of ROS levels; thus, targeting
sHSPs could be a potent strategy to help overcome chemo/radioresistance in cancers.

3.4. Cell Migration/Invasion, Angiogenesis, and Tumor Metastasis

Consistent with sHSPs’ enhanced expression in many malignancies, increasing reports have
demonstrated that sHSPs play important functional roles in cell migration, invasion, and angiogenesis.
Initially, HspB1 was reported to promote the invasion of breast cancer cells [96] by upregulation of
MMP-9 expression [97] but decrease the motility of breast cancer cells [96]. Subsequently, numerous
studies have demonstrated that overexpression of HspB5 in breast cancer cells increased cell migration
and invasion [28], and HspB1 silencing in colorectal [98], prostate [99], ovarian [100], and liver [101]
cancers or head and neck squamous cell carcinoma [102], HspB8 silencing in breast cancer [61],
or HspB5 silencing in colorectal [103] and renal [53] cancers inhibit migration and/or invasion of cancer
cells. Moreover, a number of clinical data studies have shown that primary tumor expression of sHSPs
is associated with aggressive tumor characteristics and tumor progression. For example, HspB1 mRNA
and protein expression correlate with peritoneal metastasis and poor survival in ovarian cancer [104].
More recently, high serum HspB1 expression in ovarian cancer [105] and renal cancer [106] has been
shown to be associated with tumor metastasis. Additionally, phosphorylated HspB1 is also reported to
be associated with portal vein invasion in hepatocellular carcinoma [41] and lymph node metastasis in
breast cancer [26]. Additionally, HspB5 expression correlates with the tumor–node–metastasis (TNM)
stage and predicts poor survival in non-small-cell lung cancer [45]. In breast cancer, HspB5 expression
is an independent predictor of brain metastasis and poor survival and can also predict brain metastasis
as the first site of distant metastasis [107,108]. Although overwhelming data have indicated that sHsps
can promote cell migration and invasion and tumor metastasis, a few notable exceptions have been
reported. HspB1 mRNA and protein levels were lower in tumor tissue in a small study of thyroid
carcinomas [109]. Additionally, a few studies showed that HspB5 expression was not significantly
correlated with prognosis in head and neck carcinomas [110] and lung cancer [111]. Moreover,
HspB4 has been reported to suppress pancreatic cancer cell migration [49,50]. Thus, it should be
clarified whether these divergent and even contrasting results reflect differences in study design and/or
tumor type. Although the mechanisms underlying sHSPs’ effects on cell migration/invasion have not
been clearly defined, results have shown that sHSPs promote migration, invasion, and metastasis,
likely by regulating MMP expression [97], by interacting with and regulating intermediate filament
dynamics [98], or via epithelial–mesenchymal transition (EMT) [103]. Additionally, it is noteworthy that
phosphorylation may be important for sHSPs’ effects on these actions [26,39,112], and understanding
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the roles and functions of sHSPs’ PTMs on cell migration/invasion will deepen our understanding of
sHSPs’ roles in malignancy.

Tumor angiogenesis, the process where tumors form new blood vessels from pre-existing ones,
plays critical roles in tumor growth and metastasis [113]. HspB1 has been reported to be induced during
tumor angiogenesis [114]. HspB5 was identified to promote tumor angiogenesis by modulating tubular
morphogenesis and survival of endothelial cells [115]. Similarly, HspB1 has been reported to induce
angiogenesis by increasing vascular endothelial growth factor (VEGF) [116]. Additionally, HspB1
expression was suggested to be associated with the expression and secretion of angiogenesis-associated
proteins such as VEGF-A [117,118]. Consistent with this finding, HspB5 has been reported to regulate
tumor angiogenesis by modulating VEGF-A [119]. Moreover, HspB1 has been identified as the
target molecule of angiogenesis inhibitors [120]. Collectively, these data suggest that sHSPs have a
proangiogenic effect and might be potential targets for antiangiogenic cancer therapy.

3.5. Chemoresistance

sHSPs are a group of molecular chaperones protecting cells by maintaining cellular homeostasis.
HspB1’s murine homolog Hsp25 expression is induced significantly by treatment with chemotherapy
drugs such as cisplatin and doxorubicin in Ehrlich ascites tumor (EAT) cells [121,122]. Additionally,
the upregulation of HspB1 was also reported in cervical cancer cells and prostatic cancer cells
by treatment with 17-allylamino-demethoxygeldanamycin (17-AAG) [123]. Moreover, HspB1 was
significantly higher in geldanamycin-resistant A549 NSCLC cells [123]. Furthermore, HspB1 exhibited an
alteration of its degree of phosphorylation when treatment with vinblastine, paclitaxel, and doxorubicin
in breast cancer cells and serine 59 phosphorylation of HspB1 induced apoptosis of vinblastine-treated
breast cancer cells [73], suggesting that specifically inducing the phosphorylation of HspB1 can improve
therapeutic outcomes by circumventing the drug resistance of breast cancer. Artificial overexpression of
HspB1 increased doxorubicin resistance of breast cancer cells [15], cisplatin and doxorubicin resistance
of testis tumor cells [59], and 17-AAG resistance of cervical cancer cells [123]. Similarly, knockdown of
HspB1 decreased doxorubicin resistance of breast cancer cells [15] and 17-AAG resistance of cervical
cancer cells [123]. Collectively, these studies suggest that HspB1 has a significant role in chemotherapy
drug resistance. Remarkably, it has been demonstrated that inhibition of Hsp90 is associated with
the upregulation of HspB1. Hsp90 forms complexes with HSF1 and maintains HSF1 in a repressed,
transcriptionally inactive form. Inhibitors or binding agents that target Hsp90 can disrupt Hsp90-HSF1
interaction, thereby freeing HSF-1 by dissociation from Hsp90. Activated HSF-1 is translocated into
the nucleus, initiates transcription of previously silent Hsp genes, including HspB1, Hsp40, and Hsp70,
and leads to the activation of a prosurvival process called the heat shock response, thus limiting
the activity of Hsp90 inhibitors and contributing to drug resistance and toxicity. Studies show that
a combination of downregulation of HspB1 by gene silencing or inhibitors and Hsp90 inhibitors
could reduce drug resistance and enhance the efficacy of Hsp90-directed therapy [123,124]. However,
other sHSPs’ roles in resistance to anticancer treatment are not clearly defined, and further in-depth
investigations need to be followed to expand the roles of sHSPs in cancer therapy.

3.6. Cancer Stem Cells

Cancer stem cells (CSCs), also termed “tumor-initiating cells” (TICs) or “sphere-forming cells”,
are a small subpopulation of stem-cell-like cancer cells that present the stem cell property of self-renewal,
generating differentiated tumor cells and resistance to radiochemotherapy [125]. CSCs have been
isolated from numerous solid and liquid tumors, including but not limited to leukemia, brain,
head and neck, lung, breast, liver, stomach, colon, pancreatic, prostate, ovary, and bladder cancers
and mesothelioma [126]. CSCs are believed to be responsible for cancer pathogenesis, namely, cancer
initiation, recurrence, metastasis, and drug resistance, and are involved in the progression of human
malignancies [127]. Thus, targeting CSCs and the elimination of CSCs have been considered as an
emerging area in cancer therapy.
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Current reports indicate that HspB1 plays a crucial role in regulating CSC-associated properties
such as survival, stemness, high migration activity and invasiveness, and chemoresistance. Initially,
HspB1 was reported to be associated with chemoresistance of lung cancer stem cells [128]. Then, HspB1
was identified to be related to CSC stemness by proteomics [129]. Indeed, several studies have shown
that HspB1 is essential for CSC stemness in salivary adenoid cystic carcinoma [130], non-small-cell
lung cancer [131], and breast cancer [132]. There are also reports linking HspB1 to the maintenance of
CSC phenotypes in breast cancer stem cells [133] and gynecologic cancer stem cells [134]. Additionally,
the contribution of HspB1 to cell migration, invasiveness, and EMT was found in several CSC-related
studies, including breast cancer [133] and salivary adenoid cystic carcinoma [115]. Similarly, HspB1
was identified to regulate vasculogenic mimicry activity in CD24−CD44+ALDH+ breast cancer stem
cells [135]. Furthermore, numerous reports have suggested that HspB1 is key for CSC survival and
contributes to radio- and chemoresistance. For example, HspB1 is considered to be essential for
the survival of CD133+ colon cancer stem cells [136]. Additionally, HspB1 (along with Hsp70) is
upregulated in radioresistant CSC-like SP cells isolated from breast cancer cells [137]. In addition,
HspB1 resistance to apoptosis, hyperthermia, and chemotherapeutic agents was reported in oral
CSCs [138], lung CSCs [128,139], breast CSCs [132,140], and esophageal CSCs [141].

Importantly, it should be noted that HspB1 involvement in modulating CSC properties depends on
the levels of its expression and activity. Though HspB1 can be expressed constitutively in mammalian
cells, its expression is mainly coordinated by HSF1 (heat shock transcription factor 1), which is a
stress-responsive transcriptional factor that induces the transcriptional activation and the expression of
HSPs such as HspB1 and Hsp70 [13]. Under any proteotoxic stress (heat, hypoxia, energy starvation)
stimuli, HSF1 is activated and translocated into the nucleus, where it activates HSP gene transcription.
Additionally, HSF1 activation/inactivation mainly depends on its phosphorylation [142]. Indeed,
phosphorylation of HSF1 at serine 326 was reported to be critical for the maintenance of gynecologic
CSCs by induction of HspB1 [134]. Besides HspB1 expression regulated by HSF1, the inhibition of
HspB1 by SMURF2 (SMAD ubiquitin regulatory factor 2) is reported to be involved in repressing the
self-renewal capability of breast CSCs [132], indicating that ubiquitin-dependent protein degradation
seems to play a role in modulating HspB1 expression and CSC properties. It is generally accepted that
the oligomerization and cytoprotective activities of HspB1 are mainly regulated by phosphorylation.
Recently, numerous studies have confirmed that HspB1 phosphorylation/dephosphorylation is a
critical regulator in the formation/maintenance of CSC properties. HspB1 undergoes phosphorylation
as the terminal substrate in the p38/MAPK pathway, and there are increasing reports linking this p38
MAPK/MAPKAPK2/HSP27 pathway to chemoresistance in lung CSCs [128,131] and oral CSCs [138],
maintenance of CSC properties in lung CSCs [131], and EMT in renal [143] and lung CSCs [139].
Similarly, in colorectal CSCs, protein phosphatase PP2A was reported to dephosphorylate HspB1
and attenuate HspB1 effects by promoting CSC properties [136,144], indicating that the status of
phosphorylated HspB1, mediated by kinase and phosphatase, is essential for HspB1 effects on CSC
properties. However, the detailed regulatory mechanism of HspB1 phosphorylation that depends
upon the temporal and spatial balance of kinase and phosphatase should be investigated further.
Conversely, inactivation of p38 has been suggested to promote CSC properties in non-small-cell lung
cancer cells [145]. In this case, phosphorylated HspB1 by the p38/MK2 pathway can interact with
the stemness-related proteins such as SOX2, OCT4, NANOG, KLF4, and c-Myc, then promote their
ubiquitination and degradation, suggesting that phosphorylated HspB1 may have different roles in
various types of CSCs by interacting with the effector proteins.

Large numbers of publications have demonstrated that HspB1’s maintenance and modulation
of CSC characteristic features are largely dependent on its interaction with client proteins. Evidence
has shown that HspB1 can inhibit apoptosis by interacting with procaspase-9 and procaspase-3 to
prevent activation of caspase-9 and caspase-3 [128]. The direct interaction between HspB1 and AKT in
esophageal CSCs is suggested to be critical for the maintenance of CSC features such as a high metabolic
rate [141]. Similarly, we report that the cancer stemness-related activities of Hsp90 are regulated by
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clusterin through Hsp90 direct interactions with its client protein, AKT, in gastric cancer stem cells [146].
In addition, HspB1 regulates the maintenance and EMT of breast CSCs by interacting with IkB, inducing
its degradation, and activating NFkB [133]. Consequently, among HspB1’s interacting proteins, there
are surely some proteins that contribute to CSC-driven cancer development or are responsible for
the manifestation of certain properties of CSCs. However, HspB1’s interacting proteins and their
implications and roles in the formation/maintenance of the CSC phenotype remain to be elucidated.

Taken together, these published data indicate that HspB1 is responsible for the maintenance/

modulation of CSC properties such as the stemness and self-renewal of CSCs, their ability to promote
EMT and metastasis, their resistance to apoptosis and radiochemotherapy, and their energy metabolism
switching [147] (Figure 2). No doubt, HspB1 is one of the most promising targets for CSC-based cancer
treatment. However, several points should be addressed for better understanding of sHsps’ roles in
CSC maintenance and progression. First, the mechanisms leading to HspB1 expression alteration in
CSCs are not fully understood. Up until now, HspB1 expression alteration in CSCs has been mainly
focused on the transcriptional level; for example, the transcriptional factor HSF1. Other mechanisms,
such as microRNA and epigenetic regulation governing HspB1 expression, remain elusive. Second,
how do other PTMs’ roles in modulating CSC properties regulate HspB1 activity? Third, current
publications are mainly focused on the roles of HspB1 in CSCs. How do other sHsps play a role in CSCs
and the underlying mechanisms? Answering these questions will deepen our understanding of the role
of sHsp proteins in CSCs and provide novel therapeutic strategies targeting sHsps in cancer treatment.
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Figure 2. sHSPs (HspB1) regulate cancer stem cell (CSC) properties, including survival, stemness,
invasiveness, chemoresistance, and others. HspB1 involvement in modulating CSC properties depends
on the levels of its expression and activity. HspB1 can be upregulated by transcription factor HSF1, while
its activity can be modulated by phosphorylation (e.g., by p38/MAPK pathway) and dephosphorylation
(e.g., by PP2A).
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4. Small Heat Shock Proteins in Cancer Therapy

4.1. Anticancer Drugs Targeting sHSPs

As a majority of clinical and preclinical findings indicate sHSPs as a promising therapeutic target
in cancer, a number of drugs or inhibitors have been reported and utilized to interrogate sHSPs’ roles
in cancer. The reports are mainly focused on HspB1 as a molecular target for cancer therapy. Hence,
in the present subsection, the drugs targeting HspB1 are analyzed in more detail. Although several
drugs or compounds for other sHSPs in cancer therapy have been described, other sHSPs are omitted
here because no selective inhibitors targeting these sHSPs have been reported.

Here, we summarize the drugs aimed at reducing HspB1 expression or inhibiting its actions in
cancer therapy (Table 3). Small molecule inhibitors (RP101, quercetin, J2, ovatodiolide, and methyl
antcinate) bind to the HspB1 protein and inhibit its function. Another strategy utilizes peptide aptamers
(PA11, PA50) that bind directly to the protein and inhibit its oligomerization or dimerization. Moreover,
the third approach is antisense oligonucleotide (OGX-427), which targets HspB1 mRNA and prevents
translation of the protein.

Table 3. Summary of reported cancer drugs targeting HspB1.

Types Names Mechanism Binding Sites Reference

Small Molecules

RP101
Binds to HspB1 protein

and inhibits
HspB1 function

Phe29 and Phe33 [148–152]
quercetin No data available [132,138,153–160]

J2 Cysteine thiol group [161]
ovatodiolide No data available [162]

methyl antcinate No data available [163]

Peptide
Aptamers

PA11 Binds to HspB1 protein
and inhibits its

oligomerization or
dimerization

No data available

[164–166]

PA50 No data available

Antisence
Oligonucleotide OGX-427

Binds to HspB1 mRNA
and prevents translation of

the protein
No data available [167–171]

Several small molecule inhibitors targeting HspB1 are currently under development: RP101,
quercetin, J2, ovatodiolide, and methyl antcinate. RP101 (also known as bromovinyldeoxyuridine,
BVDU, or brivudine) is a nucleoside that inhibits HspB1 function via binding with Phe29 and Phe33
of HspB1. RP101 functions as a chemo-sensitizing agent that inhibits the resistance and potentiates
the effects of many chemotherapeutic drugs including mitomycin [148,149], gemcitabine [149,150],
cisplatin [149,150], and cyclophosphamide [149]. In clinical studies, RP101 [149,150] or RP101 with
gemcitabine [150,151] increased the overall survival rate of pancreatic cancer patients. However,
overdosing of RP101 caused increased toxic side effects of gemcitabine in some patients [149],
and new second-generation candidates of RP101 have been identified and are being developed for
further evaluation [152]. Quercetin is a plant-derived bioflavonoid with anticancer properties [153].
It suppresses the HSF1-dependent induction of the Hsps and shows antitumor effects in gastric,
oral, lymphomas, prostate, colorectal, breast, pancreatic, liver, and lung cancer cell lines and
various cancer stem cells [154–157]. Quercetin can act as a chemo-sensitizer, and it enhances the
antitumor effects of first-line chemotherapeutic drugs such as doxorubicin, gemcitabine, 5-fluorouracil,
and cisplatin [158,159]. Interestingly, besides its inhibitory effect on HspB1 expression, quercetin can
suppress HspB1 activity by impairing its phosphorylation in CSCs [138]. Despite studies showing
that quercetin can be a suitable agent for cancer treatment, there are no ongoing anticancer trials for
quercetin. J2, a synthetic chromone compound, can induce the crosslinking of HspB1 protein and form
HspB1 abnormal dimerization, thereby inhibiting its functions [160]. Recently, ovatodiolide [132] and
methyl antcinate [161], two plant-derived compounds, have been reported to decrease HspB1 protein
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expression in breast CSCs and inhibit CSCs. It has to be elucidated whether these compounds are
clinically applicable against breast cancer.

The second approach to targeting HspB1 is the use of specific peptides, which are called peptide
aptamers, to bind the protein and inhibit the functions of HspB1. Peptide aptamers are short peptides
that are designed to bind to specific protein domains and disrupt the protein function. Recent research
showed that two peptide aptamers, PA11 and PA50, can specifically bind to HspB1, inhibiting HspB1
dimerization or oligomerization, thereby negatively modulating the functions of HspB1 [162]. These
peptide aptamers are reported to show antitumor effects in vitro [162] and in vivo [163]. Similar to the
small molecule inhibitors of HspB1, a peptide aptamer is always more effective when used with other
anticancer drugs than when used alone. More efforts are needed to promote the preclinical and clinical
application of peptide aptamers and provide a potential application to cancer therapy.

The third approach utilizes antisense oligonucleotide (ASO) targeting HspB1 mRNA, and OGX-427,
which prevents the expression of HspB1 protein. OGX-427 reduced xenograft tumor growth when used
in combination with chloroquine [164] or gemcitabine, respectively [165], compared to treatment with
the drug alone. The Phase I study of dose-escalation OGX-427 in prostate, bladder, breast, and lung
cancers showed that OGX-427 was well tolerated at a high dose (1000 mg), and it can decrease tumor
marker expression and the number of circulating tumor cells (CTCs) in patients with prostate and
ovarian cancers [166]. In a Phase II trial for castrate-resistant prostate cancer (CRPC), 71% of patients
treated with OGX-427 and prednisone were progression-free at 12 weeks, compared to 40% of patients
treated with prednisone alone [167]. However, in another Phase II trial for metastatic non-small-cell
lung cancer (NSCLC), the addition of OGX-427 to the carboplatin–pemetrexed regimen did not improve
outcomes and the efficacy of first-line chemotherapy for patients [168]. More clinical studies are needed
to evaluate the efficacy and side effects of OGX-427 as a combinational clinical therapy in the treatment
of different cancer patients.

4.2. sHSPs-Based Cancer Therapy

Other than a molecular target for cancer therapy, sHsps have been reported to be used as a
multifunctional scaffold for the targeted therapeutic and imaging systems in cancers. The naturally
occurring small heat shock protein 16.5, which originates from Methanocaldococcus jannaschii, is reported
to form a cage-like structure to act as multifunctional biomaterials. The genetically and chemically
modified Hsp16.5 cages, Cy5.5-HspDEVD-BHQ3, were developed for imaging caspase activity in vitro
and in vivo [169]. Thus, these sHsp cages may provide efficient imaging agent carriers to monitor
the therapeutic evaluation by imaging caspase activity within tumors. Similarly, Hsp16.5-based
nanocages, conjugated with gadolinium (III)-chelated agents and iRGD peptides, were developed
for the diagnosis of pancreatic cancers by magnetic resonance imaging (MRI) [170]. It showed that
sHsps have great potential in the diagnosis of cancers as a carrier to construct a specific and sensitive
MRI contrast agent. Moreover, Hsp16.5-based cages carrying doxorubicin (an anticancer agent) were
tested in various cancer cell lines [171] and could provide a useful drug delivery system in cancer
therapy. As sHsps cages have good biocompatibility, biodegradability, and easy fabrication, they may
be promising as biomedical materials for drug or imaging agent delivery in cancer therapy and other
biomedical applications.

5. Conclusions and Future Perspectives

In summary, sHSPs are crucial to the regulation of the tumorigenesis, development, metastasis,
and chemoresistance of cancers, as well as cancer stem cells, and they may act as an oncogene or a
tumor suppressor in a context-dependent manner in cancer progression. In addition, biological and
clinical data strengthen the idea that sHSPs are closely associated with the prognosis and progression
of cancers. Moreover, sHSP-targeted drugs or inhibitors and therapeutic and imaging strategies in
cancers have been developed and show great potential in cancer treatment. Considerable progress
has been made in recent years in understanding the functions and mechanisms of sHSPs in cancers.
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However, many central aspects are still in need of further clarification. First, in various types of cancers,
the precise roles of sHSPs and the detailed underlying mechanisms in cancer progression should be
investigated. How do sHSPs regulate cancer progression in a context-dependent manner? Second,
the precise mechanisms of the regulation of sHSP expression and activity in cancer progression need to
be determined. Third, the cellular substrate molecules for different sHSPs and the dynamic interaction
between sHSPs and these molecules in different types of cancers remain to be elucidated more in
detail. Moreover, the discovery of therapeutic inhibitors or drugs targeted to different sHSPs has so far
remained largely unexplored. As the structural complexity of Hsp27 and its dynamic interactions with
substracts challenge the discovery of therapeutic inhibitors and drugs, potent and selective inhibitors
of Hsp27 are still missing. In addition, most inhibitors and drugs have been developed for Hsp27;
however, drugs targeting other sHsps remain largely open issues. Furthermore, recent studies have
suggested combinations of sHSP inhibitors and other chemotherapy agents, and these combinations are
promising in drug-resistant cancer treatment. Researchers should pay more attention to this direction
when investigating potential new cancer therapies.
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