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Abstract

Most P300-based brain-computer interface (BCI) approaches use the visual modality for stimulation. For use with patients
suffering from amyotrophic lateral sclerosis (ALS) this might not be the preferable choice because of sight deterioration.
Moreover, using a modality different from the visual one minimizes interference with possible visual feedback. Therefore, a
multi-class BCI paradigm is proposed that uses spatially distributed, auditory cues. Ten healthy subjects participated in an
offline oddball task with the spatial location of the stimuli being a discriminating cue. Experiments were done in free field,
with an individual speaker for each location. Different inter-stimulus intervals of 1000 ms, 300 ms and 175 ms were tested.
With averaging over multiple repetitions, selection scores went over 90% for most conditions, i.e., in over 90% of the trials
the correct location was selected. One subject reached a 100% correct score. Corresponding information transfer rates were
high, up to an average score of 17.39 bits/minute for the 175 ms condition (best subject 25.20 bits/minute). When
presenting the stimuli through a single speaker, thus effectively canceling the spatial properties of the cue, selection scores
went down below 70% for most subjects. We conclude that the proposed spatial auditory paradigm is successful for healthy
subjects and shows promising results that may lead to a fast BCI that solely relies on the auditory sense.
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Introduction

Brain-computer interfaces (BCI) are a direct connection

between the brain and a computer, without using any of the

brain’s natural output pathways [1]. Most BCI research is aimed

toward developing tools for patients with severe motor disabilities

and paralyzes, patients suffering from amyotrophic lateral sclerosis

(ALS) specifically. This group of potential users could particularly

benefit from BCI technology, since output pathways that are

normally employed by the brain can no longer be used.

Completely locked-in syndrome (CLIS) patients have lost all

volitional control over their muscles, including eye-muscles, and

are therefore out of reach for conventional augmentation devices

based on rudimentary muscle control. BCI might be one of the last

options for communication for these patients.

BCI research over the last decades has explored a large variety

of possible configurations for such a BCI. Among these are the

choice for measuring method, physiological brain feature, analysis

method and modality of interaction. So far, the primary choice of

interaction modality has been vision. Most current BCI systems

rely to some extent on the ability of the subject to control the eyes.

However, the patients’ inability to direct gaze, adjust focus or

perform eye-blinks may proof the use of the visual modality in BCI

application to be difficult. Therefore, other modalities are now

being explored such as audition [2–10] and touch [11–14] in order

to make BCI independent of vision. Moreover, when using such

alternative methods for patients with residual vision, the visual

modality could be used exclusively for feedback, thereby

preventing interaction between feedback and stimulation.

Current auditory BCI systems mostly result in a binary decision.

Binary decisions contain lower information content than multi

class decisions. Although for some tasks a multi class BCI is the

best choice, it is difficult to cope with multiple options in the

auditory domain. In the current research we look for alternative

ways of stimulus presentation that will allow for a multi class

auditory BCI. We hypothesize that by adding spatial information

to the cues, subjects will be able to discriminate a larger number of

classes. If classification of the P300 deflection in response to this

spatial information is possible, it introduces a new means of

creating a truly auditory BCI. Such a setup would be flexible in the

number of classes used and could potentially increase the speed of

auditory BCI.

Auditory BCI
Hill et al. [2] used event-related potentials (ERP) that are

triggered by auditory stimuli for a binary BCI. They presented two

sequences of deviant (target) and standard (non-target) tones to the

subject. Both ears received a sequence with a different inter-

stimulus interval (ISI) at the same time. The subject’s task was to

focus on either one of the streams by counting the number of

targets in that stream. The time samples for left and right non-

target tones were taken from the same four seconds of EEG,

averaged and subsequently concatenated. Because of the different

ISI, ERP in response to the left channel would average out on the
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right channel samples and vice versa. This concatenated feature

was used for classification. Although the classification rate varied

widely between different subjects, their results are promising for

the use of auditory ERP as a feature for BCI.

A similar approach was recently reported in [7]. They used the

human capacity to segregate audio streams to create a binary BCI.

Two different oddball audio streams were presented to the

subject’s right ear. When the ISI of such streams is short, the

subject naturally segregates these into independent streams. For

classification, the ERPs to both streams were classified and the

target stream was determined by voting over multiple presenta-

tions. Although it is a binary BCI, they argue that it could be

extended by adding more streams and thus increase the number of

classes. Unfortunately, they used all data for training and testing

for their reported results, rather than using a cross-validation

method.

Another attempt to create a BCI that is independent of vision

used auditory feedback to inform subjects on their sensory motor

rhythm (SMR) [3]. By adjusting their SMR, subjects were able to

make a binary choice. Although initial performance for most

subjects was better with visual feedback, this difference decreased

with learning. Thus, as they conclude, auditory feedback can

effectively be used for a BCI based on SMR.

Similarly, Hinterberger et al. [8] used auditory feedback to

inform subjects on their control of the slow cortical potential

(SCP). Although two subjects reached the 70% accuracy score that

is assumed to be minimal for useful BCI operation [15], they

generally performed worse than subjects with visual feedback.

Furthermore, a BCI based on SCPs typically requires several

sessions of training until an acceptable level of BCI control can be

obtained.

Even different ways of using the auditory modality have been

investigated, such as frequency tagging. When a high frequency

tone with a low frequency envelope is presented to a subject, the

frequency of the envelope has been found to resonate in the EEG

signal. The extend of this resonating can to some level be

influenced by selective attention [6]. This envelope could also be

constructed as pseudo-random noise, which allows for the use of

multiple streams [9].

P300 response
The P300 feature of the human brain is a well-described

positive deflection of the ongoing EEG signal [16,17] with a

latency of 300+ ms to an event. In most people it is present without

training in response to an attended rare event. The task that is

generally used for eliciting a P300 wave is the oddball paradigm,

where an attended target stimulus is infrequently presented

between non-target stimuli. The attended stimulus elicits a P300

response in the brain, which generally has the largest amplitude at

the midline Pz electrode and parietal regions [18]. The P300 was

shown to be greater with larger target-to-target intervals [19].

Stimulus order in an oddball paradigm should be random to

prevent expectation of the target stimulus.

In the setting of BCI, the short latency of the P300 allows for

fast communication speeds. Stimuli can even be presented at a

pace faster than the actual timeline of the P300, thereby further

increasing the efficiency. This has primarily been done in the

visual P300 speller [4,20–22]. Because the P300 response is elicited

by an external stimulus, operation speed is dictated by the rate of

presentation of these stimuli. This is referred to as synchronous

operation mode.

Although it is well established that the P300 component only

requires covert attention, it turns out that the performance of

visual P300 BCIs degrades if the target stimulus is not overtly

fixated [23]. Overt fixation is not a relevant factor in the auditory

domain, but the P300 was shown to be stronger for attended

stimuli in auditory mode [4]. They showed in a four stimulus

oddball task that the P300 response is present when the target

stimulus is presented visually, auditory and in a combination of

both. Similarly, the P300 response was reported to be attention

dependent when tactile stimuli are used [14].

The visual P300 response has been used for BCI [24,25], in

particular for creating a speller application [4,20–22]. In the latter,

a matrix of characters is presented and the rows and columns light

up in random sequence. The subject attends to the character he/

she wants to select by counting the number of illuminations. When

the row or column containing the character lights up it elicits a

P300 wave, which can be detected from the EEG. Thus, the row

and column that give a P300 response define the character that is

to be selected. Nijboer et al. [22] showed that this paradigm can be

successfully used by ALS patients.

A similar selection process has been devised for the auditory

modality [5]. The matrix was still shown for reference purposes,

but the columns and rows did no longer flash. Instead, they were

marked by a spoken number that was presented to the subject.

The subject no longer attended visually, but was instructed to

attend to the spoken number that identified the character. They

compared the performance with the visual speller. Although the

visual speller had significantly better results, satisfiable results were

found in the auditory condition as well, with performance reaching

up to 100% for one subject. However, auditory stimulation with

spoken numbers is time consuming, and selection of a letter could

take as long as 3.6 minutes when using multiple iterations.

In a recent publication [10] the rows and columns were

sequentially represented by six natural sounds. The subject would

be visually informed on which sound corresponded to a row or

column; a mapping that most subjects could learn within 2

sessions. Subjects were divided in two groups, one group received

only the auditory stimuli whereas the second group received

concurrent auditory and visual stimulation. For the second group,

the number of trials with visual stimulation would gradually be

reduced. After 11 sessions, both groups received only auditory

stimulation. Although accuracy in session one was lowest for the

auditory only group, their performance on the 11th session had

increased to a level comparable to that from the combined

stimulation group.

The oddball principle has also been used for action selection

through spoken word stimuli [4]. In an oddball paradigm setup

they showed that short spoken words lead to a P300 response

when attended to. They used simple words (‘YES’, ‘NO’, ‘PASS’,

‘END’) as target/non-target combinations. Although this leads to a

less distinct P300 than in the visual modality, it could be classified

by averaging over subtrials.

Spatial hearing
Localization of sounds in space is one of the processes that our

brain does without mental effort. For an extensive review on

spatial hearing in humans see [26]. Several behavioral studies have

shown the ability of human listeners to distinguish sounds in space

[27–29]. Several of these studies further showed that when subjects

focus on a particular direction, their attentional resources appear

to be distributed in a gradient, with decreasing alertness when

moving away from the attended direction [28,29].

Although most oddball experiments employ a cue with a

difference in pitch, amplitude or length of the stimulus sound,

other properties of sound have been investigated. One such

property is the spatial location of the stimulus. In their study, [29]

essentially presented seven oddball paradigms to the subject. An
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array of seven speakers (with 90 distance between them) presented

non-targets and targets on all directions in random order. Subjects

were asked to attend left, front or right and only targets coming

from the attended direction elicited a P300 reliably. In this case,

the spatial location is not used to separate non-targets from targets

but rather to separate different streams. A more recent study did

use the spatial separation (albeit virtually through stereo

headphones) to set aside the frequent non-targets (00, straight

ahead) from the infrequent targets (+300 and +900) [30].

However, because the subjects were engaged in a passive listening

task and in the meanwhile watched a movie, no P300 responses

were elicited. Rather, the focus was on the early mismatch

negativity potential. It does show, that spatial location can be a cue

determining factor. A similar experiment was performed in free-

field with only 100 spatial separation [31].

An oddball paradigm purely based on spatial location has been

used in [32], but merely as a training for detecting stimuli from

different locations in a later task. No behavioral- or neurophys-

iological data for this condition is reported.

Methods

Ethics statement
Procedures were positively evaluated by the Ethics Committee

of the Charité University Hospital (number EA4/073/09). All

subjects provided verbal informed consent and subsequent analysis

and presentation of data was anonymized.

Participants
Two sets of experiments were performed. The first set

(physiological experiments) included seven healthy volunteers (five

male, mean age 29.1 years, range 25–34 years) and was used for

validation of the setup and assessment of the physiological

response. All subjects were volunteering group members and

had some previous experience with BCI, mainly based on

imagined movement tasks. The second set (BCI experiments)

included five healthy volunteers (three male, mean age 32.4 years,

range 22–55 years), out of which two were paid subjects with no

previous experience in BCI. They were compensated for their time

with eight euro per hour. Of the other three volunteering group

members, two also participated in the first round.

Subjects reported to be free of neurological symptoms and to

have normal hearing, although two subjects (VPip and VPig)

reported having difficulty with spatial localization of sounds in

natural situations and subject VPzq reported a high-pitched

tinnitus in the right ear.

Task, procedure, and design
Subjects sat in a comfortable chair, facing a screen with fixation

cross. They were surrounded by eight speakers at ear height. The

speakers were spaced evenly with 450 angle between them, at

approximately one meter distance from the subject’s ears (see

Figure 1). Speakers were calibrated to a common stimulus intensity

of *58 dB. At the start of each recording session, subjects were

asked to judge the subjective equality of the loudness from all

directions and alter these if necessary. The room was neither

electromagnetically shielded, nor were any sound attenuation

precautions taken. All experiments consisted of an auditory

oddball task that varied to some degree. Before the experiments,

subjects were asked to minimize eye movements and other muscle

contractions during the experiment. Stimuli were generated in

Matlab and presented using the PsychToolbox [33]. A multi-

channel, low-latency firewire soundcard from M-Audio (M-Audio

Firewire 410) was used to individually control the low-budget, off-

the-shelf computer speakers.

Physiological experiments. First, experiments were

performed to assess the physiological response to the setup. All

eight speakers were used and the stimuli consisted of 75 ms

bandpass filtered white noise (150–8000 Hz) with 3 ms rise and

fall. The stimulus for all speakers was the same, making spatial

location the only discriminating cue. Any one of the eight

directions could be a target (probability 12.5%), leaving the others

as non-targets (probability 87.5%). Therefore, this can be

considered a classic oddball paradigm. The target direction was

indicated prior to each block, both visually on the screen and by

presenting the stimulus from that location.

In condition C1000, one trial consisted of 80 subtrials, ten for

each individual location. We recorded 32 of such trials, making a

total of 2560 subtrials. Inter-stimulus interval (ISI) was set to one

second with a latency jitter (mean 25 ms, SD 14.4 ms). Subjects

were asked to mentally keep track of the amount of target

stimulations.

In order to have an indication of the subjects recognition

performance, a second condition (condition Cr) was introduced.

Instead of mental counting, subjects were asked to respond by key

press each time the target direction was stimulated. To allow for a

response, the ISI was set to two seconds with the same latency

jitter. Between 576 and 768 subtrials per subject were recorded.

Blocks of both conditions were mixed to prevent time biases.

If necessary, an initial round of stimuli was given before

recording to familiarize the subject with the stimuli. Presentation

order was pseudo random with the restriction that all eight

directions were stimulated in one block before continuing to the

next block.

BCI experiments. For the BCI experiments, the paradigm

was altered in several ways based on findings from the

physiological experiments. First, the amount of speakers was

Figure 1. The experimental setup. For the physiological experi-
ments, all eight speakers were used. For the BCI experiments, only the
front semi-circle was used (speakers 1,2,3,7, and 8).
doi:10.1371/journal.pone.0009813.g001
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reduced to the frontal five to make the task easier. Thus, the target

was presented with 20% probability and non-targets with 80%

probability. It has been shown that this is rare enough to produce a

P300 response [4]. All five speakers were given a unique, complex

40 ms stimulus, build from band-pass filtered white noise with a

tone overlay (see Table 1 and File S1). The discriminating cues

were now both the physical properties and the spatial location of

the stimulus. Latency jitter was omitted. In order to explore the

boundaries of the paradigm, three different conditions were tested.

The first two conditions differed in their ISI (300 ms for

condition C300, 175 ms for condition C175). A trial consisted of

75 subtrials, 15 for each location. For condition C300, we

recorded 50 of such trials, making a total of 3750 subtrials. For

condition C175, 40 such trials were recorded making a total of

3000 subtrials.

The third condition (C300s) also had a 300 ms ISI. However, all

stimuli were now presented through a single speaker (front),

thereby leaving the pitch properties of the stimulus the only

discriminating cue. Only 20 trials of 75 subtrials were recorded for

this condition, making a total of 1500 subtrials. Blocks of the three

conditions were mixed to prevent time biases.

Stimuli order now had the extra constraint that there were at

least two other directions between presentations of the same

direction, to prevent too much overlap of target time frames. If

necessary, an initial round of stimuli was given before recording to

familiarize the subject with the stimuli.

Artifact rejection
For artifact rejection, a simple threshold method was used. The

epoched data was first detrended to avoid slow drifts from

reaching the threshold. Then, subtrials with a deflection greater

than 70 mV over the ocular channels, compared to baseline, were

marked as artifacts. These subtrials were then rejected from the

original data and excluded from further analysis. This method

excludes mainly eye artifacts.

Data acquisition
EEG was recorded monopolarly using a varying number of Ag/

AgCl electrodes. Channels were referenced to the nose. Electro-

oculogram (EOG) was recorded with two bipolar channels over

the eyes. The signals were amplified using a Brain Products 128-

channel amplifier, sampled at 1 kHz and filtered by an analog

bandpass filter between 0.1 and 250 Hz before being digitized and

stored for offline analysis. Further analyzes were done in Matlab

(The Mathworks, Version 7.4).

For visual inspection, the raw data was low-pass filtered with an

order 8 Chebyshev II filter (30 Hz pass-frequency, 42 Hz stop-

frequency, 50 dB damping) to remove obvious 50 Hz artifacts

from external sources. The filter was applied to the data both

forward and backward to minimize phase-shifts. After filtering, the

data was down sampled to 100 Hz and epoched between -150 ms

and 800 ms relative to stimulus onset, using the first 150 ms as

baseline. Artifacts were disregarded by the simple method

described before. P300 latencies and amplitudes were calculated

on the 1000 Hz data directly, using the same filters as described

above.

For classification purposes the same filter was used before down

sampling to 100 Hz. However, the filter was applied causally (only

forward) to ensure portability to the online setting, where no future

samples are available. Data was epoched in the same way as

described above. The same artifact rejection method was used.

Analysis
We use a measure derived from the receiver operating

characteristic (ROC, [34]) to quantify the separability of two

one-dimensional distributions. While ROC curves and derived

measures are often used to characterize the performance of

classifiers [35], they can as well be used to quantify the

discriminability of feature distributions. The advantage over

methods like Fisher score [36,37], Student’s t-statistic [37,38] or

pointwise biserial correlation coefficient, is that it does not rely on

the assumption that the distributions are Gaussian.

The ROC curve of perfectly mixed distributions is (approxi-

mately) the diagonal line (no-discrimination line), and the ROC

curve of perfectly separated distributions is a right angle going

from (0,0) either through (1,0) or through (0,1) to (1,1). As

separability index, we use the signed area (as in the definite

integral) between the ROC curve and the no-discrimination line

multiplied by two, such that the range of this scoring is between

21 and 1. So, if all values of class 1 are strictly larger than the

maximum value of class 2, the ROC-separability-index is 1; if all

values of class 1 are smaller than the minimum value of class 2 the

index is 21. Accordingly, this separability index is similar to the

point biserial correlation coefficient, but does not rely on the

assumption that the classes obey Gaussian distributions.

For condition C1000, grand averages were computed for the

channels with the highest (P300, interval 300–650 ms) and lowest

(N2, interval 100–300 ms) signed ROC value, as well as scalp

topographies for the intervals where these peak ROC values were

found. Furthermore, response times and errors from condition Cr

were computed. For the BCI experiments grand averages were

computed for the channel with the highest signed ROC values

only. Scalp topographies were only computed for the C175

condition, again in the interval where the high peak ROC values

were found.

Due to the temporal aspect of the P300 response, the EEG trace

itself was used as a feature for classification. The 20 channels that

accounted for most of the difference between the two classes were

automatically selected within each fold of the crossvalidation. For

this, the ROC values were calculated for each channel and

sample. The 10 channels with the highest positive ROC peak and

those 10 with the lowest negative ROC peak were used. Data from

these channels were decimated by taking the mean of five samples,

effectively reducing the data to 16 post-baseline samples per

channel. Samples from all 20 channels were then concatenated to

form a 320 dimensional feature vector. The feature vector of the

training set was normalized to zero mean and unit variance for

every dimension independently and the normalization vector

stored to normalize subtrials of the test set.

Table 1. Cue properties in BCI experimental round.

Direction Nr Lower bound (Hz) Upper bound (Hz) Tone (Hz)

Left 7 320 2500 440 (a)

Front-left 8 416 3250 494 (b)

Front 1 540 4225 554 (cis)

Front-right 2 703 5493 622 (dis)

Right 3 914 7140 699 (f)

Nr refers to the speakers labels given in Figure 1. Lower- and Upper bound are
the boundary frequencies for the band pass filter that is applied to the white
noise. Tone is the fundamental frequency of the tone overlay. Seven harmonics
were used, with decaying amplitude. Tone frequencies are chosen to have a full
note in between adjacent stimuli.
doi:10.1371/journal.pone.0009813.t001
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Classification was done using the Fisher Discriminant (FD)

algorithm. Due to the dimensionality of the features (320

dimensions), some form of regularization was advisable. Here, a

shrinkage method which counterbalances the systematic error in

the calculation of the empirical covariance matrix was used [39]. A

ten-fold cross validation was performed with ten chronologically

sampled partitions. Each partition functioned once as test set with

the other nine partitions as training set.

Two types of classification scores can be distinguished:

classification- and selection score [5]. Here, classification score

refers to the binary classification. It is defined as the percentage of

subtrials that is correctly scored to be a target or non-target. The

selection accuracy denotes the percentage of trials in which the

target direction is correctly designated.

Datasets from the BCI experiments contained four times more

non-target stimuli than targets. Although the classification task is

essentially binary, chance level for classification is 80%, which

could potentially be obtained by simply assigning all samples to the

non-target group. Therefore, the number of misclassified targets

was checked.

Multi class selection
After the cross validation, the classifier output was used to

determine the outcome of the multi-class paradigm, i.e., to

estimate the target direction. Taking a set of consecutive subtrials,

one for each direction, the subtrial with the most negative classifier

output was designated the target. One such set is referred to as an

iteration.

To increase sensitivity, outcomes of multiple subtrials for the

same direction (within one trial) can be averaged. This way, the

influence of single subtrials is decreased and the selection score can

be more robust. One possibility is to average the raw subtrial

timeseries for each direction and classify these as a single subtrial.

Another option is to classify each original subtrial individually and

average over the classifier scores. We took the latter approach, as

early results showed better performance for this method.

Artifacts were rejected and as a result classification scores for

some directions were missing. Because only the remaining valid

subtrials were considered, the averaging for some directions was

done over less than the stated number of iterations. This is a

realistic approach for future online settings, where artifacts may

occur at any time, even in patients. Various amounts of iterations

were considered to evaluate the influence on the outcome.

Information Transfer Rate
The amount of information carried by every selection can be

quantified by the information-transfer rate [40, ITR], defined as:

R~log2NzP:log2Pz 1{Pð Þ:log2

1{P

N{1

� �
ð1Þ

B~V :R ð2Þ

where R is the bits/selection and B the bits/minute. N is the

number of classes, P the classifier accuracy and V is the

classification speed in selections/minute. In our case, when using

multiple iterations, P is the selection accuracy. From this it is clear

that even though the selection accuracy may increase when using

more iterations, the ITR may stay the same or even decrease

because a selection takes more time, i.e., V increases.

Speed is not the only factor that decides on the usability of a

BCI, accuracy is equally important. Some applications may

require high speed and can deal with lower accuracy (for instance

in gaming), whereas other applications need an accuracy that

approaches 100% at the cost of speed (such as operating a

wheelchair). A higher accuracy is generally obtained by using

more trials, i.e., increase the number of iterations. In order to

compare our system on both levels, we report two ITR measures.

The first, ‘Max ITR 70%’, refers to the maximum ITR that can be

obtained when only taking into account the amount of iterations

that result in a selection score of 70% or more. Although this is not

necessary the highest ITR, we do not regard selection scores lower

than 70% as useful because this would require a large number of

error corrections; it would not give the subject a sense of control.

The second measure, ‘Max ITR 90%’, is based on only those

numbers of iteration that result in a selection score of 90% or

higher. In general, this means using more iterations and possibly a

decrease of the ITR. However, the increased selection accuracy

and sense of control may be favorable for some applications.

Rejected trials were still considered during calculation of the

ITR to prevent an artificially small approximation of V.

Results

Artifact rejection
For subject VPiz more than half of the subtrials had to be

excluded because of artifacts. In condition C1000, on average

about 20% of all subtrials were excluded from analysis (range

5.94%–58.48%). This is about twice as high as the average

rejection rate for the other conditions. A possible explanation is the

long ISI. As with longer ISI the total length of the trial increases,

eye blinks may become unavoidable after some time. Number of

rejected trials for all conditions can be found in Table 2.

Physiological response
Averaged ERP responses and scalp topographies for all subjects

in condition C1000 can be found in Figure 2 and Figure 3,

respectively. For the ERP plots, the channel with the highest

positive ROC value between 300 and 650 ms post-stimulus is

shown for each subject (Figure 2). Plots show a single target and

non-target line; data from all directions is averaged together. The

same is done for channels with the largest negative ROC value

Table 2. Rejection rates for all conditions.

Subject C1000 C300 C175 C300s

VPiz 1497 (58.48) - - - - - -

VPip 276 (10.78) - - - - - -

VPig 152 (5.94) - - - - - -

VPjf 624 (24.38) - - - - - -

VPjb 525 (20.51) - - - - - -

VPja 160 (6.25) 242 (6.45) 205 (6.83) 125 (8.33)

VPzq 340 (13.28) 184 (4.91) 107 (3.57) 104 (6.93)

VPkh - - 1104 (29.44) 1037 (34.57) 302 (20.13)

VPkj - - 113 (3.01) 42 (1.40) 71 (4.73)

VPjq - - 211 (5.63) 87 (2.90) 42 (2.80)

Average 510.6 (19.94) 370.8 (9.89) 295.6 (9.85) 128.8 (8.59)

Using the simple artifact rejection method explained before, between 1.40%
and 58.48% of the trials were rejected as artifacts. The average rejection rate for
condition C1000 is almost twice as high as that for the other conditions.
Possibly this is due to the longer ISI, which results in a longer overall trial. Eye
blinking may be unavoidable in this case.
doi:10.1371/journal.pone.0009813.t002
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between 100 and 300 ms. Latency and amplitude of the P300

response can be found in Table 3.

In condition C1000, all but subjects VPig and VPjf had a typical

P300 response concentrated over the parietal areas with an

average latency of 425.4 ms. Although the channel with the

highest ROC value was not necessarily directly over the vertex,

scalp topographies in Figure 3 show that for these 5 subjects, the

distribution of the positive deflection was concentrated around the

Pz electrode. Subjects VPig and VPjf had an exceptional scalp

topography. Subject VPjf showed a typical P300 response in the

timeseries, however, distribution of channels with high ROC

values was lateralized to the right (see Figure 3, row 6). Subject

VPig showed a slight P300 effect over the parietal area, with

relative large latency (564 ms). Although the positive ROC value

for this subject was very low and the response error was high (see

Table 4), selection scores were still over 90% (not presented here).

This is possibly due to a large negative class difference found over

the frontal electrodes (see Figure 4, row 6).

Negative deflections. Attentional effort not only influences

the positive P300 response, but has also been shown to alter the

negative deflections prior to the P300 response [41]. Although

distinct N1 and N2 components were not always found (see

Figure 5), there was a negative class difference over the frontal

areas and those electrodes over the auditory cortex for most

subjects. Subject VPig, who had no clear P300 response, did show

a pronounced attention dependent negativity over both auditory

cortices (see Figure 4, row 5). On the other hand, subject VPzq,

who had a very typical P300 response with high ROC value

(Figure 3, row 4) hardly showed any attentional influence on the

negative peaks (Figure 4, row 4). One other remarkable

observation is the localization of the negative ROC values for

subject VPjf. Where the attentional effect on the positive P300

response was localized over the right central area, the largest

negative ROC values were found over the same area on the

opposite hemisphere.

Figure 2. Averaged positive waveforms (condition C1000). Only
the channel with the highest positive ROC value between 300 and
650 ms is presented here. The shaded interval indicates the area where
this highest ROC value was found. Intervals were handpicked. Scalp
topographies in Figure 3 are taken from this interval. Horizontal black
bars mark the time of stimulus presentation.
doi:10.1371/journal.pone.0009813.g002

Figure 3. Scalp topographies for the P300 interval (condition
C1000). Scalp topographies indicate the average potential over the
interval marked in Figure 2. ROC plots do not necessarily indicate the
magnitude of the difference between the two curves, but rather the
significance of that difference. For most subjects this is concentrated
over the parietal area. Each row corresponds to a different subject. Note
that not all subjects have the same number of electrodes available.
doi:10.1371/journal.pone.0009813.g003
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BCI experiments. For comparison, the ERP responses for all

subjects and conditions of the second experimental round are

presented in Figure 6. The P300 response is superimposed on the

deflections that are rhythmically evoked by the stimulus itself. The

rhythm of these evoked potentials is transiently disturbed by the

positive deflection. In condition C175, negative deflections appear

to miss a cycle (see Figure 6, column 2). In condition C300, the

P300 response has more time to develop which results in a positive

going potential (see Figure 6, column 1). In condition C300s, most

subjects show no markedly different traces for non-targets and

targets. Subject VPzq showed very pronounced positive deflections

for all conditions (including C300s) and was also the best scoring

subject in most conditions of the BCI experiments. Scalp

topographies from condition C175 (see Figure 7) are more

diffuse and the class difference has shifted toward the frontal

areas when compared to the longer ISI of condition C1000. This

change is also visible when looking at the channels that were

selected for feature extraction during the classification routine

(Figure 8).

Table 3. P300 waveform characteristics.

Subject
Peak
latency (ms)

Peak
amplitude (mV) Channel

VPja 385 11.56 Pz

VPiz 411 8.68 Pz

VPip 454 8.14 PO1

VPzq 418 12.48 PCP1

VPig 564 4.53 P01

VPjf 415 10.02 CCP8

VPjb 459 12.02 PO2

Average 443.71 9.63 -

The peak is defined as the point with the maximum potential in the target class
in the interval between 300 ms and 650 ms. Data are taken from the channel
indicated. For every subject the channel with the highest positive ROC value
within the time interval was chosen. This is not necessarily the channel with the
largest peak, but the channel with the most significant difference between the
responses to targets and non-targets.
doi:10.1371/journal.pone.0009813.t003

Table 4. Subject performances for the key response task.

Subject RT [ms] Hits False alarms Misses Error

VPja 456 (128) 72 3 0 4%

VPiz 479 (148) 71 0 1 1.4%

VPip 507 (174) 72 1 0 1.4%

VPzq 360 (82) 71 5 1 7.8%

VPig 612 (219) 88 17 8 22.1%

VPjf 360 (131) 96 4 0 4%

VPjb 450 (113) 95 3 1 4%

Average 460.6 (142.1) - - - 6.4%

Because the majority of stimuli is not a target, true negatives (no response to
non-target) are not reported and also not counted for the error score (see
equation 3). The total number of targets is equal to the sum of hits and misses.
RT is the average reaction time from correct responses, with standard deviation
in parentheses.
doi:10.1371/journal.pone.0009813.t004

Figure 4. Scalp topographies for the negative deflections
(condition C1000). Scalp topographies indicate the average potential
over the interval marked in Figure 5. ROC plots do not necessarily
indicate the magnitude of the difference between the two curves, but
rather the significance of that difference. For most subjects this is
concentrated over the frontal and temporal area. Each row corresponds
to a different subject. Note that not all subjects have the same number
of electrodes available.
doi:10.1371/journal.pone.0009813.g004
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Negative deflections for the second experimental round are not

discussed here, as the ROC values were low.

Stimulus intensity
Before all sessions, subjects could adjust the speaker loudness for

all directions to obtain a subjective equality in stimuli. The

majority of subjects reported the preset speaker loudness

(calibrated at *58 dB) to be perceptually equal. Therefore, only

the three subjects that changed the loudness of at least one speaker

are reported in Table 5. Subject VPig and VPzq (BCI) requested

all speakers to be louder (about 3–5 dB) than initially set. In this

case the initialization was not used by the subject to balance the

speaker loudness, but to change the overall loudness. The

classification results for VPzq in the BCI experiments were higher

than average, with scores reaching 100% in most conditions.

In the physiological experiments, VPzq adjusted only the three

speakers in the back. Subject VPkj decreased the loudness of the

speakers right and front-right. This is possibly to account for user

specific hearing differences between ears or to counterbalance the

perceptual damping of sound sources in the back.

Key response result
The key-reponse task (condition Cr) was performed by subjects

in the physiological experiments. Performance results can be found

in Table 4. Error scores (in percentages) were calculated with

equation 3. The number of true negatives is excluded from this

equation, because its large number would mask the error size.

E~
misszfalse alarms

hitszmisszfalse alarms
� 100% ð3Þ

Although no subject showed a perfect score, number of errors

was under 10% for all subjects but VPig. Subject VPig, with an

error rate of 22.1%, was one of two subjects who reported to have

difficulty with sound localization in natural settings. Subject VPip,

who also reported this, had an excellent result with an error rate of

1.4%. Both received a practice round prior to the recordings and

had a maximum selection score of over 90% in a preliminary

classification test.

The grouped performances of subjects on different directions

can be found in Table 6; the corresponding confusions in Figure 9.

The first observation to be made is the confusion of the front

speaker with the rear speaker. All eight false alarms on the front

trials are due to confusion with the rear speaker. Vice versa, the

only false alarm on the rear trials is a confusion with the front

speaker. Several subjects also reported to have difficulty with this

distinction. We therefore excluded the rear speakers from the BCI

experiments.

Figure 5. Averaged negative waveforms (condition C1000).
Only the channel with the largest negative ROC value between 100 and
300 ms is presented here. The shaded interval indicates the area where
this largest negative ROC value was found. Intervals were handpicked.
Scalp topographies in Figure 4 are taken from this interval. Horizontal
black bars mark the time of stimulus presentation.
doi:10.1371/journal.pone.0009813.g005

Figure 6. Averaged waveforms of all subjects and conditions
from the second experimental round. Only the channel with the
highest ROC value between classes is presented here. All ERPs in the left
column come from condition C300. The middle column represents
condition C175 and images in the right column are taken from
condition C300s. Every row represents a subject. The shaded area in
condition C175 marks the high ROC interval that is used for scalp
topographies in Figure 7. Horizontal black bars mark the time of
stimulus presentation.
doi:10.1371/journal.pone.0009813.g006
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Looking at the distribution of false alarms relative to the target

cue, in total 14 false alarms are made on cues directly neighboring

the target and 19 errors on the other cues. When normalizing for

the amount of cues (two direct neighbors versus five others) this

means that the probability of a false alarm on a neighboring cue

(1.22%) is almost twice as high as the probability of a false alarm

on any of the other directions (0.66%). When not taking the front

and rear speaker into account, the difference between these

increases (1.6% for neighboring cues and 0.45% for other cues).

Channel selection
In every fold of the cross validation, the best set of 20 channels is

chosen based on the ROC value. The distribution of selected

channels for the different experimental settings can be found in

Figure 8. As can be seen, channels that have been selected for their

predictive power for the negative ROC values are consistently

concentrated in the mid-frontal areas. The channels that were

selected in condition C1000, during preliminary classification, for

their predictive power for the positive ROC values are focally

located over the parietal- and occipital area. This is consistent with

the assumption that negative ROC values are associated with

attentional differences of the eary negative waves [41] and positive

ROC values are associated with the P300 wave differences [42]. It

is also consistent with the ROC topographies in Figure 3 and 4.

When the ISI is decreased in the BCI experiments, the negative

channels are still concentrated around the Fz channel, whereas the

distribution of the positive response becomes more diffuse.

Classification
Tables 7a–c give the classification- and selection results for the

BCI experiments. When using a single iteration for finding the

target direction, all subjects scored a selection accuracy below 70%

in all conditions. When using multiple iterations the score for most

Figure 7. Scalp topographies for the P300 interval (condition
C175). Scalp topographies indicate the average potential over the
interval marked in the second column of Figure 6. ROC plots do not
necessarily indicate the magnitude of the difference between the two
curves, but rather the significance of that difference. The area where the
high ROC values are concentrated has shifted to the frontal area as
compared to Figure 3. Each row corresponds to a different subject.
Note that not all subjects have the same number of electrodes
available.
doi:10.1371/journal.pone.0009813.g007

Figure 8. Distribution of channels selected for classification in
various conditions over all subjects. Scalp topographies indicate
the prevalence of selection of different channels during the cross
validation steps averaged over all subjects of a particular condition.
Negative values indicate channels selected for negative ROC values,
positive values indicate channels selected for positive ROC values.
Values have been normalized to the maximum possible occurrences (nr
subjects x nr of crossvalidation folds). The frontal cross indicates the Fz
channel, the posterior cross indicates the Pz channel. Channels with
negative ROC values are consistently selected from the frontal regions.
For condition C1000, the channels with positive ROC values are
concentrated over the parietal- and occipital areas, whereas for the
faster conditions these are more diffuse.
doi:10.1371/journal.pone.0009813.g008
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subjects went up quickly for conditions C300 and C175. For

control condition C300s, this increase could not be observed for

most subjects (see Figure 10).

In condition C300 (see Table 7a), four out of five subjects

reached a selection score of 70% or higher already after using six

iterations. The fifth subject reached this threshold after eight

iterations. One subject had a selection score of 100% when using

12 or more iterations, all other subjects eventually scored 90% or

higher. The average maximum selection score was 93.6%.

Average maximum ITR scores were 9.60 and 6.58 for the 70%

and 90% constraint, respectively.

For condition C175 (see Table 7b), four out of five subjects had

a selection score of 70% or higher when using four iterations.

Subject VPkh only reached this threshold after using ten iterations.

Subject VPzq reached a 100% selection score when using 12

iterations. All but subject VPkh eventually reached a 90%

selection score with an average maximum score of 94.00%.

Average maximum ITR scores were 17.39 and 15.91 for the 70%

and 90% constraint, respectively.

In condition C300s, both the classification- and selection scores

were lower (see Table 7c). Subject VPzq reached the 70%

threshold already after using 6 iterations and had a maximum

score of 90% on this control condition. The subject reported to

regularly sing in a choir. For all other subjects, selection scores did

not rise above 70%. Because condition C300s contained less

subtrials (1500 versus 3500 and 3000 in the C300 and C175

condition respectively), it could be argued that the lower

classification- and selection scores are due to the lower number

of training samples. However, running conditions C300 and C175

with only 1500 subtrials resulted in similar scores as those

currently reported. Any difference between conditions is thus due

to information added by the spatial localization of the stimuli.

Cross validation was also performed on the data from the

physiological experiments. Although both classification- and

selection scores were comparable or better, we do not report on

these results extensively here as the long ISI makes the system

intrinsically slow. For comparison, Figure 10 does show these

results. Note that the bad score for subject VPiz is due to the

removal of over 50% of the trials.

For all conditions and subjects, the classification score of target

stimuli is lower than the overall classification score (see column

‘Target score’ in Table 7). The classifier favors the decision

towards the non-targets, which is due to the bias that exists in the

training set. Balancing of the training set might increase the

classification score, but has not been applied here.

Discussion

We discuss here a new experimental paradigm for an auditory

BCI. In contrast to most other auditory BCI setups, our setup

Table 5. Speaker loudness.

Subject Exp Speaker location

1 2 3 4 5 6 7 8

VPzq Phys. - - - 60.8 60.2 59.7 - -

VPig Phys. 61.4 61.1 61.2 60.1 60.2 60.1 61.2 60.4

VPkj BCI - 56.9 56.2 x x X - -

VPzq BCI 63.4 63.8 62.9 x x X 63.7 63.2

Speakers were calibrated to equal loudness (*58 dB). Before each session, the

subject could adjust this loudness for individual speakers to have subjectively

equal loudness. Most subjects did not make changes; only those that did are

reported here. Subjects are grouped according to experimental rounds. Exp

refers to the experimental round. Speaker location refers to the speaker labels

given in Figure 1. - = unchanged, x = unavailable. All values are in dB.
doi:10.1371/journal.pone.0009813.t005

Figure 9. Polar sensitivity plot for condition Cr. The confusion
matrices for condition Cr of all subjects are summed and represented as
sensitivity plot. The black line indicates the sensitivity at each speaker
location. Direction confusion is represented by the green (neighboring
direction) and red (other) arrows. The length of the arrow indicates the
amount of error in that direction. Speaker 1 (front) and 5 (back) are
difficult to distinguish, as can be seen from their exclusive confusion.
Direction labels correspond to those in Figure 1.
doi:10.1371/journal.pone.0009813.g009

Table 6. Averaged performance for different directions
(condition C1000).

Direction RT [ms] Hits False alarms Misses Error

Front 483 (168) 67 8 1 11.8%

Front-right 414 (121) 40 1 4 11.1%

Right 431 (126) 84 3 0 3.5%

Back-right 552 (211) 83 10 1 11.7%

Back 518 (242) 57 1 3 6.6%

Back-left 499 (184) 51 4 1 8.9%

Left 408 (100) 108 5 0 4.4%

Front-left 403 (121) 75 1 1 2.6%

Average 463.5 (159.1) - - - 7.6%

Reaction times (standard deviation in parentheses) and errors for all subjects
were averaged according to direction of target stimulus. Types of errors made
can be found in Figure 9. Due to random target assigning, not all directions are
designated as a target equally often. The longest reaction times are found in
the rear speakers 3 speakers and the frontal 1.
doi:10.1371/journal.pone.0009813.t006
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involves an intuitive multi-class paradigm that can readily vary in

the number of classes. So far, it has only been tested offline and on

healthy subjects. The results show that all subjects were able to

reach a selection score over 70% in the conditions with spatial cues

(C300 and C175). Actually, all but one subject reached selections

scores higher than 90%. Performance on the control task was for

all but one subject below the 70% threshold, showing that the

spatial location adds vital information to the cue.

As can be seen in Figure 10, the increase in selection score is

highest for condition C1000. The P300 waveform in this condition

has time to reach a peak and recover to baseline to some extent

and is more typical. For the other conditions, more iterations were

necessary for a selection score above 70% i.e., the slope is less

steep. Here, the P300 is no longer the clear and pronounced

positive peak, as responses evoked by new stimuli disturb the

potential buildup. ROC values were generally larger for the

C1000 condition as compared to the faster conditions.

For the BCI experiments, especially C175, the area with the

highest ROC values had shifted to a more frontal position when

compared to condition C1000. Generally, the latency of the P300

wave is shorter over frontal electrodes [17]. Thus, the positive

deflection starts developing over the frontal electrodes and moves

back. One could therefore explain this shift by an interruption of

the developing P300 by the potentials evoked by the presentation

of the next stimulus. However, latency differences between frontal

and parietal areas are in the range of milliseconds [43], which

makes it an unlikely explanation. A variant of the P300, the

novelty P300 and P3a, generally starts more anterior than the

classic P300 [44]. The fact that it is present after an unknown

stimulus and habituates quickly also makes it an unlikely

candidate. Neurophysiological P300 research mostly uses longer

ISI to avoid the overlay of multiple stimuli. In BCI research, where

short ISI is common practice, scalp topographies are not often

reported. The reason for the shift of the P300 to the front therefore

remains unclear.

One measure of reporting the usefulness of a BCI is the ITR. It

depends on the selection accuracy, the time necessary for a choice

and the amount of classes. Because of the long ISI in condition

C1000, the ITR is inevitably low. However, with the pronounce

P300 response it functioned as a proof of concept. In an auditory

BCI setup, the spatial properties of the cue by itself can be enough

to consistently elicit a classifiable P300 response.

With an ISI that is almost six times shorter in condition C175,

extra iterations can still produce an overall fast BCI. Also, some

subjects reported the faster ISI to help them focus on the task at

hand. With successful classification in trials with an ISI as short as

175 ms, the maximum ITR reached an average of 17.39 bits/

minute for five subjects (best subject 25.20), considering only 70%

correct selection scores. Kanoh et al. [7] reported an average ITR

of around 5 bits/minute on their binary BCI, but only when they

Table 7. Classification performance for all BCI conditions.

Subject Classification [%] Target score [%] Selection [%] 70% Thresh. Max. ITR 70% Max. ITR 90%

VPja 69.81 62.12 90.00 (15) 6 6.86 (7) 4.41 (15)

VPkh 74.27 69.02 90.00 (15) 8 4.78 (13) 4.41 (15)

VPkj 73.19 68.08 94.00 (11) 4 9.60 (5) 6.81 (11)

VPzq 78.74 74.89 100.00 (12) 2 19.50 (2) 11.02 (6)

VPjq 74.54 69.10 94.00 (12) 5 7.25 (5) 6.25 (12)

Mean 74.11 68.64 93.60 (13.0) 5.0 9.60 (6.4) 6.58 (11.8)

a) C300

VPja 72.20 63.00 92.50 (12) 4 14.41 (4) 10.21 (12)

VPkh 68.83 61.39 82.50 (13) 10 6.87 (13) - (-)

VPkj 77.48 71.67 97.50 (7) 3 25.20 (3) 20.60 (7)

VPzq 79.89 75.22 100.00 (12) 3 19.36 (5) 17.51 (7)

VPjq 75.66 72.56 97.50 (14) 3 21.10 (3) 15.32 (8)

Mean 74.81 68.76 94.00 (11.6) 4.6 17.39 (5.6) 15.91 (8.5)

b) C175

VPja 57.96 34.66 40.00 (11) - - (-) - (-)

VPkh 63.35 47.11 65.00 (13) - - (-) - (-)

VPkj 60.32 41.26 35.00 (3) - - (-) - (-)

VPzq 72.20 59.79 90.00 (15) 6 5.60 (6) 4.41 (15)

VPjq 62.75 42.12 50.00 (12) - - (-) - (-)

Mean 63.32 44.99 56.00 (10.8) 6.0 5.60 (6.0) 4.41 (15.0)

c) C300s

For explanation of the various conditions see the Methods section. Classification (%) refers to the binary classification score on the artifact free dataset, i.e. the correct
classification of individual subtrials. Target score (%) is the same but only considering target subtrials. The difference between these is possibly due to unbalanced
training set. Max. selection is the maximum selection score reached for each subject, 70% Thresh. refers to the minimum number of iterations needed for averaging to
obtain a 70% selection score. Max. ITR (70%) is the maximum ITR reached when considering only those numbers of averaging that resulted in a 70% selection score or
higher. Max. ITR (90%) is the equivalent with only selection scores above 90%. Number in parentheses in Max. selection, Max. ITR (70%) and Max. ITR (90%) indicate the
number of averages needed for the result. Bold numbers indicate the best result per subject over the three conditions. For most subjects, ITR values are highest for
condition C175. See Figure 10 for results from more averaging steps and the corresponding ITR. See the Analysis subsection for definitions of classification- and
selection score.
doi:10.1371/journal.pone.0009813.t007
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used all data for training and testing, thereby applying the classifier

to data it had already seen. In another binary auditory setup [2],

an ITR of between 4 and 7 bits/minute is reported. Our system

owes its high ITR to its genuinely multi class nature. Another

multi class, auditory BCI is reported on before [5]. It used spoken

numbers as the stimulus for eliciting an ERP and an average ITR

of 1.48 bits/minute was reported for their online approach. This

could be improved to 4.66 bits/minute when they determined the

individual optimal number of iterations in an offline analysis.

Recently, [10] reported on their multi-class auditory BCI with a

maximum online ITR of 5.64 bits/minute in the auditory only

condition. The average ITR remained relatively stable over the

different sessions.

Visual P300 BCI systems are known for their fast operation and

corresponding high ITR. In a recent online visual speller study

[21], average ITR values of 32.15 bits/minute were reported. For

this they used four subtrials with an average classification score of

over 80%. Maximum ITR for a single subject was as high as 92.32

bits/minute using two subtrials. It can be assumed that the average

ITR will further increase, when the optimal number of subtrials is

determined for each subject individually. Even in the original

application of the visual spelling system in 1988 [20], ITR values

of 12.0 bits/minute (or 10.68 bits/minute according to equation 2)

were reported. For a comparison of ITR of several BCI systems,

see [45]. It is thus clear that auditory BCI systems lag behind in

their performance. The setup proposed here takes a step in closing

this gap between visual and auditory performance.

The average ITR for condition C175 went down to 15.91 bits/

minute (best subject 20.60 bits/minute) when only 90% correct

selection scores were considered. Although this is a drop in ITR of

about 9%, it is a score that is still competitive with other auditory

BCI systems and has a much higher accuracy barrier. This high

accuracy and corresponding ITR encourage the further develop-

ment of this paradigm. This could for instance be achieved by

using a multi class classifier [46], instead of the binary classifier

used.

Performance in condition C300s was low, with only one out of

five subjects crossing the 70% threshold. Possibly, the performance

in the control condition can be improved when the cues differ

more in their physical properties i.e., if the difference in pitch is

larger or natural sounds are used as in [10]. This would make

distinguishing the targets from the non-targets easier and thus,

maybe, an auditory multi-class BCI could also be based on this

single speaker setup. However, remembering a pitch is rather

difficult for some subjects, whereas recognition of a spatial

direction is automatic. Subject VPzq actually reached a selection

score of 90% in condition C300s. As this subject reported to

regularly sing in a choir it could be hypothesized that for him the

task was easier to perform and therefore still elicited a P300

response.

Currently the stimuli are presented in free-field i.e., with a

dedicated speaker for every direction. Initial tests with stimulus

presentation over in-ear headphones showed that accurately

identifying the target direction was difficult. However, we believe

that by using the complex cue from the BCI experiments and

more advanced methods for creating virtual 3D audio, it will be

possible to reduce the large setup to stereo ear phones.

As shown by the polar sensitivity plot of the key response task,

there is a higher chance of mistaking a target with one of its direct

neighbors than other stimuli. Possibly, these neighboring direc-

tions fall within the attentional gradient [28,29]. Also, it seems that

more trials are misclassified in the rear than in other directions. It

was shown that the spatial resolution of hearing is higher in the

frontal region than toward the sides in [41]. Their experiments

were on the front-right quadrant only. However, it shows that a

more informed placement of the speakers around the subject

might improve their ability to distinguish the different cues.

A wide range of applications is possible as the directions can be

mapped to any choice and the number of directions is flexible.

One area in which our method might prove useful is auditory BCI

based on spoken words [5]. A BCI with spoken word input might

prove an intuitive alternative to the somewhat unnatural tones.

However, it introduces problems such as increased latency jitter in

the P300 onset which may hinder the classification. Spoken words

that contain spatial information might lead to a more pronounced

response because it is easier to focus on the direction. Also, there is

no longer the need to hear a large part of the word before actual

recognition can take place. Recognition is then based on the

spatial location, whereas the spoken word functions as a reminder

of which cue is mapped to a certain direction. Similarly, the

paradigm described in [10] might benefit from adding spatial

information to the cues.

However good the offline results are, they will need to be

confirmed in an online setting. Preparations for an online study

are currently undertaken.

Supporting Information

File S1 Cues as used in the BCI experiments. Cues consist of

bandpass filtered noise with a tone overlay. See Table 1 for their

properties.

Found at: doi:10.1371/journal.pone.0009813.s001 (0.02 MB ZIP)
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