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Abstract

In a recent clone-tracking experiment, millions of uniquely tagged hematopoietic stem cells

(HSCs) and progenitor cells were autologously transplanted into rhesus macaques and

peripheral blood containing thousands of tags were sampled and sequenced over 14 years

to quantify the abundance of hundreds to thousands of tags or “clones.” Two major puzzles

of the data have been observed: consistent differences and massive temporal fluctuations

of clone populations. The large sample-to-sample variability can lead clones to occasionally

go “extinct” but “resurrect” themselves in subsequent samples. Although heterogeneity in

HSC differentiation rates, potentially due to tagging, and random sampling of the animals’

blood and cellular demographic stochasticity might be invoked to explain these features, we

show that random sampling cannot explain the magnitude of the temporal fluctuations.

Moreover, we show through simpler neutral mechanistic and statistical models of hemato-

poiesis of tagged cells that a broad distribution in clone sizes can arise from stochastic HSC

self-renewal instead of tag-induced heterogeneity. The very large clone population fluctua-

tions that often lead to extinctions and resurrections can be naturally explained by a genera-

tion-limited proliferation constraint on the progenitor cells. This constraint leads to bursty cell

population dynamics underlying the large temporal fluctuations. We analyzed experimental

clone abundance data using a new statistic that counts clonal disappearances and provided

least-squares estimates of two key model parameters in our model, the total HSC differenti-

ation rate and the maximum number of progenitor-cell divisions.

Author summary

Hematopoiesis of virally tagged cells in rhesus macaques is analyzed in the context of a

mechanistic and statistical model. We find that the clone size distribution and the
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temporal variability in the abundance of each clone (viral tag) in peripheral blood are con-

sistent with (i) stochastic HSC self-renewal during bone marrow repair, (ii) clonal aging

that restricts the number of generations of progenitor cells, and (iii) infrequent and small-

size samples. By fitting data, we infer two key parameters that control the level of fluctua-

tions of clone sizes in our model: the total HSC differentiation rate and the maximum pro-

liferation capacity of progenitor cells. Our analysis provides insight into the mechanisms

of hematopoiesis and a framework to guide future multiclone barcoding/lineage tracking

measurements.

Introduction

Hematopoiesis is a process by which hematopoietic stem cells (HSCs) produce all the mature

blood in an animal through a series of proliferating and differentiating divisions [1]. Mainte-

nance of balanced hematopoietic output is critical for an organism’s survival and determines

its response to disease and clinical procedures such as bone marrow transplantation [2–5].

How the relatively small HSC population generates more than 1011 cells of multiple types daily

over an organism’s lifetime has yet to be fully understood. HSCs are defined primarily by their

function but are often quiescent [6]. In vivo, it is hard to track the dynamics of individual

HSCs, while HSCs in vitro do not typically proliferate or differentiate as efficiently. Therefore,

the dynamics of HSCs can be inferred only from analyses of populations of progenitors and

differentiated blood cells [7] and it is useful to investigate HSC dynamics through mathemati-

cal modeling and simulations [8–10].

While most studies model population-level HSC behavior [5, 11, 12], certain aspects of

HSCs, such as individual-level heterogeneity in repopulation and differentiation dynamics,

have to be studied on a single-cell or clonal level [13]. Single HSC transplant mouse data [14]

and clonal tracking of HSCs [15, 16] in mice have shed some light on repopulation dynamics

under homeostasis and after bone marrow transplantation [5, 17, 18]. However, murine stud-

ies usually involve only one or a few clones. How each individual HSC contributes to the blood

production process over long times in much larger human and non-human primates is less

clear and more difficult to study. Also, unlike in mice, there is no way to isolate and mark HSC

populations in human [19].

Recently, results of a long-term clonal tracking of hematopoiesis in normal-state rhesus

macaques has been made available [13, 20]. The experiment extracted and uniquely

“labelled” hematopoietic stem and progenitor cells (HSPCs) from four rhesus macaques

with viral tags that also carry an enhanced green fluorescent protein gene. After autologous

transplantation, if any of the tagged HSPCs divide and differentiate, its progeny will inherit

their unique tags and ultimately appear in the peripheral blood. Blood samples were drawn

every few months over 4 − 14 years (depending on the animal) and the sampled cells were

counted and sequenced. Of the *106 − 107 unique HSPC tags transplanted, *102 − 103

clones were detected in the sampled peripheral blood. In the original paper describing the

clonal tracking experiment, Kim et al. [13] observed “A small fraction (4 − 10%) of tagged

clones predominately contribute to a large fraction (25 − 71%) of total blood repopulation.”

They described the fluctuations of tags that appeared in each sample as “waves of clones”,

but did not address why some clones can disappear at certain times and reappear in a latter

sample.

In this study, we seek to better understand the observed clone size distributions and the

large temporal variability in clonal populations. To address these observations, we ask: Is
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heterogeneity in HSCs necessary for peripheral blood clone size heterogeneity, or can a neutral

model explain clone size differences? Are clones that disappear and reappear from sample to

sample simply missed by random blood sampling, or do other mechanisms of temporal vari-

ability need to be invoked?

Unlike other previous models that describe the evolution of lineages of different cell types

and their regulation [8–10, 21], we will consider simpler neutral models that describe the

dynamics of specifically granulocyte populations carrying different tags. Of central interest is

the competition among the thousands of clones under a neutral environment that gives rise to

fluctuations, extinctions, and resurrections in individual clone populations. Even when con-

sidering only one cell type, realistic mathematical models may need to include complex multi-

level biochemical feedback mechanisms of regulation [8, 22–27]. Many mechanisms may

contribute to temporal fluctuations, including extrinsic noise and heterogeneity of HSCs, pro-

genitors, or mature granulocytes. Large time gaps between samplings (5 − 11 months) and

small sample sizes also add to the uncertainty of the underlying dynamics. Trying to infer all

possible mechanisms and associated parameters from the experimental data would essentially

be an overfitting problem. In order to feasibly compare with experimental data, our modeling

philosophy will be to recapitulate these complexities into simple, effective models and infer

parameters that subsume some of these regulatory effects. This approach and level of modeling

are similar to those taken by e.g., Yang, Sun, and Komarova [28, 29].

After careful consideration of a number of key physiological mechanisms, we hypothesize

that stochastic HSC self-renewal, generation-limited progenitor cell proliferation, and small-

size sampling frequency statistics provide the simplest reasonable explanation for the

observed clonal size variability and large temporal fluctuations. HSCs that are generated

from self-renewal of the founder population share the same tag as their founder HSC. Thus,

during intense self-renewal after myeloablative treatment and HSPC transplantation, each

originally transplanted HSCs begets a clonal HSC subpopulation. Subsequently, heteroge-

neous clone sizes are stochastically generated even though each tag was initially represented

by only a single cell. These expanded HSC clones then go on to repopulate the clones in the

progenitor and mature blood population, which are also distinguishable by their corre-

sponding tags.

Relative to HSCs, progenitor cells have limited proliferative potential that can explain the

apparent extinctions of clones in blood samples. This limited proliferation potential can be

thought of as an “aging” process. Different types of aging, including organism aging [23, 30,

31], replicative senescence of stem cells [32], and generation-dependent birth and death rates,

have been summarized by Edelstein et al. [33]. Here, the clonal “aging” mechanism we invoke

imposes a limit to the number of generations that can descend from each newly created (from

HSC differentiation) “zeroth generation” progenitor cell. Possible sources of such a limit

include differentiation-induced loss of division potential [34] and telomere shortening (as in

the Hayflick limit) [35–37]. Mathematically, genealogical aging can be described by tracking

cell populations within each generation. After a certain number of generations, progenitor

cells of the final generation stop proliferating and can only differentiate into circulating mature

cells or die.

In the following sections, we first present the mathematical equations and corresponding

solutions (whenever possible) of a model that incorporates the above processes. We then

develop a new statistical measure that tracks the numbers of absences of clones across the

samples. Measured clone abundances of animal RQ5427 are statistically analyzed within

our mechanistic model to infer estimates for key model parameters. The data and correspond-

ing statistical analyses for animals 2RC003 and RQ3570 are also provided in the Results

section.

Clonal tracking of hematopoiesis in rhesus macaque
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Materials and methods

Below, we describe available clonal abundance data, mechanistic models, and a statistical

model we will use for parameter inference.

Clone abundance data

In the experiments of Kim et al. [13], cells in samples of peripheral blood were sequenced and

counted to extract ŜþðtjÞ, the total number of EGFP+ tagged cells in sample 1� j� J taken at

time tj. After PCR amplification and sequencing, f̂ iðtjÞ, the relative abundance of the ith tag

among all sampled, tagged cells is also quantified. The “^” notation will henceforth indicate

experimentally measured quantities.

Within mature peripheral blood, lymphocytes such as T cells and B cells proliferate or

transform in response to unpredictable but clone-specific immune signals [38]. They also vary

greatly in their lifespans, ranging from days in the case of regular T and B cells to years in the

case of memory B cells. On the other hand, mature granulocytes do not proliferate in periph-

eral blood and have relatively shorter life spans [7]. Granulocyte dynamics can thus be ana-

lyzed with fewer confounding factors [11]. Thus, in this paper, we restrict our analysis to

granulocyte repopulation and extract all variables, including ŜþðtjÞ and f̂ iðtjÞ described above,

that are associated exclusively with granulocyte populations.

In Fig 1(a), we plot the total numbers of sampled granulocytes from one of the macaques,

RQ5427. The subpopulation of EGFP+ granulocytes and the subset of EGFP+ granulocytes

that were extracted for PCR amplification and analysis are also plotted. Data for two other ani-

mals, 2RC003 and RQ3570, are qualitatively similar. Blood samples from a fourth animal,

95E132, were not separated in to granulocyte and peripheral blood mononuclear cells

(PBMCs) before sequencing. Thus, clonal abundances for granulocytes are not available

from 95E132. There are only three animals for which we can analyze clonal abundances of

granulocytes. For more specifics on the data, see supplemental files of the original experimen-

tal paper [13]. As shown in Fig 1(b), not only are the clone abundances f̂ iðtjÞ heterogeneous,

Fig 1. Blood sample data from animal RQ5427 [13]. (a) The total numbers of sampled granulocytes (blue triangles), EGFP+ granulocytes

(green squares), and the subset of EGFP+ granulocytes that were properly tagged and quantifiable were extracted for PCR amplification and

analysis (black circles). This last population defined by ŜþðtjÞ is used to normalize clone cell counts. We excluded the first sample at month 2

in our subsequent analysis so, for example, the sample at month 56 is labeled the 7th sample. There were 536 clones detected at least once

across the eight samples taken over 67 months comprising an average fraction 0.052 of all granulocytes. The abundances of granulocyte

clones are shown in (b). The relative abundance f̂ iðtjÞ of granulocytes from the ith clone measured at month tj is indicated by the vertical

distances between two adjacent curves. The relative abundances of individual clones feature large fluctuations over time. “Extinctions”

followed by subsequent “resurrections,” were constantly seen in certain clones as indicated by the black circles in (b) and in the inset (c).

https://doi.org/10.1371/journal.pcbi.1006489.g001
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but individual clone abundances vary across samples taken at different times. The variation is

so large that many clones can go extinct and reappear from one sample to another, as shown

in Fig 1(c). Since large numbers of progenitor and mature cells are involved in blood produc-

tion, the observed clone size fluctuations cannot arise from intrinsic demographic stochasticity

of progenitor- and mature-cell birth and death. Moreover, we will show later in the Results

section that random sampling alone cannot explain the observed clonal variances and mecha-

nisms that involve other sources of variation are required.

Nomenclature and lumped mechanistic model

Fig 2 depicts our neutral model of hematopoiesis which is composed of five successive stages,

or compartments, describing the initial single-cell tagged HSC clonal populations immediately

after transplantation (Compartment 0), the heterogeneous HSC clonal populations after a

short period of intense self-renewal (Compartment 1), the transit-amplifying progenitor cell

compartment (Compartment 2), the peripheral blood pool (Compartment 3), and the sampled

peripheral blood (Compartment 4), respectively. Each distinct color or shape in Fig 2 repre-

sents a distinct clone of cells with the same tag.

In each compartment, relevant parameters include (using Compartment 1 as example): the

total cell count H(t), the untagged cell count H−(t), the tagged cell count H+(t), the total

Fig 2. Schematic of a neutral multi-stage or multi-compartment hematopoiesis model. BM and PB refer to bone marrow and

peripheral blood, respectively. Cells of the same clone have the same color. White circles represent untagged cells which were not

counted in the analysis. Stages 0, 1, and 2 describe cell dynamics that occur mainly in the bone marrow. Stage 1 describes HSC clones

(Ch = 6 in this example) after self-renewal that starts shortly after transplantation with rate rh. After self-renewal, the relatively stable

HSC population (H+ = 20 in this example) shifts its emphasis to differentiation (with per-cell differentiation rate α). Larger clones in

Stage 1 (e.g., the circular blue clone, hblue = 4) will have a larger total differentiation rate αhblue while smaller clones (e.g., the red

hexagonal clone, hred = 1) will have smaller αhred. The processes of progenitor-cell proliferation (with rate rn) and maturation (with

rate ω) in Compartments 2 and 3 are considered deterministic because of the large numbers of cells involved. The darker-colored

symbols correspond to cells of later generations. For illustration, the maximum number of progenitor-cell generations allowed is

taken to be L = 4. Compartment 4 represents a small sampled fraction (ε(tj)� 2.8 × 10−5 − 2 × 10−4) of Compartment 3, the entire

peripheral blood of the animal. In the example pictured above, Cs = 4. Such small samples can lead to considerable sampling noise but

is not the key driver of sample-to-sample variability.

https://doi.org/10.1371/journal.pcbi.1006489.g002
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number of tagged clones Ch(t), and the number hi(t) of HSCs carrying the ith tag. These quanti-

ties are related through
PCh

i¼1
hiðtÞ ¼ HþðtÞ � HðtÞ � H� ðtÞ.

In the progenitor pool, the total number of cells and the number with tag i are denoted N(t)
and ni(t), respectively. Further resolving these progenitor populations into those of the ℓth gen-

eration, we define N(ℓ)(t) and nð‘Þi ðtÞ. In the mature granulocyte pool, the total granulocyte pop-

ulation and that with tag i are labelled M(t) and mi(t). In the sampled blood compartment, we

use S(tj), S+(tj), si(tj), and Cs(tj) to denote, at time tj, the total number of sampled cells, the num-

ber of tagged sampled cells, the total number of tagged cells of clone i, and the total number of

clones in the sample, respectively. In Compartment 4, we further define fi(tj) = si(tj)/S+(tj) to

denote the relative abundance of the ith clone among all tagged clones.

By lumping together all clones (tagged and untagged) in each compartment, we can readily

model the dynamics of total populations in each pool. After myeloablative treatment, the num-

ber of BM cells, including HSCs, is severely reduced. Repopulation of autogolously trans-

planted HSCs occurs quickly via self-renewal until their total number H(t) reaches a steady-

state. The repopulation of the entire HSC population and the subsequent entire progenitor and

mature cell populations may be described via simple deterministic mass-action growth laws

dHðtÞ
dt
¼ ðrhðHðtÞÞ � mhÞHðtÞ; ð1Þ

dNð‘ÞðtÞ
dt

¼

(
aHðtÞ � ðrð0Þn þ m

ð0Þ
n ÞN

ð0ÞðtÞ; ‘ ¼ 0;

2rð‘� 1Þ
n Nð‘� 1ÞðtÞ � ðrð‘Þn þ m

ð‘Þ
n ÞN

ð‘ÞðtÞ; 1 � ‘ � L � 1;

2rðL� 1Þ
n NðL� 1ÞðtÞ � ðoþ mðLÞn ÞN

ðLÞðtÞ; ‘ ¼ L;

ð2Þ

dMðtÞ
dt
¼ oNðLÞðtÞ � mmMðtÞ: ð3Þ

HSC self-renewal is a regulated process involving signaling and feedback [22–24, 39, 40] and

rh may be a complicated function of many factors; however, we will subsume this complexity

into a simple population-dependent logistic growth law rh(H(t))� ph(1 −H(t)/Kh) and assume

a constant death rate μh. Alternatively, other studies have employed Hill-type growth functions

[12, 28].

We assume the per cell HSC differentiation rate α is independent of the tag and that differ-

entiation is predominantly an asymmetric process by which an HSC divides into one identical

HSC and one progenitor cell that commits to differentiation into granulocytes. An initial gen-

eration-zero progenitor cell further proliferates with rate rð0Þn , contributing to the overall pro-

genitor-cell population. Subsequent generation-ℓ progenitors, with population N(ℓ), proliferate

with rate rð‘Þn until a maximum number of generations L is reached. By keeping track of the

generation index ℓ of any progenitor cell, we limit the proliferation potential associated with

an HSC differentiation event by requiring that any progenitor cell of the final Lth generation to

terminally differentiate into peripheral blood cells with rate ω or to die with rate mðLÞn . For sim-

plicity, we neglect any other source of regulation and assume α, mð‘Þn ¼ mn, rð‘Þn ¼ rn and ω are

all unregulated constants.

Our model analysis and data fitting will be performed using clone abundances sampled a

few months after transplantation under the assumption that granulopoiesis in the animals has

reached steady-state [4] after initial intensive HSC self-renewal. Steady-state solutions of Eqs

(1), (2) and (3) are defined by Hss, Nð‘Þss , and Mss. The first constraint our model provides relates

Clonal tracking of hematopoiesis in rhesus macaque
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these steady-state total populations through

Mss ¼
o

mm
NðLÞss ¼

o

mm

aHss

ðoþ m
ðLÞ
n Þ

2rn
rn þ mn

� �L
" #

�
Assb

mm
; ð4Þ

where we have defined

Ass � aHss; and b �
o

oþ m
ðLÞ
n

2rn
rn þ mn

� �L

ð5Þ

as the total rate of HSC differentiation and the average number of granulocytes generated per

HSC differentiation, respectively. These constraints also hold for the virally tagged, EGFP

+ subset (about 5% − 10%) of HSCs, e.g., Mþ
ss ¼ Aþssb=mm and Aþss ¼ aH

þ
ss . Since Mþ

ss is inferred

from the experiment, Eq (4) places a constraint between the total differentiation rate of labeled

HSCs Aþss ¼ aH
þ
ss and the typical per-differentiation amplification number β. This steady-state

constraint will eventually be combined with statistics of the fluctuating clone abundances data

to infer estimates for the underlying model parameters.

Clone-resolved mechanistic model

Although the lumped model above provides important constraints among the steady-state

populations within each compartment, the clone-tracking experiment keeps track of the popu-

lations of sampled granulocytes that arise from “founder” HSCs that carry the same tag. Thus,

we need to resolve the lumped model into the clonal subpopulations described by hi, n
ð‘Þ

i , and

mi.

Even though the total HSC populations H(t) and H±(t) are large, the total number of clones

Ch� 1 in compartment 1 is also large, and the number of cells with any tag (the size of any

clone) can be small. The population of cells with any specific tag i is thus subject to large demo-

graphic fluctuations. Thus, we model the stochastic population of HSCs of any tag using a mas-

ter equation for P(h, t), the probability that at time t the number of HSCs of any clone is h:

dPðh; tÞ
dt

¼ mhðhþ 1ÞPðhþ 1; tÞ þ ðh � 1ÞrhðHÞPðh � 1; tÞ � ½mh þ rhðHÞ�hPðh; tÞ: ð6Þ

Recall that immediately after transplantation, each HSC carries a distinct tag before self-

renewal (hi(0) = 1) leading to the initial condition Pðh; 0Þ ¼ 1ðh; 1Þ, where the indicator func-

tion 1ðx; yÞ ¼ 1 if and only if x = y. Because h = 0 is an absorbing boundary, clones start to dis-

appear at long times resulting in a decrease in the total number Ch(t) of HSC clones. Before

this “coarsening” process significantly depletes the entire population, each clone constitutes a

small subpopulation among all EGFP+ cells, h(t)�H(t), and the stochastic dynamics of the

population h of any clone can be approximated by the solution to Eq (6) with the logistic self-

renewal rate rh(H)� ph(1 −H/Kh) replaced by rh(t) = ph(1 −H(t)/Kh). Hence, evolution of

each HSC clone follows a generalized birth-death process with time-dependent birth rate and

constant death rate. We show in Appendix A in S1 Appendix that for H� 1 the solution to

Eq (6) can be written in the form [41]

Pðh; tÞ ¼ ð1 � Pð0; tÞÞð1 � lðtÞÞlðtÞh� 1
; ð7Þ

where 0� λ(t)< 1 depends on rh(t) and μh. Here, λ(t) determines “broadness” (level of clone

size heterogeneity) of the clone size distribution. For the relevant initial condition of unique

tags at t = 0, λ(0) = 0 and λ(t!1)!1. When λ(t) is small, the distribution is weighted

towards small h. For λ(t) = 0, Pðh; tÞ ¼ 1ðh; 1Þ which was the limit used in Goyal et al. [4] to
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assume no HSC self-renewal after transplantation. In the limit λ(t)!1, the distribution

becomes flat and a clone is equally likely to be of any size 1� h�H.

To further resolve the progenitor population into cells with distinct tags, we define n(ℓ)(t) as

the number of generation-ℓ progenitor cells carrying any one of the viral tags. The total num-

ber of progenitor cells with a specific tag is nðtÞ �
PL

‘¼0
nð‘ÞðtÞ. Since the sizes hi of individual

clones may be small, differentiation of HSCs within each clone may be rare. However, since

the size of each tagged progenitor clone quickly becomes large (n(t)� 1), we model the

dynamics of n(ℓ)(t) using deterministic mass-action growth laws:

dnð‘ÞðtÞ
dt

¼

(
PoissonðahðtÞÞ � ðrn þ mnÞnð0ÞðtÞ; ‘ ¼ 0;

2rnnð‘� 1ÞðtÞ � ðrn þ mnÞnð‘ÞðtÞ; 1 � ‘ � L � 1;

2rnnðL� 1ÞðtÞ � ðoþ mðLÞn Þn
ðLÞðtÞ; ‘ ¼ L:

ð8Þ

Our model is neutral (all clones have the same birth, death, and maturation rates), so these

equations are identical to Eq (2). However, since creation of the zeroth-generation subpopula-

tion n(0)(t) derives only from differentiation of HSCs of the corresponding clone, which has a

relatively small population h(t), we invoke a Poisson process with rate αh(t) to describe sto-

chastic “injection” events associated with asymmetric differentiation of HSCs of said clone.

Each discrete differentiation event leads to a temporal burst in n(ℓ)(t).
Finally, the dynamics of the population m(t) of any granulocyte clone in the peripheral

blood are described by an equation analogous to Eq (3):

dmðtÞ
dt
¼ onðLÞðtÞ � mmmðtÞ; ð9Þ

where we have assumed that only the generation-L progenitor cells undergo terminal differen-

tiation with rate ω. An alternative model allows progenitor cells of earlier generations (ℓ< L)

to also differentiate and circulate but does not give rise to qualitatively different results (See

Appendix B in S1 Appendix).

To study the dynamics of the burst in nð0Þb ðtÞ immediately following a single, isolated asym-

metric HSC differentiation event at t = 0, we set the initial condition

nð0Þb ð0Þ ¼ 1; nð‘Þb ð0Þ ¼ 0 ð1 � ‘ � LÞ, remove the Poisson (αh(t)) term in Eq (8) and find,

nð‘Þb ðtÞ ¼

(
ð2rntÞ

‘

‘!
e� ðrnþmnÞt; 0 � ‘ � L � 1;

2rn

Z t

0

nðL� 1Þ

b ðtÞe� oðt� tÞdt; ‘ ¼ L:
ð10Þ

Bounded analytic solutions to nðLÞb ðtÞ involving the lower incomplete gamma function can be

found. Upon using the solution nðLÞb ðtÞ in Eq (9) the mature blood population within a clone

associated with a single HSC clone differentiation even is described by

mbðtÞ ¼ o
R t

0
nðLÞb ðtÞe� mmðt� tÞdt: ð11Þ

The populations associated with a single HSC differentiation event, nð‘Þb ðtÞ and mb(t), are plot-

ted below in Fig 3. of the Results section. Then, the total number mi(t) of mature granulocytes

with the ith tag at time t is obtained by summing up all mb(t − τk) bursts initiated by HSC dif-

ferentiations at separate times τk� t with the ith tag.

Besides the burst dynamics described above, the data shown in Fig 1(a) are subject to the

effects of small sampling size, uncertainty, and bias induced by experimental processing such
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as PCR amplification, and data filtering. In this experimental system, PCR generates a smaller

uncertainty than blood sampling so we focus on the statistics of random sampling. Each blood

sample drawn from monkey RQ5427 contains about 10μg of genomic DNA [13]. After PCR

amplification, deep sequencing, and data filtering, the total number ŜþðtjÞ of quantifiable tags

corresponds to *5 × 103 − 3 × 104 tagged cells. The sample ratio is defined by εðtjÞ �

ŜþðtjÞ=M̂þ
ss ¼ 3� 10� 5 � 2� 10� 4 where M̂þ

ss � 1:6� 108 is the estimated total number of

tagged granuloctyes in the peripheral blood. The number of sampled cells with the ith tag from

the jth sample then approximately follows a Binomial distribution B SþðtjÞ;
miðtjÞ
Mþss

� �
�

BðmiðtjÞ; εðtjÞÞ in our model. To quantitatively explore the feature of apparent extinctions of

clones from a sample, we calculate the probability that no peripheral blood cell from clone i is

found in a sample of size

SþðtjÞ⪡Mþ
ss : PðfiðtjÞ ¼ 0jmiðtjÞÞ ¼

Mþ

ss � miðtjÞ
SþðtjÞ

 !

=
Mþ

ss

SþðtjÞ

 !

� exp � miðtjÞSþðtjÞ
Mþss

� �
. Thus, if

miðtjÞ < ε� 1 ¼ M̂þ
ss=Ŝ

þðtjÞ � 2� 104 the ith clone is likely to be missed in the sample. The

value ε−1 is also used to threshold the population mb(t) to define the measurable duration Δτb

of a burst (as indicated in Fig 3(a)).

Parameter values

Parameters determined by the experimental procedure or estimated directly from the experi-

ments include the weight of the animal, the sampling times tj, the EGFP+ ratio, and the total

number of tagged cells detected in each sample ŜþðtjÞ. Since the tagged granulocyte population

M̂þðtjÞ does not fluctuate much across samples, we use its average for M̂þ
ss , and the relevant

experimental parameters for each animal become yexp ¼ fM̂þ
ss; Ŝ

þ
i ðtjÞ; tjg. These will also be

used as inputs to our models.

Fig 3. (a) A burst of cells is triggered by a single HSC differentiation event at time t = 0. A plot of representative solutions to

Eqs (10) and (11) for rn = 2.5, L = 24, mn ¼ m
ðLÞ
n ¼ 0, μm = 1, Aþss ¼ 14:7, and ω = 0.16. Curves of different colors represent

nð‘Þb ðtÞ, the progenitor cell population within each generation ℓ = 0, 1, 2, . . ., L, and mb(t), the number of mature

granulocytes associated with the differentiation burst. All populations rise and fall. (b) Realizations of peripheral blood (PB)

populations in a single clone arising from multiple successive differentiation events. The fluctuating populations are

generated by adding together mb(t) associated with each differentiation event. Time series resulting from small (hi/H+ =

0.0003) and large (hi/H+ = 0.03) HSC clones are shown. Small clones are characterized by separated bursts of cells, after

which the clone vanishes for a relatively long period of time. The number of mature peripheral blood cells of large clones

reaches a relatively constant level and almost never vanishes.

https://doi.org/10.1371/journal.pcbi.1006489.g003
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Our multi-stage model also contains many other intrinsic parameters, including

ymodel ¼ fl;Ch; a; rn; mn; m
ðLÞ
n ; L;o; mmg. We first found parameter values that have been reliably

independently measured. Some parameters were measured in human clinical studies rather

than in rhesus macaques but can nonetheless serve as reasonable approximations for non-

human primates due to multiple physiological similarities [42]. These estimates can certainly

be improved once direct measurements on rhesus macaques become available. Model parame-

ters, their estimates, and the associated references are given in Table 1 below.

Model properties and implementation

Using parameter estimates, we summarize the dynamical properties of our model and describe

how the key model ingredients including stability of HSC clone distributions and subsequent

“bursty” clone dynamics that follow differentiation can qualitatively generate the observed

clone-size variances.

Slow homeostatic birth-death of HSCs—The first important feature to note is the slow

homeostatic birth-death of HSCs. After the bone marrow is quickly repopulated, rh(H(t)) −
μh� 0, and stochastic self-renewal slows down. Because h = 0 is an absorbing state, the size

distribution of the clones may still slowly evolve and coarsen due to stochastic dynamics, lead-

ing to the slow successive extinction of smaller clones. The typical timescale for overall

changes in h can be estimated by approximating rh(Hss)� μh [46] and considering the mean

time T(h) of extinction of a clone initially at size h⪡Hss. The standard result given in Gardiner

[47] and also derived in Appendix C in S1 Appendix is TðhÞ � h
mh

1þ ln Hss
h

� �
≳102 months (for

μh = 10−2, Hss = 104, h = 101; see Table 1 for applicable values). Since this timescale is larger than

the time of the experiment (67 months for monkey RQ5427), mean HSC clone sizes do not

change dramatically during the experiment, consistent with the stable number of clones

observed in the samples shown in Fig 1(b). Thus, as a first approximation, we will use a static

configuration {hi} drawn from P(h) to describe how, through differentiation, HSC clones feed

the progenitor pool.

Table 1. Summary of parameters, including their biological interpretation, ranges of values, and references. All

rate parameters are quoted in units of per day. Other parameters are chosen to be within their corresponding reported

ranges from the referenced literature. How variations in parameter values affect our analysis will be described in the

subsequent sections.

Parameter Interpretation Values & References

HSC pool (Compartment 1)

Hss total number of HSCs at steady state 1.1 × 104 − 1.1 × 106 [4, 11, 12]

α per-cell HSC differentiation rate 5.6 × 10−4 − 0.02 [4, 11, 12]

μh HSC death rate 10−3 − 0.1 [12, 34]

Transit-Amplifying Progenitor pool (Compartment 2)

rn growth rate of progenitor cell 2 − 3 [12]

μn death rate of progenitor cell (generation ℓ < L) 0 [12, 34]

mðLÞn death rate of progenitor cell (generation ℓ = L) 0 − 0.27 [12, 34]

ω maturation rate of generation-L cells 0.15 − 0.17 [43, 44]

L maximum generation of progenitor cells 15 − 21 [12, 34]

Peripheral Blood pool (Compartment 3)

Mss total number of peripheral blood granulocytes at steady state (2.5 − 5) × 109 [13, 42]

μm death rate of peripheral blood granulocytes 0.2 − 2 [34, 44, 45]

https://doi.org/10.1371/journal.pcbi.1006489.t001
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Fast clonal aging of progenitors—In contrast to slow HSC coarsening, progenitor cells prolif-

erate “transiently.” In Fig 3(a) we plot a single population burst of progenitor and mature gran-

ulocytes, given by Eqs (10) and (11) and using the parameter values listed in Table 1. The

characteristic duration, or “width” Δτb associated with each temporal burst of cells is defined

as the length of time during which the number mb(t) is above the detection threshold within a

sample of peripheral blood: ε� 1 ¼ M̂þ
ss=Ŝ

þ � 2� 104.

According to Eq (11), the burst width and height depend nonlinearly on the parameters L,

rn, μn, μm, and ω in their physiological ranges (see Table 1). The characteristic width of a burst

scales as Δτb * L/rn + 1/ω + 1/μm. This estimate is derived by considering the L rounds of pro-

genitor cell division, each of which takes time * 1/rn. Terminal-generation progenitors then

require time *1/ω to mature, after which mature granulocytes live for time * 1/μm. In total,

the expected life span of * L/rn + 1/ω + 1/μm approximates the timescale of a HSC-differenti-

ation-induced burst of cells fated to be granulocytes. Using realistic parameter values, the typi-

cal detectable burst duration Δτb * 1 − 2 months is much shorter than the typical sampling

gaps Δtj = 5 − 11 months.

With this “burst” picture in mind, we now show how fluctuations of sampled clone sizes

can be explained. Small-h (where the clone-wise HSC differentiation rate ahi⪡ 1

Dtb
) clones

rarely appear in blood samples. Their appearance also depends on whether sampling is fre-

quent and sensitive enough to catch the burst of cells after rare HSC differentiation events. On

the other hand, large-h (ahi �
1

Dtb
) clones differentiate frequently and consistently appear in

the peripheral blood. Their populations in blood samples are less sensitive to the frequency of

taking samples. Fig 3(b) shows two multi-burst realizations of peripheral-blood populations

mi(t) of clone i corresponding to a small clone and a large clone. The 2000-day trajectories

were simulated by fixing hi and stochastically initiating the progenitor proliferation process.

Population bursts described by Eq (11) were added after each differentiation event distributed

according to Poisson(αhi). Using simulations, we confirm that the statistics of clone extinc-

tions and resurrections are more sensitive to the overall clonal differentiation rate αhi than to

the precise shape of a mature cell burst, allowing a reduction in the number of effective param-

eters (Appendix D in S1 Appendix).

We can further pare down the number of remaining parameters by finding common

dependences in the model and defining an effective maximum generation number. We can

rewrite Eq (5) as b � 2Le , where

Le ¼ L � L log 2

rn þ mn

rn

� �

� log 2

oþ mðLÞn

o

� �

ð12Þ

is an effective (and noninteger) maximum generation parameter. Later in Appendix D in S1

Appendix, we show that uncertainties of the model structure, alternative mechanisms, and

parameter values can be subsumed into Le. Henceforth, in our quantitative data analysis, we

will set the unmeasurable parameters mn ¼ m
ðLÞ
n ¼ 0 and subsume their uncertainties into an

effective maximum generation Le. Finally, we will invoke Eq (4) to find the constraint

Aþssb ¼ Aþss2
Le ¼ Mþ

ssmm: ð13Þ

Since we can estimate Mþ
ss of the animals in the experiment and the death rate of mature gran-

ulocytes μm has been reliably measured in the literature, Eq (13) provides a relationship

between the total steady-state differentiation rate Aþss and the maximum number of progenitor

generations Le.
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After assigning values to parameters using Table 1 (setting μn = 0, ω = 0.16 and μm = 1),

subsuming parameters into Le (setting mðLÞn ¼ 0), describing the configuration {hi} through the

distribution shape factor λ and the total number of HSC clones Ch (setting the HSC death rate

μh = 0), and applying the constraint Aþss2
Le ¼ M̂þ

ssmm, we are left with four effective model

parameters θmodel = {λ, Ch, rn, Le}. Here we have included rn in the key model parameters

since it is not reliably measured and the cell burst width is sensitive to rn. Once Le is inferred,

Eq (13) can be used to find Aþss ¼ 2� LeM̂þ
ssmm.

Statistical model

The total number of tags observed across all samples (obtained by summing up the observed

numbers of unique tags over J samples) can be used as a lower bound on Ch. Even though esti-

mates for animal RQ5427 give Ch * 550 − 1100, uncertainties in the HSC self-renewal rate

parameters ph, Kh, and the initial HSC population H(0) make λ and P(h, t) difficult to quantify.

Even if P(h, t) were known, it is unlikely that the drawn {hi} would accurately represent those

in the monkey, especially when λ� 1 and P(h) becomes extremely broad (the variance of P(h)

approaches infinity). Thus, we are motivated to find a statistical measure of the data that is

insensitive to the exact configuration of {hi}. The goal is to study the statistical correlations

between various features of only the outputs, which should be insensitive to the input configu-

ration {hi} but still encode information about the differentiation dynamics.

Two such features commonly used to fit simulated fi(tj) to measured f̂ iðtjÞ are the mean

yi ¼ 1

J

PJ
j¼1

fiðtjÞ and the variance s2
i ¼

1

J

PJ
j¼1
ðfiðtjÞ � yiÞ

2
. However, the small number of

measurement time points J and the frequent disappearance of clones motivated us to propose

an even more convenient statistic that is based on

zi ¼
X

j

1ðfiðtjÞ; 0Þ; ð14Þ

the number of absences across all samples of a clone rather than on σi. Here, the indicator

function 1ðx; x0Þ ¼ 1 when x = x0 and 1ðx; x0Þ ¼ 0 otherwise. In Appendix E in S1 Appendix,

we illustrate alternatives such as data fitting based on σi and on an autocorrelation function

but also describe the statistical insights gained from using statistics of zi.
The level of correlation between the observed number ẑ i of absences of clone i and its aver-

age abundance ŷi is measured by the average of ŷi conditioned on ẑ i (dashed curve). In Fig 4,

the distribution of the values of ŷi at each ẑ i is clearly shown. To combine the correlated sto-

chastic quantities zi and yi into a useful objective function, we take the expectation of yi over

only those clones that have a specific number zi = z absences across the time samples:

Yz ¼

P
iyi 1ðzi; zÞP
i1ðzi; zÞ:

ð15Þ

The normalizing denominator
P

i1ðzi; zÞ is simply the number of clones with exactly z
absences. In case no simulated or data-derived trajectories fi(tj) exhibit exactly z absences, we

set Yz = 0 or Ŷ z ¼ 0. We then determine Yz(θmodel) from simulating our model and Ŷ z from

experiment and use the mean squared error (MSE) between the two as the objective function:

MSEðymodelÞ ¼
XJ� 1

z¼1

½YzðymodelÞ � Ŷ z �
2
; ð16Þ

where θmodel = {λ, Ch, rn, Le}. Y0 is excluded from the MSE calculation because the yi values of
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clones that have zi = 0 are not constrained by the burstiness of the model and Y0 can be sensi-

tive to the underlying configuration {hi} (see the Discussion and Appendix E in S1 Appendix).

We are now in a position to compare results of our model with experimental data. The general

approach will be to choose a set of parameters, simulate the forward model (including sam-

pling) to generate clone abundances {fi(tj)}, number of absences zi, and ultimately Yz(θmodel),

which is then compared to data-derived Ŷ z. By minimizing Eq (16) with respect to θmodel, we

obtain the least square estimates (LSE) of θmodel. A schematic of our workflow is shown in

Fig 5. We describe the details of the simulation of our model in Appendix F in S1 Appendix.

Results

By implementing the protocol outlined in Fig 5, we find a number of results including least-

squares-estimates (LSE) of the parameters, their sensitivity to other model features, validation

of the mechanistic model, and robustness of our statistical methods to missing data and clone

sampling thresholds. Our analyses allow us to effectively compare the results from the three

different animals.

MSE function and estimates of Le and Aþss for animal RQ5427

We first fix the HSC distribution shape parameter λ = 0.99 and the total number of HSC clones

Ch = 500; this choice will be justified in the next subsection. The MSE objective function can

now be plotted as a function of the proliferation rate rn 2 [0.01, 10] and proliferation potential

Le 2 [19, 28] of progenitor cells in their respective biologically relevant ranges. Even after

specifying θmodel = {λ = 0.99, Ch = 500, rn, Le}, there is still uncertainty in the simulated values

of Yz = {Y1, Y2, . . ., Y7} due to the uncertainty in the drawn configuration of HSC clone sizes

{hi}, the intrinsic stochastic mechanisms of the model (Poissonian HSC differentiation events),

and random peripheral blood sampling. Therefore, we performed 200 simulations for each

Fig 4. Scatterplot of clone trajectories of animal RQ5427 displayed in terms of ln ŷ i, the log mean abundance of

clone i, and ẑ i, the number of samples in which clone i is undetected. The trajectory of each clone i is represented by

a symbol located at a coordinate determined by its value of ln ŷ i and ẑ i. A trajectory of a clone that exhibits one

absence within months 8 − 67 is shown in the inset. The first sample at month 2 is excluded because only long-term

repopulating clones are considered. Clones that are absent in all eight samples are also excluded, so the largest number

of absences considered for animal RQ5427 is 7. The dashed black line denotes ln Ŷz, where Ŷz is the average of ŷ i

calculated over i within each bin of z as shown in Eq (15). When later analyzing Ŷz , Ŷ0 (red circles) is not included.

https://doi.org/10.1371/journal.pcbi.1006489.g004
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set of {rn, Le}, producing 200 sets of Yz. The means of Yz are used to construct the mean of

MSE(λ = 0.99, Ch = 500, rn, Le), plotted in Fig 6.

In the reported progenitor growth rate range of rn = 2 − 3 (Table 1), the MSE function is

quite insensitive to Le. To interpret this observation, note that rn does not affect the absolute

value of β according to Eq (13), but it affects the typical time * L/rn + 1/ω it takes for a gener-

ation 0 progenitor cell to form a mature granulocyte. When rn < μm, the proliferation of pro-

genitors cannot “catch up” with the loss of granulocytes, resulting in a quickly vanishing burst

in the granulocyte population mb(t) arising from a single-differentiation event mb(t). A larger

Le would be required to compensate. When rn� μm, the growth of any clone is much quicker

Fig 5. Workflow for comparing parameter-dependent simulated data with measured clone abundances. The first

step is drawing a configuration {hi}, which is experimentally unmeasurable, from the HSC clone distribution P(h). To

define P(h) requires an initial estimate of λ and Ch. Using known experimental parameters θexp and choosing rn, Le 2

θmodel, we compute the theoretical quantities yi and zi by simulating the multi-compartment mechanistic model and

the peripheral-blood sampling. The corresponding ŷ i and ẑ i are extracted from data, and the theoretical Yz(θmodel) and

the experimental Ŷ z are compared through the MSE defined in Eq (16). The MSE is then minimized to find least

squares estimates for θmodel.

https://doi.org/10.1371/journal.pcbi.1006489.g005

Fig 6. Dependence of the mean MSE defined in Eq (16) on rn and Le. For visualization purposes, we took the natural

logarithms of MSE values and plotted them as a function of Le and rn. Blue areas denotes smaller MSE values, thus

better fitting. This energy surface was generated by averaging over 200 simulations using Ch = 500 and λ = 0.99.

https://doi.org/10.1371/journal.pcbi.1006489.g006
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than its loss, so the burst size is relatively stable and L�e is not very sensitive to rn. Thus, the

MSE objective function is fairly insensitive to rn in its biologically meaningful value range.

We then fix the progenitor proliferation rate rn = 2.5 and plot the mean MSE(λ = 0.99,

Ch = 500, rn = 2.5, Le) in Fig 7(a), which indicates a clear minimum at L�e ¼ 23:4� 0:12. The

error bars denote the standard deviation of MSEs obtained from the 200 simulations at differ-

ent values of Le and show that the variability is negligible for the purpose of determining the

minimum. Upon applying the steady-state granulocyte balance constraint in Eq (13), we

obtain a total HSC differentiation rate ðAþssÞ
�
¼ 14:7.

If we approximate mn; m
ðLÞ
n ¼ 0, Le� L. Substituting LSE values L�e ¼ 23:4 for L into the

model for the peripheral blood bursts (the analytic solutions to n(L)(t) and mb(t) in Eqs (10)

and (11)) yields a single burst duration of Δτb� 32 days, consistent with our assumption

Δτb ⪡ Δtj = 5 − 11 months. Note that even though L is interpreted as an integer in Eq (8), ana-

lytic solutions of Eqs (10) and (11), nð‘Þb ðtÞ and mb(t), depend on L in a continuous manner,

interpolating the behavior to arbitrary values of L. Fig 7(b) shows how one simulation of

YzðL�e ¼ 23:4Þ fits the experimentally measured Ŷ z. Here, each error bar denotes the standard

deviation across all mean abundances yi (or ŷi) within each value of z absences.

Insensitivity of analysis to HSC configurations

In Fig 8, we demonstrate the weak dependence of our least-squares estimate to λ, the parame-

ter controlling the shape of the probability distribution of HSC clone sizes P(h, t). For each λ,

we sample a fixed number (Ch = 500) of HSC clones from the theoretical distribution P(h, t),
fix rn = 2.5, and let Le vary between 19 and 28. The averages of the 200 simulated MSEs at each

value of Le are compared and the L�e that corresponds to the minimal average MSE is selected.

The selected L�e as a function of λ is plotted in Fig 8(a). Fig 8(b) shows the averages and stan-

dard deviations of MSE ðL�eÞ at each value of λ. We then repeat the simulations with Ch = 1000.

These results together show that L�e is insensitive to the distribution of hi. This insensitivity

might be understood by noticing that the quantity Yz is defined as the mean of the values of yi
that are associated with z absences (dashed curve in Fig 4) and is not necessarily sensitive to

Fig 7. Finding the least squares estimate (LSE) L�e for animal RQ5427 by fitting the simulated Yz to the experimental

Ŷ z . The values of (λ, Ch, rn) are chosen to be (0.99, 500, 2.5). Simulations with {hi} set to fŷ igHþss instead of drawing from

P(h) generate similar results. (a) The LSE is L�e ¼ 23:4. Averages and standard deviations (error bars) of the 200 MSEs are

plotted. (b) Comparisons between the experimental (solid) Ŷ z and simulated (dashed) Yz with fixed L�e ¼ 23:4. The error

bars are determined by considering the standard deviation of the average abundances (yi or ŷ i) of all clones exhibiting z
absences.

https://doi.org/10.1371/journal.pcbi.1006489.g007
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how these values are distributed (vertically distributed markers at each value of z in Fig 4).

Instead, Yz incorporates the intrinsic relationship between a clone’s mean abundance yi and its

number of absences zi, averaged over all clones. It thus also encodes how heterogeneity in the

HSC clone populations is translated into the burstiness seen in the sampled clone abundances

fi(tj). Although it is generally impossible to recover the exact {hi} configuration, we find the

HSC self-renewal-induced geometric distribution described by Eq (7) generally generates bet-

ter fits to the sampled data when λ is large (≳ 0.5), suggesting significant heterogeneity in val-

ues of hi.

Comparison of variability from simple sampling and best-fit model

We can check how our LSE result performs against the null hypothesis that clone size varia-

tions arise only from random sampling. An estimate of sampling-induced variability can be

obtained by assuming a specific number of peripheral blood granulocytes of tag i and ran-

domly drawing an experimentally determined fraction ε(tj) of peripheral blood cells. This is

repeated J times from a constant peripheral pool {mi}. Each draw results in si(tj) cells of clone i
in the simulated sample. Normalizing by S+(tj), the total number of tagged cells in the sample,

we obtain simulated fi(tj) from which we extract the mean abundance yi and its standard devia-

tion si ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

J

PJ
j¼1
ðfiðtjÞ � yiÞ

2
q

for each clone i. The simulated quantities ln yi and σi associated

with each clone i are indicated by the green triangles in Fig 9(a). The corresponding values

ln ŷi and ŝi derived from the data shown in Fig 1(b) are indicated by the blue dots. This

simple heuristic test shows that the experimental fluctuations in clone abundances are signifi-

cantly larger than those generated from random sampling alone and that additional mecha-

nisms are responsible for the fluctuation of clone abundances in peripheral blood. Using LSE

parameter values, Fig 9(b) shows the fluctuations in clone abundances obtained from random

sampling of fluctuating mature clones simulated from our model. Here, the variability is a con-

volution of the fluctuations arising from intrinsic burstiness and from random sampling. The

total variability fits those of the experimental data well except for several large-sized outlier

clones.

Fig 8. The LSE L�e is insensitive to the geometric distribution factor λ> 0 and to Ch� 1. This implies that for a wide

range of values of λ and Ch the LSEs are insensitive to the HSC configuration {hi}. (a) L�e s found at each value of λ. (b)

Averages and standard deviations (error bars) of MSE ðL�eÞ as a function of λ. The LSE and MSE(L�e ) values associated with

self-consistently using fhig=Hþ ¼ fŷ ig from experimental data are marked by arrows and “exp.”

https://doi.org/10.1371/journal.pcbi.1006489.g008

Clonal tracking of hematopoiesis in rhesus macaque

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006489 October 18, 2018 16 / 26

https://doi.org/10.1371/journal.pcbi.1006489.g008
https://doi.org/10.1371/journal.pcbi.1006489


Robustness of L�e to sampling frequency and threshold

We checked the robustness of our inference by leaving out time points from the experiment.

Recall that the experimental data matrix for animal RQ5427 contains 536 rows, each represent-

ing a clone, and 8 columns, each representing a time point measured by month. By using only

the first j = 8, 7, . . .1 time points of data (leaving out 8 − j time points), seven additional simu-

lation studies to find L�e were performed. As shown in Fig. G1 in Appendix G of S1 Appendix,

reduction in the number of time samples flattens the MSE but preserves its minimum near

L�e � 23:4 � 23:6 provided at least 2-3 samples are used. We have also excluded intermediate

samples to mimic larger sampling gaps Δtj and found similar results.

Next, we examined the effects of sample thresholding on our parameter inference. By elimi-

nating clones whose average abundances are under a certain threshold, we will observe fewer

clones in the large-z bins depicted in Fig 4. Since larger clones with fewer absences contribute

most to the MSE, our results will not be affected as long as the threshold is not too large. Pro-

vided we apply the same threshold to both the simulated and experimental data, there should

not be systematic bias in our results. The MSEs generated using different thresholds are plotted

in Fig. G2 in Appendix G of S1 Appendix and show that the inferred value L�e � 23:4 remains

essentially unchanged provided the threshold level is low enough to retain approximately at

least 40% (about 200) of the clones (see Fig. G2(a-f) in Appendix G). With fewer clones

retained (< 200), the LSE of Le shifts only modestly to L�e � 24:3. Thus, we conclude that our

inference of Le is robust to increases in sampling threshold as along as a reasonable number of

clones (≳ 200) are counted.

Data analysis and fitting for animals 2RC003 and RQ3570

The data from the three different monkeys vary in their numbers of tagged clones transplanted

and the lengths of the experiments. For animal RQ5427/2RC003/RQ3570, there are 536/1371/

442 clones that are detected at least once within 67/103/38 months. The fraction of cells in all

tracked clones in animal RQ5427/2RC003/RQ3570 was approximated by the average fraction

of cells that were EGFP+ marked over time, around 0.052/0.049/0.086 (the ratios between

Fig 9. (a) A plot of the standard deviation ŝ i vs. the log of the mean ŷ i, extracted from abundance data (blue dots). For

comparison, clonal tags distributed within the peripheral blood cells were randomly sampled (with the same sampling

fraction ε(tj) at times tj as in the experiment). The analogous quantity σi shown by the green triangles indicates a much

lower standard deviation for a given value of ln yi. This simple test implies that the clonal variability across time cannot

be explained by random sampling. (b) The same test is performed after applying our model with the LSE parameter

Le = 23.4 (and the average of parameters listed in Table 1).

https://doi.org/10.1371/journal.pcbi.1006489.g009
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green square and blue triangle markers in Figs 1(a), 10(a) and 11(a)), respectively. Figs 10 and

11 also show the clone abundances, the MSE functions, and the statistics of Y(z).

Despite differences among the animals and the large variability in the estimated values of α
and Hss individually reported in the literature [4, 11, 12], the estimates of ðAþssÞ

�
and L�e are

rather similar across the three animals. For animal 2RC003, the optimal estimates are

L�e � 25:0, while for animal RQ3570, L�e ¼ 24:0. The corresponding estimates for A�, after con-

sidering the constraint Eq (13) and the EGFP+ ratios in Table 2, are 282.7, 136.7, and 224.4.

We also compared how the simulated LSE YzðL�eÞ fits the experimental Ŷ z for all three ani-

mals. Note that for each specific z, the value of Yz is the conditional mean of the values of yi for

which each clone i exhibits exactly z absences. Even though for any specific z, the distribution

of the corresponding yis is unknown, their mean Yz should follow a normal distribution

according to the central limit theorem. We use a one-sample t-test to compare Ŷ z against the

mean of the YzðL�eÞ s generated from 10000 simulations using the optimal Le ¼ L�e . For animal

RQ5427, we actually performed seven one-sample t-tests on the Yz = {Y1, Y2, . . ., Y7} to find

the seven p-values {0.69, 0.53, 0.58, 0.17, 0.68, 0.01, 3 × 10−5}. Except for the last two p-values

(corresponding to the bins z = 6 and z = 7), all other bins easily pass the one-sample t-test at a

significance level of 0.05. Clones with z = 6, 7 are much smaller and more severely corrupted

Fig 10. (a-b) Experimental data for animal 2RC003. (c) Difference between experimental Ŷ z and simulated Yz(Le) as a

function of Le. The values of his are set to be equal to Hþŷ i, and the model was simulated 200 times at each value of Le. Other

parameters are taken from Tables 1 and 2. The LSE L�e ¼ 25:0 and ðAþssÞ
�
¼ 6:7. (d) Comparison of the optimal Yz to the

experimental Ŷ z .

https://doi.org/10.1371/journal.pcbi.1006489.g010
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by noise, such as that induced during PCR amplification, and thus provide less reliable

information.

Comparisons of the test results among the three animals, together with comparisons among

Figs 7(b), 10(d) and 11(d), show qualities of fit ordered according to RQ3570 < RQ5427 <

2RC003. This sequence of fitting qualities is consistent with the increasing experimental times

Fig 11. Experimental data (a-b) and fitting results (c-d) for animal RQ3570. The values of his are set to be equal to Hþŷ i.

Other parameters are taken from Tables 1 and 2. The LSE fitting results are L�e ¼ 24:0 and ðAþssÞ
�
¼ 19:3.

https://doi.org/10.1371/journal.pcbi.1006489.g011

Table 2. Summary of specific parameter values for monkeys 2RC003 and RQ3570 derived from experimental mea-

surements [13] or obtained by calculations (L�e and ðAþssÞ
�
).

Parameter Reference range or LSE value

RQ5427 2RC003 RQ3570

Ĉ s
536 442 1371

ðAþssÞ
�

14.7 6.7 19.3

A�ss 282.7 136.7 224.4

L�e 23.4 25.0 24.0

Mss 3.2 × 109 4.6 × 109 3.8 × 109

S+(tj) (5.0 − 30) × 103 (2.1 − 8.6) × 103 (7.0 − 10.8) × 103

EGFP+ ratio 0.052 0.049 0.086

ε(tj) (2.8 − 20) × 10−5 (1.2 − 4.2) × 10−5 (2.4 − 3.0) × 10−5

Δtj 150 − 330 180 − 660 150 − 260

https://doi.org/10.1371/journal.pcbi.1006489.t002
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RQ3570> RQ5427 > 2RC003, suggesting that age-associated changes of stem cell clone sizes

cannot be fully neglected (which we did by fixing {hi}) [48]. As is evident from Fig 10(a), several

clones start to dominate after month 64; this coarsening phenomenon is not evident in the

data of the other two animals. Animal RQ3570 was sacrificed at month 38, so no obvious coars-

ening is observed and no clones strongly dominate (see Fig 11). A summary of the parameters

and fitting results for all animals is given in Table 2.

Discussion

In this study, we analyzed a decade-long clonal tracking experiment in rhesus macaques and

developed mechanistic and statistical models that helped us understand two salient features of

clone abundance data: the heterogeneous (nonuniform) distribution of clone sizes and the

temporal fluctuation of clone sizes. Below, we further discuss the implications of our results,

the structure of our mechanistic model, and the potential effects of including additional bio-

logical processes.

Comparison to previous studies

The long-term clonal tracking data we analyzed were generated from a huge number of initially

tagged HSPCs (Ch(0) * 106 − 107) [13], a large number of observed clones (Cs * 102 − 103),

small numbers of sequenced cells that carry tags (ŜþðtjÞ � 103 � 104), and infrequent sampling

(Δtj> 5 months). These features present significant challenges to the modeling and analysis

over previous studies that mostly focused on one or a few clones [5, 15, 17, 18].

In a previous analysis, Goyal et al. [4] aggregated the clone abundance data across all
mature cell types and studied the distribution of the number of clones of specific size. At each

time point, they ordered the clones according to their sizes. Thus, the ordering can change

across samples as some clones expand while others diminish. They found that the cumulative

clone-number distribution (defined as the number of clones of a specific size or less) of the

size-ordered clones becomes stationary as soon as a few months after transplantation. They

proposed a neutral birth-death description of progenitor cells and fitted the expected value of

clone counts in each sample by assuming hi � 18iðPðh; tÞ ¼ 1ðh; 1ÞÞ and tuning parameters

in the downstream progenitor and mature-cell compartments. By focusing on aggregate clone

counts, this study could not distinguish the dynamics of individual clones, nor could it predict

the persistence of clone sizes over time. Since individual clone sizes (hi, ni, mi, si of the same

tag i) were not tracked, mechanisms driving the dynamics, and in particular, the variability

and fluctuations of individual clone sizes that drive disappearances and reappearances, remain

unresolved [4].

In our model, heterogeneity of clone sizes is explicitly generated by stochastic HSC self-

renewal of cells of each tag, and extinctions and resurrections arise from a generation-limited

progenitor proliferation assumption. We infer model parameters as listed in Table 2. Combining

the results with previous experimental and theoretical estimates of Hss� 1.1 × 104 − 2.2 × 104

[4, 49] results in α = 0.0045 − 0.027, slightly larger than, but still consistent with, the estimates

α = 0.0013 − 0.009 by Shepherd et al. [11]. Previous studies that modeled total peripheral

blood population estimated α� 0.022 and Hss� 1.1 × 106/kg for dogs and α� 0.044 and

Hss� 1.1 × 106/kg for humans [12]. These estimates yield a value of αHss about 102 − 103 times

greater than ours, which is nonetheless consistent with our steady-state constraint Eq (13)

because they assumed a much smaller L� 15 − 18 for dog and 16 − 21 for human. This differ-

ence in the estimates of L may be partially attributed to the transplant conditions under which

the rhesus macaque experiments were performed [13]. Alternative model assumptions and dif-

fering values of other parameters may also contribute to this difference. For example, the
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extremely large value of Hss� 107 used in [34] will naturally decrease their estimate for L�e rela-

tive to that of our analysis.

Model structure, sensitivity to parameters, and cellular heterogeneity

Uncertainties in values of parameters such as μh, ph, Kh, and other factors that tune the sym-

metric-asymmetric modes of HSC differentiation or involve HSC activation processes [50] will

impart uncertainty in determining P(h) and {hi}. We have assumed P(h) satisfies a master

equation and depends on only two effective parameters λ and Ch. However, we have demon-

strated that the statistical properties of Yz are quite insensitive to the upstream configuration

{hi} and hence to λ and Ch for a wide range of their values (see Fig 8). In other words, very little

information in {hi} is retained in the sampled abundances f̂ ðtjÞ after HSCs differentiate and

trigger random bursty peripheral blood-cell population dynamics.

Another feature we have ignored in our neutral model is cellular heterogeneity such as tag-

dependent differentiation, proliferation, and death rates. Cellular heterogeneity in HSC differ-

entiation rates could be described by different αi for each clone i, and the total differentiation

rate would be Aþss ¼
PCh

i¼1
aihi. Differences in αi can be subsumed into a modified configura-

tion {hi} which, as we have seen, does not strongly influence our parameter estimation based

on the Yz statistics. Thus, given the available data and how information is lost along the stages

of hematopoiesis and sampling, the present quasi-steady-state analyses cannot resolve hetero-

geneity across HSC clones.

We have not investigated how cellular heterogeneity in progenitor and mature cells would

affect our results, but clone-dependences in their birth and death rates could affect sizes and

durations of population bursts and quantitatively affect our analysis. However, unless the sta-

tistics of inter-burst times are highly variable across clones, we do not expect cellular heteroge-

neity to qualitatively affect our conclusions.

Changing downstream parameters such as μm or invoking alternative mechanisms of termi-

nal differentiation (see Appendix B in S1 Appendix) can affect the shape of clonal bursts. We

show in Appendix D in S1 Appendix that these effects can be subsumed into the effective max-

imum progenitor generation Le. We have performed additional simulations to confirm that

changing μm = 2 will not influence the fitting of Aþss but increases L�e by one. In other words,

inference of ðAþssÞ
�

is robust against many upstream and downstream parameters, indicating

that the intrinsic clone size fluctuations observed in the experimental data strongly constrain

the total rate of HSC differentiation. On the other hand, uncovering the actual maximal gener-

ation L� from L�e is possible only when uncertainties in these other parameters are resolved.

Clonal stability vs clonal succession

Our model reduction was based on the separation of timescales of the slow HSC dynamics and

the fast clonal aging dynamics. Since HSC clone sizes vary extremely slowly for primates

(� Oð102Þmonths), we ignored the homeostatic births/deaths of HSCs when fitting the tem-

poral clonal variations. This is partially justified by visual inspection of Figs 1(b), 10(b) and

11(b) that show no significant variations of large clones’ abundances is observed before 60

months. Instead, the random intermittent HSC differentiation events induce relatively short

(� Oð1Þmonths) bursts of granulopoietic progeny that contribute strongly to temporal fluctu-

ations of clone sizes. Such behavior are consistent to the “clonal stability” hypothesis [51–53],

which assumes that a fixed group of HSCs randomly contributes to an organism’s blood pro-

duction at all times.
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The alternative hypothesis of “clonal succession” [16, 54, 55] assumes that different groups

of HSCs are sequentially recruited to the blood production at different times. This hypothesis

would be consistent with our model only under a different set of parameters where HSCs self-

renew/die at a rate comparable to that of Δτb, the duration of a granulocyte burst. For example,

murine HSC turnover rates μh are hypothesized to be 10-fold higher than those in primates

while the clonal aging dynamics (and its timescale Δτb) are relatively conserved across species

[56]. According to our result in Appendix C in S1 Appendix, such a 10-fold increase in HSC

death rate would lead to a 10-fold increase in HSC clone extinction rate, bringing the lifespans

of HSC clones closer to the (progenitor) clonal aging timescale Δτb. This interpretation is con-

sistent with the fact that hematopoiesis in large primates has been described in terms of

“clonal stability” while hematopoiesis in mice has been described in terms of “clonal succes-

sion” [16, 51–55]. We thus predict that with even longer tracking (> 100 months), the “clonal

succession” mechanism could be significant in primates also.

Summary and future directions

In summary, we have built mechanistic and statistical models that enable the quantitative anal-

ysis of noisy and infrequent clonal tracking data. We focused on the huge temporal variability

observed in the sampled clone abundances and defined a robust statistical measure Yz of sam-

ple-to-sample clone size variability through the number of clonal disappearances. Of course,

there is a nearly endless list of details such cellular heterogeneity and more complex biology

that we did not include, but given the noisy data, we propose and quantify the simplest expla-

nation for the observed heterogeneous clone abundances and the temporal “extinctions and

resurrections”. The key ingredients in our mechanistic model are HSC self-renewal (quantified

by the effective parameter λ), intermittent HSC differentiation (quantified by the parameter

Aþss), and an effective maximum progenitor generation (quantified by the effective parameter

Le). Although we cannot fully resolve λ from data, the obvious mismatch between experiment

and our model when λ is small shows that a certain level of HSC clone-size heterogeneity

(larger λ� 1) is necessary to match the sampled data. Similarly, we cannot fully resolve α and

Hþss , but their product, the total tagged HSC differentiation rate Aþss ¼ aH
þ
ss , is one of the key

parameters constrained by our modeling. By minimizing an objective function of Yz over

effective model parameters, we found LSE values L�e ¼ 23 � 25 and ðAþssÞ
�
¼ 100 � 300 for

the three rhesus macaques. These quantities could not be inferred from the total, more static

cell populations. These results also imply that true dynamical changes in Aþss and Le could be

masked by the intrinsically bursty dynamics of each clone but provide a framework for future

study into extrinsic perturbations.

Our analysis provides insight into the variables and experimental conditions to which

parameter inference is most sensitive, possibly guiding the design of future experiments. The

approach and models can also be readily extended to quantify white blood cells of other types.

For example, the mechanistic model can be directly applied to monocytes since they also have

relatively simple dynamics and do not proliferate in the periphery [57]. Peripheral lympho-

cytes, however, would require additional experimental information because their populations

are more sensitive to the state of the animal and can homeostatically proliferate [38].

Supporting information

S1 Appendix.
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