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Abstract: Trypanosoma cruzi, the protozoa that causes Chagas disease in humans, is transmitted by
insects from the Reduviidae family. The parasite has developed the ability to change the structure
of the surface molecules, depending on the host. Among them, the mucins are the most abundant
glycoproteins. Structural studies have focused on the epimastigotes and metacyclic trypomastigotes
that colonize the insect, and on the mammal trypomastigotes. The carbohydrate in the mucins
fulfills crucial functions, the most important of which being the accepting of sialic acid from the host,
a process catalyzed by the unique parasite trans-sialidase. The sialylation of the parasite influences
the immune response on infection. The O-linked sugars have characteristics that differentiate them
from human mucins. One of them is the linkage to the polypeptide chain by the hexosamine, GlcNAc,
instead of GalNAc. The main monosaccharide in the mucins oligosaccharides is galactose, and this
may be present in three configurations. Whereas β-d-galactopyranose (β-Galp) was found in the
insect and the human stages of Trypanosoma cruzi, β-d-galactofuranose (β-Galf ) is present only in the
mucins of some strains of epimastigotes and α-d-galactopyranose (α-Galp) characterizes the mucins
of the bloodstream trypomastigotes. The two last configurations confer high antigenic properties.
In this review we discuss the different structures found and we pose the questions that still need
investigation on the exchange of the configurations of galactose.
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1. Introduction

Trypanosoma cruzi, the agent of Chagas disease [1], is an intriguing parasite, not only because of
the morphological and biological changes during its life cycle but also for the drastic modifications
of the sugars at the surface of the parasite. The multiple strains of T. cruzi have been grouped into
seven discrete typing units (DTU) (TcI to TcVI and Tcbat) based on their phenotypic and genetic
properties [2,3].

On the other hand, four main stages can be recognized in T. cruzi, depending on the host being
either the triatomine insect or a mammal [4–6]. In each host a replicative and an infective form
have been described. The replicative forms are the epimastigotes in the insect and amastigotes in
the mammal, whereas trypomastigotes (metacyclic in the insect) are the infective forms. (Figure 1)
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The transmission to mammals occurs when the triatomines, while feeding, deposit feces on the 
skin, and parasites penetrate through the small wounds caused by scratching. Several factors 
influence the success of infection [7]. Oral transmission of T. cruzi followed by mucosa infection has 
also been characterized as highly lethal [8,9]. The mechanisms of exocytosis and endocytosis that take 
place in the host and favor T. cruzi invasion were studied [10]. Before cell invasion, there is an 
interaction of the parasite with the extracellular matrix that results in metabolic modifications. 
Although cell-derived trypomastigotes were used in the study, it is conceivable that changes also 
occur in insect-derived metacyclic trypomastigotes [11]. Once in the cell, trypomastigotes accumulate 
in a parasitophorus vacuole (PV) formed by fusion with the host lysosome, an essential step in order 
to evade the immune response of the host [12,13]. Several biological processes take place in the PV, 
and one of them is due to the action of the T. cruzi trans-sialidase (TcTS), referred later in this review, 
which mediates parasite escape from PVs to cytosol [14,15]. In the PV, the parasites start to transform 
into amastigotes, and differentiation is completed in the cytosol. After several cycles of binary 
division, they differentiate again into trypomastigotes, which upon membrane lysis are released to 
circulation. These blood trypomastigotes may infect other cells or be ingested by a triatomine. In the 
insect, the trypomastigotes must differentiate into epimastigotes to close the cycle. This process starts 
in the stomach; down in the rich medium of the midgut they multiply, and upon reaching the hindgut 
they transform into the infective metacyclic trypomastigotes, which detach from the cuticle and are 
excreted. 

Regarding the polypeptide chains in the mucins, multiple genes encoding mucins have been 
described and grouped into families depending on the host, which may be an insect or a mammal. 
Studies from expert groups on the genes and proteins of T. cruzi mucins have been published [16–
21]. A synthetic peptide from a mucin associated surface protein (MASP) was proposed as a 
candidate for a vaccine against Chagas disease [22]. 

The parasites, in the developmental stages identified in T. cruzi, express characteristic molecules 
that are crucial in the infection. However, the metabolic steps involved in their fate during 
transformations are poorly understood. The recognition of surface glycans by host cells is well 
documented [23–25]. In this review we will focus on the structure and role of the glycans at the 
surface of the parasite in the different developmental stages, mainly epimastigotes and 
trypomastigotes, because studies on glycans of amastigotes are scarce. A conclusion, with an 
addressing of the questions that arise from the current knowledge, is included. 
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The transmission to mammals occurs when the triatomines, while feeding, deposit feces on
the skin, and parasites penetrate through the small wounds caused by scratching. Several factors
influence the success of infection [7]. Oral transmission of T. cruzi followed by mucosa infection has
also been characterized as highly lethal [8,9]. The mechanisms of exocytosis and endocytosis that
take place in the host and favor T. cruzi invasion were studied [10]. Before cell invasion, there is
an interaction of the parasite with the extracellular matrix that results in metabolic modifications.
Although cell-derived trypomastigotes were used in the study, it is conceivable that changes also occur
in insect-derived metacyclic trypomastigotes [11]. Once in the cell, trypomastigotes accumulate in a
parasitophorus vacuole (PV) formed by fusion with the host lysosome, an essential step in order to
evade the immune response of the host [12,13]. Several biological processes take place in the PV, and
one of them is due to the action of the T. cruzi trans-sialidase (TcTS), referred later in this review, which
mediates parasite escape from PVs to cytosol [14,15]. In the PV, the parasites start to transform into
amastigotes, and differentiation is completed in the cytosol. After several cycles of binary division,
they differentiate again into trypomastigotes, which upon membrane lysis are released to circulation.
These blood trypomastigotes may infect other cells or be ingested by a triatomine. In the insect, the
trypomastigotes must differentiate into epimastigotes to close the cycle. This process starts in the
stomach; down in the rich medium of the midgut they multiply, and upon reaching the hindgut they
transform into the infective metacyclic trypomastigotes, which detach from the cuticle and are excreted.

Regarding the polypeptide chains in the mucins, multiple genes encoding mucins have been
described and grouped into families depending on the host, which may be an insect or a mammal.
Studies from expert groups on the genes and proteins of T. cruzi mucins have been published [16–21].
A synthetic peptide from a mucin associated surface protein (MASP) was proposed as a candidate for
a vaccine against Chagas disease [22].

The parasites, in the developmental stages identified in T. cruzi, express characteristic molecules that
are crucial in the infection. However, the metabolic steps involved in their fate during transformations
are poorly understood. The recognition of surface glycans by host cells is well documented [23–25].
In this review we will focus on the structure and role of the glycans at the surface of the parasite in the
different developmental stages, mainly epimastigotes and trypomastigotes, because studies on glycans
of amastigotes are scarce. A conclusion, with an addressing of the questions that arise from the current
knowledge, is included.
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2. Cell-Surface Glycans in T. cruzi

The most abundant molecules in the glycocalix that covers the parasite are glycoinositolphospholipids
(GIPLs) [26,27] and glycosylphosphatidylinositol (GPI)-anchored mucins [28,29] (Figure 2). The GPI
favors the dense packing of the mucins. Epimastigotes and trypomastigotes have approximately
the same number of mucin molecules per cell [30], whereas a significantly higher number of GIPL
molecules was detected in epimastigotes [31]. Other less abundant but unique glycoproteins have
been described in T. cruzi, among them a trans-sialidase, [32–34] and in epimastigotes, a complex
GPI-anchored glycopeptide called NETNES [35].
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Figure 2. Representative glycoconjugates in the surface of T. cruzi epimastigotes.

3. The Glycan in Mucins of T. cruzi

The carbohydrate in the mucins amounts to about 60% of the total mass [30]. The structure of
the O-linked chains in the mucins defines their role in antigenicity and pathogenesis. They perform
a crucial function as acceptors of sialic acid from host glycoconjugates in a reaction catalyzed by
the parasite’s unique trans-sialidase (TcTS), an enzyme extensively studied. The negatively charged
glycans protect the parasite from the action of proteases and other enzymes [32,34,36,37]. This is the
only way for T. cruzi to acquire the sialic acid needed for infection [15,38]. The reaction depends on
the structure of the O-linked sugars in the mucins; more precisely, on the presence of β-Galp terminal
units (Figure 3). Sialylation affects the sialoglyco-profile of both the parasite and the mammal host,
thus modulating immunological events. The natural change of one aminoacid in the peptidic chain
leads to the inactivation of the enzyme; however, this inactive trans-sialidase (iTcTS) shows lectin
properties in relation to Neu5Ac (α2-3-Gal) glycotopes influencing adhesion and invasion of the host
cell [15,39].
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As will be discussed below, the O-linked carbohydrate chains display great variability,
and galactose being the main monosaccharide constituent, it may be present as β-galactofuranoside
or as galactopyranoside in α- and/or β- anomeric configurations, depending on the strain and the
stage of the parasite studied (Figure 4). The microheterogeneity and highly diverse structures of the
O-linked glycans have been described. The higher amount of β-Galp terminal units, available for
sialylation, may determine the virulence of the parasite. On the other hand, β-Galf and α-Galp are
highly antigenic, and thus could provoke an immune response by the host.
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The glycan structures of human and T. cruzi mucins show striking differences [40]. First,
the sugar chains are linked to the protein by α-GlcNAc instead of GalNAc, like in vertebrate
mucins [41,42]. Moreover, apparently GalNAc was not found in T. cruzi glycoconjugates. Accordingly,
the UDP-Glc4′-epimerase is unable to convert UDP-GlcNAc to UDPGalNAc, in contrast to the
human epimerase [43]. The gene encoding the transferase which incorporates the α-GlcNAc from
the nucleotide was identified and called TcOGNT-2 [44]. This gene is not equally expressed in all
stages of the life cycle of T. cruzi. On the differentiation of trypomastigotes to amastigotes inside the
mammal cell, the expression levels of TcOGNT-2 decrease and increase again when, after replication,
the amastigotes differentiate again into trypomastigotes [45]. Several studies have been published
on the sugar structures of mucins, particularly those of epimastigote strains [19,46–51]. Unusual for
surface glycoproteins, in some strains, a significant amount of non-substituted O-linked GlcNAc,
which amounted to about 20% of the glycosylation sites, was found [47,52]. In all of them, the next
sugar added is galactose, and the disaccharide may be further elongated with galactoses to afford
lineal or branched structures [28]. The nucleotide for the incorporation of galactose must be formed
from UDPGlcp by the action of UDPGlcp-4 epimerase, since a galactose transporter could not be
identified [53]. The suppression of the epimerase activity caused important changes in the morphology
and membrane cell structure of the parasite [54].

The configuration of galactose in epimastigotes varies among strains and from the cell-derived
trypomastigotes. Galactofuranose (in the β-configuration) has only been found in the epimastigote
mucins of strains belonging to DTU I or hybrid strains, whereas α-Galp is only present in
trypomastigote mucins. The other anomer, β-Galp, was identified in all strains of epimastigotes
and trypomastigotes, and is recognized by the antibody 2B10 [55]. Apparently, there are no reports
on the structure of glycans from amastigote mucins in agreement with the fact that the enzyme
that incorporates GlcNAc, the first sugar of the O-linked chain, decays upon the differentiation of
trypomastigotes into amastigotes [45]. A stage-specific GPI-anchored glycoprotein called Ssp4 has
been characterized in extracellular amastigotes. These may be found in the extracellular milieu due to
the early lysis of infected cells [56,57], or to cytolysis at sites of infection during the chronic stage of
Chagas disease [58]. The extracellular amastigotes share morphological, immunological and infective
properties with the intracellular counterparts. β-Galactopyranosides were identified as determinants in
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Ssp4 of host–cell interactions [59], but the linkage to the protein and the structure of the oligosaccharides
were not defined.

4. Galactofuranose in Glycoconjugates of T. cruzi Epimastigotes

d-galactose in the pyranose configuration is a common constituent of the oligosaccharides,
glycoproteins and glycolipids of mammals, whereas Galf is found in bacteria, protozoa and fungi,
some of which are pathogenic for humans that lack Galf [60]. In T. cruzi, Galf was first detected in
GIPLs [61], and there are several reports on its presence in the Leishmania species [62,63]. The selective
presence of Galf in mucins of some strains of T. cruzi insect forms [28] is particularly interesting; it was
not described in T. brucei. β-Galactofuranosyl-containing conjugates are also constituents of other
important human pathogens, like Mycobacterium tuberculosis [64] and Aspergillus fumigatus [65,66].
Being absent in mammals, the enzymes involved in the biosynthesis of galactofuranosides are good
targets for chemotherapy [67]. As with other monosaccharides, Galf is incorporated from the nucleotide
UDPGalf, which in turn is produced from UDPGalp by the action of a mutase (UGM) that was first
described in E. coli [68,69] and has been extensively studied [70,71]. Candidate genes (GLF) were
identified in eukaryotes, among them T. cruzi, by combinatorial bioinformatics screening. When GLF
were expressed in E. coli, the proteins showed UGM activity [72]. The crystal structure of T. cruzi UGM
showed differences with the bacterial UGMs [73]. The galactofuranosyl transferases (GALFT) working
for the introduction of Galf from the nucleotide were less studied. Although genes encoding GALFT
have been detected in the genoma of T. cruzi [74], the cloning of proteins with enzymatic activity was
not reported. Comparative analyses of the amino acid sequence of a GALFT from T. rangeli (TrGALFT),
a non-pathogenic trypanosome, revealed identities between 73% and 55% with T. cruzi orthologs,
however antibodies raised against TrGALFT did not recognized proteins in a T. cruzi extract [75].

In T. cruzi, the GIPLs, originally named lipopeptidophophoglycan (LPPG) [76], are the most
abundant glycoconjugates in epimastigotes and metacyclic trypomastigotes (107 molecules/cell) [35].
The full structures were determined for GIPLs of different strains [26,27,77]. A microheterogeneity
in the glycan structure was described. The major structure (65%), found in GIPLs of the Y strain,
with two β-Galf units is shown in Figure 5 [27]. Different from the mucins, as discussed below,
Galf was identified in the GIPLs of epimastigote strains belonging to DTU I and DTU II. An exo
β-galactofuranosidase able to remove Gal from the GIPLs was reported [78].
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In T. cruzi, GIPLs, commonly called GPI anchors, are also found attaching proteins like the mucins
to the cell membrane [79,80]. However, no Galf was detected in the GPI anchor of mucins from the Y
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strain [81] or the G strain [47]. In the last case, the result is not conclusive since the glycan analyzed
was obtained after hydrofluoric acid treatment, which could cleave the labile Galf.

Antibodies directed towards Galf epitopes have been obtained from GIPLs in rabbits [31].
A monoclonal antibody named 10D8 recognizes β-Galf in the mucins of insect-stage strains from DTU
I and some hybrid strains [82,83]; mucins from DTU II are not reactive. Moreover, a single-chain
variable fragment (scFv) derived from mAb-10D8 was engineered to target the mucins of the metacyclic
infective forms. It was proven that scFv-10D8 specifically inhibited parasite invasion of mammalian
cells [84].

5. Structure of O-Glycans in Mucins of Epimastigotes and Metacyclic Trypomastigotes

In the mucins, the O-linked oligosaccharides may be derived from two cores, β-d-Galp (1→4)
GlcNAc (core 1) or β-d-Galf (1→4) GlcNAc (core 2). Higher oligosaccharides, formed by elongation
and/or branching with more galactoses, contribute to the microheterogeneity of the mucins. Only Galp
was found in oligosaccharides derived from core 1. Interestingly, oligosaccharides with core 2 may
contain β-Galf and β-Galp.

On studying the fine structure of the glycans in several strains, it was concluded that core 2 was
found in the mucins of strains belonging to DTU I isolated from sylvatic hosts, namely G strain [47,48],
Colombiana [50], Dm28c [49] and Silvio X10/1 [85], and also in the hybrid Tulahuen strain [51],
classified as DTU VI. A sialylated oligosaccharide was also identified in the mucins from Dm28c.
The structures of the oligosaccharides in the mucins are shown in Table 1.
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In the mucins of the Y strain belonging to DTU II (with a domestic transmission), only β-Galp
was found in the oligosaccharides, which was derived from core 1 (Table 2) [81]. On analyzing the
oligosaccharides obtained from mucins of the Tulahuen strain and CL clones, included in DTU VI [3,94],
controversial results were obtained. In the Tulahuen strain, both cores were identified, giving rise to a
high diversity of oligosaccharides (Table 1). Besides the core 1 disaccharide, the trisaccharide resulting
from the incorporation of sialic acid was identified, whereas the more complex chains in the Tulahuen
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mucins were derived from core 2 [51]. In the CL clones, only core 1 was identified, and the derived
oligosaccharides lack Galf and are similar to those found in the Y strain [19,46,52] (Table 2).

Table 2. O-linked carbohydrates derived from core 1 in the mucins of T. cruzi.

Structure Strain (Ref)
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the insect midgut [95]. It was proven that, at least in part, the interaction with the midgut was due to
the presence of Galf.

The mucins oligosaccharides 1–9 of Table 1 were chemically synthesized as benzyl glycosides [22,86–93]
and used for studies on the adhesion of the parasites to insect tissues [96]. Diverse results were
obtained depending on the strain. It was shown that the branched (Galf )-containing trisaccharide
β-d-Galf (1→4)[β-d-Galp(1→6)]-α-d-GlcNAc is a determinant for the adhesion of Dm28c (DTU I)
parasites to the rectal ampoule of the triatomine vector. Higher oligosaccharides bearing the same
motif were even better competitive inhibitors. In contrast, the synthetic oligosaccharides did not
show any inhibitory effect on the binding of CL Brener (DTU VI) epimastigotes to the triatomine
hindgut, which is in agreement with the lack of Galf in mucins of the CL strain [46]. Moreover, studies
showed that the epimastigote mucins do not bind to the insect midgut [96], which however could
attach GIPLs [95]. Although Galf contributes to both interactions, these results point to different
receptors for GIPLs and mucins. Adhesion to the rectal ampoule is the step before the differentiation
into infective metacyclic trypomastigotes, which then detach from the cuticle. The process would be
caused by changes in the composition of the surface molecules on metacyclogenesis [5,97]. However,
in a comparative analysis of the GPI anchors and the O-linked chains from the mucins of epimastigotes
and metacyclic trypomastigotes of the G strain, it was found that the only difference was in the
lipid structure, which changes from an alkylacyl glycerol to a ceramide in the infective forms [47].
These results suggest that different moieties mediate the adhesion of epimastigotes and the release of
the metacyclic forms.

6. Structure of Glycans in Mucins from Mammalian Cell-Derived Trypomastigotes.
Immunogenicity of the α-Gal Epitope

The unique feature of the O-linked sugars in the mammal-stage parasites is the presence of the
α-d-Galp (1→3) Gal epitope. The hexosamine that links the carbohydrate to the polypeptide chain is
the same in parasites of all stages and strains analyzed. Thus, the smallest oligosaccharide found in
the mucins of mammal trypomastigotes was the trisaccharide α-d-Galp(1→3)-β-d-Galp(1→4)-GlcNAc
(18) (Figure 6). Higher oligosaccharides were released from the mucins via a reductive β-elimination
reaction [98]. Although the structure of the branched oligosaccharides was not fully described,
the methylation studies pointed to branching at C-6 of the GlcNAc with Galp, which should be in
the β-configuration so as to function as an acceptor in the transfer reaction of sialic acid from host
glycoconjugates [33,34,38]. This process is crucial for the pathogenesis of T. cruzi, since the lysis of
trypomastigotes is prevented by sialylation [30,99]. The β-galactose in the branch may be further
substituted with more β-Galp (19) units, since 2,6-di-O-substituted Galp was also identified in the
methylation analysis. The highly relative amount of tetramethyl galactose detected in the mixture
agrees with the presence of terminal Galp necessary for the trans-sialidase reaction [98].
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Variations in the expression of α-Gal in strains belonging to different DTUs were reported,
with higher expressions of this sugar in Y T. cruzi populations, followed by Colombiana and CL
strains [100].
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The oligosaccharides are highly immunogenic due to the presence of the terminal α-Galp units,
which elicit the lytic anti α-Gal antibodies found in sera from patients with chronic Chagas disease.
The α-d-Galp(1→3)Gal epitope is common in the glycoconjugates of non-primate mammals, prosimians
and New World monkeys, but is not found in Old World monkeys, apes or humans due to an
evolutionary mutation, which resulted in the inactivation of the α-1,3-galactosyltransferase gene [101].
For that reason, healthy humans also produce α-Gal antibodies as a response to carbohydrate antigens
from bacteria in normal gastrointestinal flora [102], however the response to the α-Gal epitope is much
stronger in patients infected with T. cruzi [98,103].

Neoglycoconjugates containing the α-Gal epitope have been chemically synthesized and evaluated
as diagnostic tools for Chagas disease, and also as candidates for therapeutic intervention [103–109].
It was shown that the trisaccharide α-d-Galp(1→3)-β-d-Galp(1→4)-β-d-Glcp, with glucose in the
reducing end instead of GlcNAc, was as effective for the recognition of chagasic antibodies as the
natural trisaccharide 18, and easier to synthesize [103]. α-Gal immunity has been studied in other
parasites, such as Leishmania major and Plasmodium falciparum. Neoglycoproteins containing α-Gal
have been described as diagnostic tools for cutaneous leishmaniasis [110] and for protection against the
parasite [111,112]. In Plasmodium falciparum, the agent of malaria, terminal α-linked galactosyl units,
recognized by immune sera, are present in carbohydrate chains of glycoproteins [113,114].

7. Potential Role of Galectins in the Infection of T. cruzi

In view of the relation of the terminal β-galactopyranosyl units in the parasite to sialylation
by TcTS, several groups have studied the role of galectins (Gal) in the infection, mainly focusing on
Galectin 3. The interactions of galectins with glycans were considered a fundamental event in pathogen
recognition [115]. A mucin of 45kDa was quickly identified as a receptor for Gal 3 [116,117], and it
was shown that a high Gal 3 expression enhances cell recognition of parasites [118,119]. Recent work
showed that Gal 3 is important in the survival of the parasite during infection [120]. The role of Gal
1 in modulating the outcome of the infection was also studied [121,122]. In relation to the different
glycan structures identified in the mucins depending on the strains and stages of T. cruzi, the work of
Pineda et al. [25] investigated the binding of galectins 1, 3, 4, 7 and 8 with 14 strains of DTUs I–VI of T.
cruzi in different stages of its life cycle. The binding profile for the six DTUs agreed with the genetic
classification. They found that the galectins bind preferentially to amastigotes. Although amastigotes
lack mucins, β-galactopyranosides have been identified as determinants for host–cell interactions in
the specific glycoprotein Ssp4 [59]. The fine glycan structure of Ssp4 was not reported. The higher
recognition of amastigotes could be due to the lack of sialylation of the glycans, since no TcTS was
detected in these forms. The authors did not find differences between cell-derived trypomastigotes
and insect metacyclic trypomastigotes.

8. Conclusions and Perspectives

Carbohydrates in the surface of microbial pathogens have received, in the last few decades, special
attention as targets for diagnosis and vaccine development. In T. cruzi, the problems encountered
in generating mutants defective in glycosylation leads to chemical or chemoenzymatic methods for
synthesizing the oligosaccharides and neoglycoconjugates for immunological studies. Several surface
molecules in the parasite and in the host have been implicated in the adhesion and infection.

The two partners of a crucial interplay in T. cruzi, the mucins and the trans-sialidase, have been the
most studied. They were called mucins because of the high content of sugar in their O-linked chains,
although their structures differ significantly from the human mucins, as discussed in the text. One of
the differences is that GlcNAc instead of GalNAc links the O-chain to the protein [41,42,44]. The lack
of UDP-GlcNAc:polypeptide α-N-acetylglucosaminyl transferase in the intracellular amastigote stage
points to the absence of mucins in these forms. Accordingly, no trans-sialidase (TS) genes were reported
in these intracellular parasites [123]. One intriguing feature is the presence of galactose in three possible
configurations, depending on strains and life stages. Galf is only present in the stages that live in the
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insect vector, whereas α-Galp is characteristic of blood trypomastigotes; both may generate specific
antibodies for the structures that carry them. On the other hand, Galf is not present in the mucins of
all strains, and it was only found in DTU I and in the hybrid Tulahen strain (DTU VI) and is conserved
when epimastigotes differentiate into metacyclic trypomastigotes. Some of the oligosaccharides of all
strains and stages are branched with terminal β-Galp, which provides the site for sialylation by the TcTS.
The expression of TcTS is lower in metacyclic trypomastigotes than in mammal trypomastigotes;
however, both the insect and the cell-derived trypomastigotes are able to invade mammalian cells.
Sialylation differently affects parasites in each infective stage [83]. Sialyl external units in metacyclic
forms impair the interaction with mammal cells. In fact, it was shown that the treatment of metacyclic
T. cruzi of the G strain with neuraminidase increases the infectivity [124], whereas several groups
have reported on the positive effects of the sialylation of blood trypomastigotes on the adhesion and
invasion of mammal cells [29]. These reports point to different receptors in the mammal cells for both
kinds of trypomastigotes. On the metacyclogenesis of epimastigotes, the mucin glycans conserve their
structure, which have important differences from the mammal trypomastigotes. This topic deserves
further investigations. β-Galactofuranosides are the sugar epitopes of some strains, and as far as we
know no human lectins for Galf have been described. The level of further substitution with β-Galp
units of the O-chains, determining a glycophenotype, may modulate the infection.

The Galf in the branched oligosaccharides of epimastigote mucins is involved in the adhesion
to the hindgut of the insect, where differentiation to the infective metacyclic forms takes place [96].
We also considered how to explain the adhesion of strains that lack Galf in the mucins, like the Brenner
strain. One possibility is that attachment is mediated by the Galf in the GIPLs, since it is present in all
the strains [77]. It was proven that upon starvation of UDP Galp, Galf incorporates into the GIPLs in
preference over the mucins [54].

Several molecules on the parasite and the host are involved in mammal infection by metacyclic
trypomastigotes. In fact, once in the mammal host, strains belonging to DTU I cause lower parasitemia
titers than metacyclic forms from strains Y and CL, which do not contain Galf in their mucins.
The first question was if the presence of Galf influences the sialylation of the β-Galp present in the
oligosaccharides. In vitro studies showed that Galf does not interfere with sialylation [125]. If these
results are extended to the in vivo process, it is possible that once in the cell, the Galf may trigger the
production of antibodies that impair infection. Moreover, the mucins of mammal trypomastigotes
of representative stages lack Galf, and it was reported that on the cell, metacyclic mucins are capped
and extensively released in the parasitophorus vacuole [126]. The shedding of the mucins and
other membrane components from different stages was reported [127], and this process may precede
the construction of new mucins in blood trypomastigotes for adaptation to the new environments.
In this respect, mucins were not detected in the intermediate amastigote stage.

The only monosaccharide transferase for mucins that has been identified is the UDP-GlcNAc:
polypeptide α-N-acetylglucosaminyl transferase. An exo-β-galactofuranosidase has been purified from
epimastigote lysates by affinity chromatography [78], but it was not fully characterized. This hydrolase
could be important for the regulation of the interaction of the parasite with the insect tissues.
The galactose transferases that introduce the galactoses in different configurations and linkages in
the mucins, as well as the membrane receptors of the hosts, are interesting topics for further studies.
The unique structures of the glycans point to them as selective targets for chemotherapy.
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