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 2 

Abstract 46 

Reading is one of the most complex skills that we utilize daily, and it involves the early 47 

development and interaction of various lower-level subskills, including phonological processing 48 

and oral language. These subskills recruit brain structures, which begin to develop long before 49 

the skill manifests and exhibit rapid development during infancy. However, how longitudinal 50 

trajectories of early brain development in these structures support long-term acquisition of literacy 51 

subskills and subsequent reading is unclear. Children underwent structural and diffusion MRI 52 

scanning at multiple timepoints between infancy and second grade and were tested for literacy 53 

subskills in preschool and decoding and word reading in early elementary school. We developed 54 

and implemented a reproducible pipeline to generate longitudinal trajectories of early brain 55 

development to examine associations between these trajectories and literacy (sub)skills. 56 

Furthermore, we examined whether familial risk of reading difficulty and children’s home literacy 57 

environments, two common literacy-related covariates, influenced those trajectories. Results 58 

showed that individual differences in curve features (e.g., intercepts and slopes) for longitudinal 59 

trajectories of volumetric, surface-based, and white matter organization measures were linked 60 

directly to phonological processing and indirectly to first-grade decoding and word reading skills 61 

via phonological processing. Altogether, these findings suggest that the brain bases of 62 

phonological processing, previously identified as the strongest behavioral predictor of reading and 63 

decoding skills, may already begin to develop by birth but undergo further refinement between 64 

infancy and preschool. The present study underscores the importance of considering academic 65 

skill acquisition from the very beginning of life.  66 
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Significance Statement 67 

Reading is crucial for academic, vocational, and health outcomes, but acquiring proficient reading 68 

skills is a protracted developmental process involving lower-level subskills and brain structures 69 

that undergo rapid development starting in infancy. We examined how longitudinal trajectories of 70 

early brain development support long-term acquisition of reading using a reproducible pipeline we 71 

developed specifically for infant-to-school-age longitudinal MRI data. Findings suggest that the 72 

brain bases of reading-related skills begin to develop by birth but continue building between 73 

infancy and preschool. This study emphasizes the importance of considering academic skill 74 

acquisition as a dynamic process preceding the emergence of the skill, and it offers a roadmap 75 

for future studies to examine relationships between early brain development and academic skill 76 

acquisition.  77 
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1.    Introduction 78 

“…the best way to determine how a child learns is to follow them closely while they are learning.” 79 

(1, 2). 80 

Reading acquisition is a multifactorial, developmental process that begins long before the 81 

skill manifests. Behaviorally, the acquisition of reading necessitates the acquisition and complex 82 

interplay of lower-level literacy subskills. In turn, these subskills represent waypoint products of 83 

brain development that began in utero. Therefore, understanding how reading skill emerges 84 

requires examining its behavioral subskills and the developmental trajectories of the brain areas 85 

subserving it starting from the very beginnings of life.   86 

Literacy development represents a model process through which to examine academic 87 

skill acquisition, because literacy develops hierarchically, with lower-level “subskills” interacting 88 

and driving the emergence of higher-level academic skills (e.g., 3). For instance, phonological 89 

processing, which refers to the ability to detect, understand, and manipulate speech sounds (4–90 

7), is the most consistent predictor of subsequent decoding and word reading (4, 8–10). 91 

Meanwhile, various studies have shown that both word reading and oral language skills, which 92 

encompass abilities supporting listening comprehension (11); e.g., vocabulary and syntactic 93 

knowledge), are important subskills for reading comprehension (12). However, these subskills 94 

themselves have protracted development and the brain structures that support them begin 95 

developing long before they manifest, with the most rapid development transpiring perinatally (13, 96 

14). 97 

Several cross-sectional and prospective studies have been conducted linking 98 

performance of these key literacy subskills to brain architecture. For instance, cross-sectional 99 

studies in preschoolers and kindergarteners have shown that phonological processing is 100 

associated with brain structure and function in left temporoparietal, occipitotemporal, and inferior 101 

frontal regions and tracts (15–20). This set of regions has also been linked with preschool and 102 

kindergarten oral language skills in some studies (21–23), but other studies have not shown 103 

associations (17, 24). Looking to early development, infant brain function and white matter 104 

organization have been shown to relate prospectively to (pre)school-age literacy outcomes (25–105 

29), including phonological processing and oral language skills (30–32). Taken together, these 106 

studies suggest that certain brain areas may be important for academic skill performance at a 107 

particular time during development or as ‘neural scaffolding’ that supports subsequent language 108 

development (33). However, recent work in school-age children using large-scale, multi-site 109 

cross-sectional datasets showed little evidence for stable associations between individual 110 

differences in white matter organization and reading performance. Rather, using a separate 111 
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longitudinal dataset, investigators found associations between slopes of white matter growth and 112 

reading gains, suggesting a dynamic interplay between brain development and learning to read 113 

(34). Moreover, the brain itself is a dynamic system that undergoes its most rapid development 114 

during infancy and early childhood (13, 14), making cross-sectional and prospective designs 115 

suboptimal to capture individual differences in early skill acquisition (2) As such, individual 116 

longitudinal trajectories, which capture heterogenous rates of brain and skill development 117 

between infancy and second grade, are needed to examine the acquisition of (sub)skills important 118 

for literacy.  119 

Therefore, the overall goal of the current study is to examine the relationship between 120 

longitudinal trajectories of early brain development and acquisition of reading-related subskills, 121 

which we undertook in four objectives. The first objective was to generate individual longitudinal 122 

trajectories of early brain development spanning infancy to school age. Prior longitudinal studies 123 

have examined trajectories of early brain development but only up to the second year of life (e.g., 124 

35), while others have examined developmental trajectories of brain structure spanning infancy 125 

to school age but only by harmonizing cross-sectional and longitudinal datasets acquired and 126 

processed with varying methods (e.g., 36). However, to our knowledge, no purely longitudinal 127 

studies have mapped the development of brain structure, including white matter organization, 128 

from infancy to school age, using a consistent processing pipeline and one that is appropriate for 129 

early development. Indeed, methodological challenges associated with infant MRI data have 130 

restricted the number and breadth of longitudinal studies in the early developmental period. This 131 

is not only because acquiring and processing infant MRI data requires specialized procedures 132 

and tools to generate accurate brain estimates (37–42), but also because the use of different 133 

procedures and tools for different developmental stages can introduce bias in developmental 134 

analyses. However, the alternative—to use identical procedures and tools for all developmental 135 

stages—would likely cause estimates to vary in accuracy across ages and could introduce 136 

spurious effects and/or obscure true effects in developmental comparisons (43). Some infant-137 

specific tools offer age-specific adjustments (e.g., different sets of templates) within the first two 138 

years of life, and the small number of studies that have examined longitudinal trajectories of brain 139 

development in the first two years have opted for a balanced approach, with age-appropriate 140 

adjustments to limited processing steps in a way that does not require fundamentally different 141 

techniques for different ages (e.g., additional sequences or different smoothing kernels; (35, 44). 142 

However, methods to accommodate a wider early developmental range are lacking. 143 

In the current study, we extend this work by developing reproducible pipelines for 144 

generating longitudinal trajectories of volumetric, surface-based, and white matter organization 145 
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brain measures from infancy to school age. To do this, we leveraged both infant-specific and 146 

standard MRI procedures and tools. We then compared among several candidate linear and 147 

nonlinear mixed effects models, varying according to function (e.g., linear, logarithmic) and 148 

random parameters (e.g., intercepts alone versus intercepts and slopes), to identify the model 149 

with the most parsimonious fit (45). In general, prior longitudinal studies have reported rapid 150 

growth at birth that tapers with age (35, 46–48), except for cortical thickness, which peaks 151 

between ages one and two years (49), suggesting logarithmic functions might provide a better fit 152 

compared with other functions for most measures. 153 

Our second objective was to examine the association of individual differences in early 154 

brain development to long-term literacy development. As such, we extracted curve features (e.g., 155 

intercepts and slopes) from individual longitudinal trajectories for brain areas and tracts previously 156 

shown to relate to reading-related skill development in longitudinal studies in older children (34, 157 

50–59) or prospective studies in infants (30–32). We then tested these curve features for 158 

correlations with preschool/early kindergarten phonological processing, a key literacy subskill. 159 

Based on converging evidence from prior neuroimaging (30–32) and genetics studies (60, 61), 160 

we hypothesized that phonological processing skill would relate to curve intercepts (i.e., brain 161 

estimates at birth) and slopes (i.e., rate of brain development). If the foundations of literacy 162 

development are largely present at birth and stable across early development, then we expect 163 

most of these brain-behavior associations to be with curve intercepts, whereas if the brain 164 

development subserving literacy subskills is more protracted or dynamic, as suggested by Roy 165 

and colleagues (34), then we expect brain-behavior associations to be with curve slopes. 166 

Our third objective was to examine the roles of risk factors related to literacy skills in 167 

shaping longitudinal trajectories of early brain development. Reading difficulty is heritable, as 40-168 

60% of children with a familial risk (e.g., first-degree relative with a history) of reading difficulty 169 

(FHD+) themselves develop reading difficulty (62, 63) Brain imaging studies of FHD+ 170 

preschoolers show reduced gray matter volume, activation, and fractional anisotropy in left 171 

occipito-temporal and temporo-parietal regions (16–18) and tracts (57) compared with FHD- 172 

preschoolers; these reductions overlap with those observed in children with reading difficulty (20, 173 

64–70), suggesting that the phenotypes characteristic of reading difficulty manifest in some 174 

children before the start of formal reading instruction. Concordantly, similar alterations have been 175 

observed earlier in development, where FHD+ infants exhibited lower fractional anisotropy in left 176 

arcuate fasciculus compared with FHD- infants (71), distinguishable patterns of functional 177 

connectivity in left fusiform gyrus as shown by a support vector machine classifier (72), and 178 

alterations in neural responses to basic speech sounds as measured by event-related potentials 179 
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(73–75). Possibly underlying this heritability, work in genetics, including recent large-scale 180 

genome-wide studies, has shown that reading-related skills (60) and reading difficulty (76, 77) are 181 

associated with variation in genes involved in early developmental processes, including 182 

neurogenesis and axon guidance (78).  183 

Another risk factor repeatedly shown to affect children’s literacy skills is the home literacy 184 

environment, which includes caregiver–child shared reading and reading-related resources, in 185 

preschool literacy skills (79–84) and in infancy/toddlerhood (83, 85–90). Recent work has also 186 

identified links between the home literacy environment and brain architecture in 187 

preschoolers/kindergarteners (21, 24, 91–94) and infants (95, 96). Overall, these studies offer 188 

strong evidence that genetic and environmental factors related to the development of reading-189 

related skills are likely to affect longitudinal trajectories of brain development starting perinatally. 190 

Therefore, we hypothesized that the FHD status and home literacy environment would 191 

significantly contribute, as covariates, to longitudinal trajectories of brain development in left 192 

hemisphere temporo-parietal, occipito-temporal, and inferior frontal regions and tracts. 193 

Our fourth objective was to broaden the scope of our examination of early brain-literacy 194 

associations to other literacy-related subskills and subsequent reading skills. Reading acquisition 195 

is a hierarchical process in which multiple distinct but interacting subskills (including but not limited 196 

to phonological processing) converge to effect higher-order skills. First, we tested the specificity 197 

of associations with phonological processing by examining another subskill important for reading 198 

comprehension, oral language skill. Second, we tested whether phonological processing 199 

mediated relationships between curve features of early brain development and subsequent 200 

measures of decoding and word reading skill. Taken altogether, findings from this study will inform 201 

our understanding of how early brain development contributes to later reading-related skill 202 

acquisition. 203 

 204 

 205 

  206 
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2.    Methods 207 

2.1. Participants 208 

Children examined in this study were obtained from two longitudinal cohorts: the New England 209 

dataset and the Calgary open-source dataset (https://osf.io/axz5r/). Only children with high-quality 210 

(i.e., post-QC, please see below) MRI data from at least two timepoints between birth and late 211 

childhood were included. Due to the multi-modal nature of the study, varying numbers of 212 

longitudinal datasets were used for structural (n = 98 with 276 observations) versus diffusion 213 

analyses (n = 128 with 396 observations). For the New England cohort, family history (i.e., first-214 

degree relative with a history) of reading difficulty was also examined and present in 40 of 80 215 

children. For children ages ≤ 24 months, demographic information was provided by caregivers. 216 

Please see Table 1 for overall demographic details, Supplementary Table 1 for demographic 217 

details by modality, and Supplementary Methods for participant information, including race 218 

demographics, unique to each cohort. This study was approved by the Institutional Review Boards 219 

of Boston Children’s Hospital (IRB-P00023182), Harvard University (IRB21-0916), and the 220 

University of Calgary Conjoint Health Research Ethics Board (REB13-0020). Participants’ parents 221 

gave informed consent, and children gave verbal assent if over 25 months old. Data examined 222 

here partially overlap with brain images analyzed in previous studies examining infant brain 223 

development (30–32, 36, 48, 54, 71, 72, 96–102).  224 

 225 

Table 1. Participant Demographics 
General 
information 

Numbers participants | observations 137 | 441 
Number observations per participant 3 ± 1 
Age at literacy-related subskill and cognitive testing (months) 63 ± 5.3  
Age at decoding/word reading testing (months) 82 ± 6.4  

Covariates Biological sex (F/M) 73/64 
Maternal education (years) 17 ± 2.1  
Cohort ([New England]/Calgary) 80/57 
Family history of reading difficulty (+/-) 40/40 
Home literacy environment (a.u.) 0.037 ± 0.41 

Literacy-
related 
subskills 

Phonological processing standard score 106 ± 14 
Oral language standard score 113 ± 13 

Decoding/word 
reading 

Word attack standard score 112 ± 14 
Word identification standard score 110 ± 17 

Cognitive 
abilities 

Nonverbal general cognitive ability 106 ± 13 

 226 
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2.2. Environmental variables 227 

Socioeconomic status was measured with maternal education, consistent with prior brain imaging 228 

studies on socioeconomic status (103–108). Maternal education measures were collected during 229 

each timepoint, although inter-time-point variability was low, and these were averaged to generate 230 

one socioeconomic status measure across the developmental window. Rather than using ordinal 231 

coding, years of education as a continuous measure ranging from 12 to 20 years were used.  232 

For the New England cohort, parents also completed at each time point questionnaires 233 

relating to children’s home literacy environments home literacy environment, which includes the 234 

extent of parent-child shared reading and access to reading-related resources (109). Responses 235 

were indicated using ordinal scales ranging from 1 to 6. As responses were non-normally 236 

distributed (p < 0.05 according to the Shapiro-Wilk normality test; Supplementary Figure 1), 237 

except for “Time read to per week” for all timepoints and “Frequency with which family members 238 

share rhymes or jokes with the child” for one timepoint, they were normalized and then averaged 239 

at each timepoint according to procedure used previously (30). As with maternal education, home 240 

literacy environment estimates, which exhibited low inter-timepoint variability, were averaged to 241 

generate one estimate per individual across the developmental window. These overall home 242 

literacy environment estimates, which were normally distributed (Shapiro-Wilk W = 0.99, p > 0.05; 243 

Supplementary Figure 2), were used in later statistical analyses. 244 

 245 

2.3. Literacy and cognitive measures 246 

Two literacy subskills were administered to children prior to the beginning of formal reading 247 

instruction: phonological processing and oral language. These constructs were selected as 248 

representative subskills supporting literacy development (3, 4, 8–10, 12, 110); however, they 249 

constitute a small subset of literacy-related measures collected for this cohort. No outliers were 250 

detected using the isoutlier function in MATLAB, which sets an outlier threshold at three scaled 251 

median absolute deviations from the median. 252 

Phonological processing was measured in both New England and Calgary cohorts. For 253 

the New England cohort, the phonological processing composite was estimated from three 254 

subtests from the WJ-IV Tests of Cognitive Abilities: word access, word fluency, and substitution 255 

(111). Word access measures phonetic coding by asking children to identify words containing 256 

certain sounds. Word fluency measures speed of lexical access by asking children to name as 257 

many words as possible beginning with a certain sound in one minute. Substitution measures 258 

children’s ability to produce a new word by replacing one sound from a provided word with another 259 

sound. Importantly, while the word access and word fluency subtests require some level of lexical 260 
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access, these subtests, along with the substitution subtest, are well established measures of 261 

phonological/phonemic processing/awareness. For additional details and item examples from the 262 

technical manual, please see the Supplementary Methods. Children in the Calgary cohort were 263 

administered the phonological processing subtest of the NEPSY-II, which measures phonemic 264 

awareness (112). Unlike the New England cohort, each child from the Calgary cohort completed 265 

this subtest multiple times. To harmonize phonological processing scores across the two 266 

datasets, we used NEPSY-II scores from when the child was closest in age to the average age 267 

at which the New England cohort completed the WJ-IV (64 months) and not earlier than 50 months 268 

of age. 269 

The composite oral language, which was only measured in the New England cohort, was 270 

estimated from two subtests from the WJ-IV Tests of Oral Language: picture vocabulary and oral 271 

comprehension (113). Picture vocabulary measures lexical knowledge by asking children to 272 

specify a picture corresponding to a given word or naming an object. Oral comprehension 273 

measures oral listening, vocabulary, and reasoning by asking children to identify missing words 274 

from short passages. All assessments were administered and double-scored by testers trained 275 

by a clinical psychologist and then raw scores were converted to standard scores. 276 

In addition, we measured decoding and word reading with two untimed subtests from the 277 

Woodcock Reading Mastery Tests III (114): word attack and word identification. For word attack, 278 

children were presented with pseudowords that they needed to decode using phonological 279 

abilities. For word identification, children were presented with individual real words that they 280 

needed to read. Word attack and word identification subtests were administered at the beginning 281 

of formal reading instruction.  282 

Lastly, we measured children’s nonverbal general cognitive ability at preschool/early 283 

kindergarten-age using the Matrix Reasoning subtest of the Kaufman Brief Intelligence Test: 2nd 284 

Edition (KBIT-2, (115)). Herein, children were asked to identify the piece missing from a matrix of 285 

visual images. 286 

All raw estimates for each of the WJ-IV, NEPSY-II, and WRMT subtests were non-287 

normally distributed (p < 0.05 according to the Shapiro-Wilk normality test), except for 288 

preschool/early kindergarten picture vocabulary and late kindergarten/grade 1 word attack 289 

(Supplementary Figure 3). All standardized (composite) estimates used in subsequent analyses 290 

were normally distributed (p > 0.05; Supplementary Figure 4). 291 

 292 

 293 

 294 
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2.4. MRI data acquisition and processing  295 

All data were acquired on a 3.0 T scanner with a 32-channel head coil. Please see Supplementary 296 

Methods for cohort-specific acquisition parameters. 297 

The rapid brain growth transpiring immediately after birth posed serious challenges for 298 

structural MRI processing because standard methods that are optimal for older children are 299 

suboptimal for infants and vice versa (43). To circumvent bias associated with choosing a single 300 

pipeline for multiple developmental stages, we implemented pipelines that are age-appropriate 301 

but not fundamentally different for each developmental stage.  302 

 303 

2.4.1. Structural MRI processing and quality control 304 

Raw magnetization-prepared rapid gradient-echo (MPRAGE) images were visually inspected for 305 

artifacts by a trained rater and scored as “fail,” “check,” or “pass” (116). Only images scored as 306 

“check” or “pass” underwent image processing. The standard, unmodified FreeSurfer v7.3 307 

(https://surfer.nmr.mgh.harvard.edu/) “recon” pipeline was used for brains > 50 months. 308 

Processing procedures for brains < 50 months were similar in concept to those described in (117). 309 

Namely, Infant FreeSurfer (for brains ≤ 24 months) or standard FreeSurfer (for brains 25 to 50 310 

months) was used to extract the brain from the skull, correct for intensity inhomogeneity, and 311 

segment MPRAGE images by tissue class (gray matter, white matter, cerebrospinal fluid) and 312 

subcortical brain region (40); https://surfer.nmr.mgh.harvard.edu/fswiki/infantFS). To improve 313 

tissue classification accuracy, MPRAGE images were submitted in parallel to iBEATv2.0 Docker 314 

1.0.0 (118–120); https://github.com/iBEAT-V2/iBEAT-V2.0-Docker), has been validated for birth 315 

to age six years (118). Resulting segmentations from each software package were then 316 

hybridized using in-house MATLAB code that combined the cortical pial and white matter 317 

boundaries labelled by iBEATv2.0 with the subcortical parcellations of Infant FreeSurfer (brains ≤ 318 

24 months) or standard Freesurfer (brains 25 to 50 months), effectively relabeling cortical gray 319 

and white matter in the FreeSurfer-style segmentation; for details, please see the Supplementary 320 

Methods. Structural processing was finalized by submitting these FreeSurfer-style hybrid 321 

segmentations to a modified version of the standard FreeSurfer v7.3 “recon” pipeline, which, for 322 

brains ≤ 24 months, incorporated elements from Infant FreeSurfer. For a schematic of the 323 

structural processing pipeline, please see Supplementary Figure 5. 324 

Resulting white and pial surfaces were visually inspected by two (brains > 50 months) or 325 

three (brains ≤ 24 months) trained raters on a 3-point scale (0, 1, and 2) and datasets with average 326 

ratings > 1.5 were retained for subsequent analyses. Finally, parcellations were visualized to 327 

ensure accuracy of anatomical labels. For reproducibility purposes, we did not perform manual 328 
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editing to correct tissue mislabeling in the remaining images; however, structural measures from 329 

edited and unedited pediatric brain images processed with FreeSurfer have been shown to be 330 

highly correlated (121), including in children (122). Measures of gray and white matter volume, 331 

surface area, cortical thickness, and mean curvature, generated in the final FreeSurfer steps, 332 

were extracted from 8 a priori left hemisphere regions delineated with the Desikan-Killiany atlas—333 

banks of the superior temporal sulcus, fusiform gyrus, inferior parietal lobule, middle temporal 334 

gyrus, pars opercularis, pars triangularis, superior temporal gyrus, and supramarginal gyrus—335 

based on their reported involvement in reading-related subskills (15–23, 30–32, 54, 60; for 336 

reviews, please see 123, Table 3 and 124). 337 

 338 

2.4.2. Diffusion MRI processing and quality control 339 

Preprocessed and tractography for all diffusion-weighted image (DWI) data, regardless of age, 340 

were performed with MRtrix3 based on the pipeline established for the Developing Human 341 

Connectome Project (41, 125). DWI data were first denoised using Marchenko–Pastur principal 342 

component analysis (126–128) and then corrected for susceptibility distortions, eddy currents, 343 

motion, and intensity inhomogeneity using FSL’s topup and eddy (with slice-to-volume correction) 344 

functions (129–133), and Advanced Normalization Tools (ANTs) N4 bias correction tool (134). 345 

Subsequently, three tissue response functions for spherical deconvolution were estimated using 346 

the Dhollander algorithm, a 0.1 fractional anisotropy threshold, and eight maximum harmonic 347 

degrees (135). Fiber orientation densities (FODs) were computed with multi-shell, multi-tissue 348 

constrained spherical deconvolution (136, 137) and then normalized using multi-tissue informed 349 

log-domain intensity normalization.  350 

Two million streamlines were tracked from the normalized FOD maps using the 351 

Anatomically Constrained Tractography (ACT) technique. Importantly, ACT has been shown to 352 

greatly improve tractography, but it relies on accurate tissue segmentations, which are typically 353 

challenging to generate with infant brain data. Using the hybrid segmentations generated for 354 

brains ≤ 50 months (please see above) circumvented this challenge. Thus, FreeSurfer-style 355 

hybrid segmentations for brains ≤ 50 months and standard FreeSurfer segmentations for brains 356 

> 50 months were registered to the preprocessed DWI images using ANTs and then converted 357 

to five-tissue-type images for ACT. The remaining whole-brain tractography parameters included 358 

seeding at the gray/white matter boundary and tracking with the iFOD1 probabilistic algorithm; 359 

step size, minimum and maximum length, and maximum step angle were set to default (138, 139). 360 

Resulting whole-brain tractography was then submitted to the open-source instantiation 361 

of Automated Fiber Quantification (AFQ; (140) for waypoint- and probabilistic-atlas-based fiber 362 
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tract segmentation. The standard pyAFQ pipeline was used for brains > 24 months (141), whereas 363 

pyBabyAFQ was used for brains ≤ 24 months (142). Please see Supplementary Methods for a 364 

summary of differences between the two AFQ instantiations. Next, tracts were resampled to 100 365 

equidistant nodes, and diffusion properties (fractional anisotropy; mean diffusivity) were quantified 366 

for each node for the left hemisphere tracts of interest—arcuate fasciculus, superior longitudinal 367 

fasciculus, and inferior longitudinal fasciculus. Mean fractional anisotropy and mean diffusivity 368 

values for each tract were used to examine model fits (please see section 2.5.1), whereas a more 369 

fine-grained, node-based approach was taken for brain-behavior analyses (please see section 370 

2.5.2). For the latter, to better align tract cores across participants, five nodes on either end were 371 

removed, reducing the total number of nodes per tract to 90. Finally, tracts of interest were visually 372 

inspected by two trained raters on a 3-point scale (0, 1, and 2) and datasets with average ratings 373 

≥ 1 were retained for subsequent analyses. For a schematic of the diffusion processing pipeline, 374 

please see Supplementary Figure 6. 375 

 376 

2.5. Statistical analyses 377 

An overview of statistical operations, all of which were performed in RStudio version 4.2.2, can 378 

be found in Supplementary Figure 7.  379 

2.5.1. Longitudinal trajectory estimation 380 

Prior to modeling, estimates of brain structure and white matter organization underwent a final 381 

quality control procedure to remove estimates for brain areas/tracts of interest if, for brains > 25 382 

months, they were preceded or followed by ≥ 10% annual change (positive or negative) in any 383 

measure and for brains ≤ 24 months, inter-observation changes were negative (or positive for 384 

mean diffusivity). To mitigate data loss, we next identified which observation—earlier or later—385 

was more likely to be inaccurate, using an outlier detection procedure (described in the 386 

Supplementary Methods). All remaining participants after these procedures had multiple 387 

observations. 388 

To generate longitudinal trajectories (i.e., growth curves), we next submitted cleaned, 389 

longitudinal structural and white matter organization estimates to linear mixed effects models 390 

using linear, logarithmic, and quadratic functions from the R ‘lme4’ package. Intercepts and slopes 391 

were modeled as fixed and random effects, and covariates for biological sex, socioeconomic 392 

status, and cohort (New England or Calgary) were entered as fixed effects. Vijayakumar and 393 

colleagues recommends comparing model fits quantitatively (45); consequently, we computed 394 

Bayesian Information Criterion (BIC) metrics and the model (i.e., function and number of random 395 

terms) that provided the best fit (i.e., lowest BIC value) was selected for subsequent analyses. 396 
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Correlations between intercepts and slopes were tested to ensure associations between random 397 

terms were minimized. Most curve features were normally distributed according to the Shapiro-398 

Wilk normality test (p > 0.05) and histograms depicting their distributions are provided in 399 

Supplementary Figures 9-15. 400 

 401 

2.5.2. Associations between longitudinal trajectories of early brain development and phonological 402 

processing 403 

Next, individual-level curve features (i.e., intercepts and slopes) were extracted and tested for 404 

correlations (Pearson) with literacy subskills. The extracted curve features represent individual 405 

variation in intercepts or slopes beyond what would be predicted based on the covariates (e.g., 406 

biological sex); consequently, we did not include these same covariates in the tests of 407 

correlations. To determine whether curve features of volumetric and surface-based measures 408 

were associated with phonological processing in the full sample after accounting for multiple brain 409 

regions (8 tests), a significance threshold was set to pFDR < 0.05 and applied to measures (e.g., 410 

gray matter volume) separately. As diffusion analyses were performed node-wise (90 nodes), we 411 

corrected for multiple comparisons at pFWE < 0.05 using a permutation-based, threshold-free 412 

cluster enhancement method (143), implemented in the permuco package in R (144); corrections 413 

were performed separately for each tract. These methods are similar to those used previously 414 

(24, 96, 108). When significant, individual growth curves were separated into three groups 415 

according to scores on their behavioral assessment with low < 85, 85 ≤ average ≤ 115, and high 416 

> 115, averaged by group, and then plotted. 417 

 418 

2.5.3. Sensitivity analyses 419 

We conducted four sensitivity analyses to test the reliability of our results. First, we performed a 420 

replication analysis on gray/white matter volume, surface area, and mean diffusivity with nonlinear 421 

mixed effects models using asymptotic functions from the R ‘nlme’ package (145), similar to that 422 

described in Alex and colleagues (36); https://github.com/knickmeyer-lab/ORIGINs_ICV-and-423 

Subcortical-volume-development-in-early-childhood). Intercepts and asymptotes were modeled 424 

as fixed and random effects; rate constants were modeled as fixed effects. Second, instead of 425 

testing correlations between curve features and outcomes, we entered outcomes as main and 426 

interaction terms in linear mixed effects models. Third, adhering to recommendations to report 427 

both raw and TIV-corrected results (45), we recomputed brain-behavior associations for 428 

volumetric and surface-based measures using semipartial correlations (Pearson) with the random 429 

terms from longitudinal modeling with TIV as covariates of no interest. Fourth, we submitted 430 
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volumetric and surface-based brain-behavior associations to semipartial correlations (Pearson) 431 

with average (across timepoint) Euler numbers, which quantifies topological defects (146). For 432 

additional details on these sensitivity analyses and Euler quantification, please see the 433 

Supplementary Methods. 434 

 435 

2.5.4. Specificity analyses  436 

To determine whether brain-behavior effects were specific to certain brain measures, regions, 437 

curve features, and behavioral outcomes, we performed three specificity analyses. First, we 438 

generated whole-brain maps depicting variability in associations with phonological processing 439 

according to brain measures (e.g., gray matter volume), region, and curve feature. Second, we 440 

examined whether brain-behavior associations for diffusion measures persisted in right arcuate 441 

fasciculus, superior longitudinal fasciculus, and inferior longitudinal fasciculus. Third, limited to 442 

the New England children, we tested correlations between curve features of brain development 443 

and oral language skill, another reading subskill, and nonverbal general cognitive abilities. For 444 

subsequent testing of literacy-related covariates, we also reanalyzed brain-behavior associations 445 

with phonological processing in the New England subsample only. For volumetric and surface-446 

based measures, FDR correction accounted for brain regions and behavioral measures (24 tests). 447 

For diffusion, cluster-level FWE correction accounted for nodes (90 tests). 448 

 449 

2.5.5. Literacy-related factors as fixed effects in models of early brain development 450 

We determined whether literacy-related covariates (i.e., home literacy environment and FHD 451 

status) contributed to the fit of the growth curve in two ways. First, we examined each covariate 452 

as fixed effects in models of brain development for measures and regions whose curve features 453 

related to phonological processing (please see brain-behavior associations in 2.5.2). For brain 454 

structure, a significance threshold of pFDR < 0.05 was applied to correct for the multiple brain 455 

development models that fit this criterion. Diffusion analyses, which were performed node-wise 456 

for each tract separately (90 tests), were corrected for multiple comparisons using a lenient cluster 457 

size threshold of 5 nodes, as threshold-free cluster enhancement method was not available for 458 

the statistical tests applied to covariates. Second, we compared brain development models with 459 

and without each covariate using BIC metrics. For diffusion, BIC metrics were obtained using tract 460 

averages (rather than separately on individual nodes). Correction for multiple comparisons was 461 

again set to pFDR < 0.05 and applied as described above for brain structure, this time also including 462 

statistics for average diffusion measures. 463 
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2.5.6. Indirect effects between longitudinal trajectories of early brain development and word 464 

reading outcomes via literacy subskills 465 

As with previous work (147), indirect effects were tested when literacy subskills were related to 466 

curve features of brain development and decoding and word reading outcomes (after FDR 467 

correction). Formal indirect effects modeling was conducted using the Mediation package in R 468 

with 20,000 bootstrapped samples, and effects were determined significant when the 95% 469 

confidence interval for the average causal mediation effect did not include 0. All mediation models 470 

included covariates for maternal education, home literacy environment, and family history of 471 

reading difficulty. As in the sensitivity analyses, models were run twice, once without controlling 472 

for TIV and once including TIV curve features. Because mediation testing was limited to data with 473 

significant (after correction for multiple comparisons) brain-behavior associations, no additional 474 

correction for multiple correction was applied; this is consistent with prior literature (36, 147, 148). 475 

 476 

 477 

2.6. Data availability 478 

All code used to process and analyze has been made openly available at 479 

https://github.com/TeddyTuresky/Longitudinal-Trajectories-Early-Brain-Development-Language. 480 

The Calgary dataset is also freely available at https://osf.io/axz5r/. All Boston/Cambridge data 481 

used in this study will be made publicly available at upon acceptance of the manuscript. 482 

  483 
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3.    Results 484 

3.1. Longitudinal trajectories of brain structure and white matter organization in left hemisphere 485 

literacy-related brain regions and tracts 486 

Our first objective was to generate accurate longitudinal trajectories of early brain development in 487 

regions and tracts reportedly involved in reading-related subskills (15–23, 30–32, 54, 60; for 488 

reviews, please see 123, Table 3 and 124). Accordingly, growth curves for regional estimates of 489 

gray and white matter volume, surface area, cortical thickness, and mean curvature and for tract 490 

estimates of fractional anisotropy and mean diffusivity were generated from 137 children (F/M = 491 

73/64) with 441 observations. Every child had at least two observations between birth and school 492 

age with 77 having at least one observation in infancy (Figure 1; please see Supplementary Figure 493 

16 for age distributions by modality). Linear mixed effects models included individual-level 494 

intercepts and slopes as well as covariates for biological sex, socioeconomic status, and cohort. 495 

All structural and diffusion measures for all regions and tracts were best fit with logarithmic 496 

functions according to Bayesian Information Criterion (Supplementary Table 2), whereby rates of 497 

development were steeper perinatally and then slowed across the first ten years following birth 498 

(Figure 2; Supplementary Figures 17-22). 499 

 500 
Figure 1. Age distribution of longitudinal dataset from infancy to late childhood. All children had 501 
structural and/or diffusion MRI data from at least two observations (dots). Blue, New England 502 
cohort; orange, Calgary cohort. 503 

Figure 1. Age distribution of longitudinal dataset from infancy 
to late childhood. All children had structural and/or diffusion 
MRI data from at least two observations (dots). Blue, New 
England cohort; orange, Calgary cohort.
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 504 

 505 
Figure 2. Average longitudinal trajectories from infancy to late childhood by measure. Raw 506 
estimates for each brain region examined and each measure were submitted to linear mixed 507 
effects models using a logarithmic function. Individual growth curves predicted by this model were 508 
averaged to show the overall longitudinal trajectory of the sample for each volumetric/surface-509 
based (blue lines) and diffusion (green lines) measure. Absolute brain estimates were then 510 
converted to percent change values to visualize all brain measures along a single axis. For growth 511 
curves for separate brain regions and tracts, please see Supplementary Figures 17-22. 512 
 513 

 514 

3.2. Associations between growth curve features and phonological processing 515 

Our second objective was to examine whether brain development affects literacy development. 516 

Consequently, curve features (i.e., intercepts and slopes) were extracted from individual-level 517 

growth curves and tested for correlations (Pearson) with preschool/early kindergarten 518 

phonological processing scores, a subskill critical for literacy (3, 8). 519 

 For volumetric and surface-based measures, curve features of gray/white matter volume 520 

and surface area in several left hemisphere regions exhibited associations with phonological 521 

processing. Specifically, greater phonological processing was associated with (a) greater 522 

intercepts of gray matter volume in the left banks of the superior temporal sulcus, (b) greater 523 

slopes of white matter volume in left occipitotemporal, temporoparietal, and inferior frontal 524 

regions, and (c) greater surface area intercepts and slopes in inferior parietal lobule, pars 525 

triangularis, and superior temporal gyrus (Supplementary Figure 23). Next, individual growth 526 

curves corresponding to these measures and regions were separated into three groups according 527 

to phonological processing scores with low < 85, 85 ≤ average ≤ 115, and high > 115, averaged 528 

by group, and then plotted to visualize variation in longitudinal trajectories by phonological 529 
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Figure 2. Average longitudinal trajectories from infancy to late childhood by measure. Raw 
estimates for each brain region examined and each measure were submitted to linear mixed 
effects models using a logarithmic function. Individual growth curves predicted by this model 
were averaged to show the overall longitudinal trajectory of the sample for each 
volumetric/surface-based (blue lines) and diffusion (green lines) measure. Absolute brain 
estimates were then converted to percent change values to visualize all brain measures along 
a single axis. For growth curves for separate brain regions and tracts, please see 
Supplementary Figures 17-22.
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processing score. Most notably, children with lower phonological processing scores tended to 530 

have less gray matter volume in left banks of the superior temporal sulcus at birth but maintained 531 

similar rates of development compared with higher scoring children. At the same time, they had 532 

lower rates of white matter volume growth in left occipitotemporal, temporoparietal, and inferior 533 

frontal regions (Figure 3).  534 

 535 
Figure 3. Longitudinal trajectories of brain structure from infancy to late childhood according to 536 
phonological processing skill in preschool/early kindergarten. Graphs depict average trajectories 537 
for children with low (< 85), average (85 – 115), and high (> 115) standardized phonological 538 
processing scores for measures and regions whose (A) intercepts, (B) slopes, or (C) both 539 
intercepts and slopes correlated with phonological processing (pFDR < 0.05). Correlation statistics 540 
are reported adjacent to their corresponding plots; intercept and slope statistics for surface area 541 
averaged here for visualization purposes but reported separately in Supplemental Figure 23. As 542 
a group, children with low phonological processing in preschool/early kindergarten tended to have 543 
attenuated longitudinal trajectories, either because they began with lower estimates, as with less 544 
gray matter volume in the left banks of the superior temporal gyrus at birth (upper left graph), or 545 
because they had slower rates of development, as with white matter volume in other left 546 
hemisphere brain regions. 547 
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Figure 3. Longitudinal trajectories of brain structure from infancy to late childhood according to phonological 
processing skill in preschool/early kindergarten. Graphs depict average trajectories for children with low (< 85), 
average (85 – 115), and high (> 115) standardized phonological processing scores for measures and regions 
whose (A) intercepts, (B) slopes, or (C) both intercepts and slopes correlated with phonological processing (pFDR 
< 0.05). Correlation statistics are reported adjacent to their corresponding plots; intercept and slope statistics for 
surface area averaged here for visualization purposes but reported separately in Supplemental Figure 23. As a 
group, children with low phonological processing in preschool/early kindergarten tended to have attenuated 
longitudinal trajectories, either because they began with lower estimates, as with less gray matter volume in the 
left banks of the superior temporal gyrus at birth (upper left graph), or because they had slower rates of 
development, as with white matter volume in other left hemisphere brain regions. 
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Curve features of white matter organization in the left arcuate fasciculus also correlated 548 

with phonological processing outcomes, as greater phonological processing skill was associated 549 

with greater slopes of mean diffusivity (Supplementary Figure 24). When distinguishing 550 

longitudinal trajectories according to literacy subskills (i.e., low < 85, 85 ≤ average ≤ 115, and high 551 

> 115), as with volumetric and surface-based measures above, children with low phonological 552 

processing scores tended to have higher mean diffusivity at birth but greater rates of mean 553 

diffusivity development (i.e., more negative slopes) compared with higher scoring children (Figure 554 

4). No significant associations were observed for the superior or inferior longitudinal fasciculus. 555 

 556 

 557 
Figure 4. Longitudinal trajectories of mean diffusivity from infancy to late childhood according to 558 
phonological processing skill in preschool/early kindergarten. Graph depicts average trajectories 559 
for children with low (< 85), average (85 – 115), and high (> 115) standardized phonological 560 
processing scores for the left arcuate fasciculus nodes whose slopes correlated with phonological 561 
processing (pFWE < 0.05). Children with low phonological processing tended to exhibit faster 562 
development (i.e., more negative slope) in anterior arcuate fasciculus. 563 
 564 

 565 

3.3. Sensitivity Analyses 566 

We performed four sensitivity analyses to test the robustness of the observed brain-behavior 567 

relationships. For the first sensitivity analysis, we re-fit our volumetric, surface area, and mean 568 

diffusivity estimates with nonlinear mixed effects models using asymptotic functions 569 

(Supplementary Figures 25-28). This alternative model to characterize longitudinal trajectories 570 

was especially important for mean diffusivity findings, where intercepts and slopes from the main 571 

analysis were correlated for many nodes in each tract examined. 572 

We observed that greater phonological processing was still associated with greater 573 

intercepts of gray matter volume development in the left banks of the superior temporal sulcus 574 
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and of surface area in left inferior parietal lobule, pars triangularis, and superior temporal gyrus 575 

(Supplementary Table 3A, C). Interestingly, when trajectories were again split according to low (< 576 

85), average (85 – 115), and high (> 115) standardized phonological processing scores, intercepts 577 

were saliently divided, more so than when using linear models (Supplementary Figure 3A,C). 578 

Whereas our main analyses allowed us to examine relationships between brain development and 579 

literacy subskills directly by using a random slopes term, the nonlinear model used in this 580 

sensitivity analysis replaces the random slopes term with a random asymptote term. As such, 581 

relationships between brain development and language outcomes may only be inferred where 582 

brain measures and regions exhibit asymptote-behavior correlations without corresponding 583 

intercept-behavior correlations. Models for middle and superior temporal cortices and 584 

supramarginal gyrus white matter volume did not converge. However, other brain regions whose 585 

white matter volume and surface area slopes correlated positively with phonological processing 586 

in the main analysis also exhibited significant associations between asymptotes and phonological 587 

processing. Effect sizes in were generally smaller for white matter volume and larger for surface 588 

area compared with the main analysis (Supplementary Tables 3B, C; Supplementary Figure 589 

3B,C). Regarding white matter organization, greater phonological processing was associated with 590 

lower mean diffusivity intercepts in left arcuate fasciculus (Supplementary Tables 3D). 591 

 Our second sensitivity analysis involved adding phonological processing main and age x 592 

phonological processing interaction terms as covariate analogues to brain-behavior correlations 593 

with intercepts and slopes, respectively. All results for gray and white matter volume and mean 594 

diffusivity present in the main analysis persisted in this sensitivity analysis; however, surface area 595 

effects did not (Supplementary Table 4). 596 

For the third sensitivity analysis, we recomputed brain-behavior associations for 597 

volumetric and surface-based measures using semipartial correlations, controlling for curve 598 

features of the longitudinal trajectory for total intracranial volume (TIV). Relative to the results of 599 

the main analysis, effect sizes were reduced when including curve features of TIV. However, 600 

associations with phonological processing remained significant for intercepts of the banks of the 601 

superior temporal sulcus gray matter and inferior parietal lobule, pars triangularis, and superior 602 

temporal gyrus surface area. Slopes of white matter volume development in inferior parietal lobule 603 

and pars triangularis also remained significant (Supplementary Table 5). 604 

 In the fourth sensitivity analysis, we again recomputed brain-behavior associations, this 605 

time controlling for Euler numbers as a reproducible alternative to manual quality control (149). 606 

On average, effect sizes showed no drop relative to the main analysis (ravg = 0.35). All brain-607 

behavior associations significant in the main analysis remained significant with the inclusion of 608 
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Euler numbers, except for the association between phonological processing and slopes of 609 

superior temporal gyrus surface area (Supplementary Table 6). 610 

 611 

3.4. Specificity analyses 612 

We also performed analyses to determine whether brain-behavior associations were limited to 613 

specific brain measures, regions, and curve features or contingent upon specific behavioral 614 

measures. Whole-brain analyses showed higher brain-behavior effects for white matter volume 615 

slopes compared (numerically) to other morphometric measures, especially in left inferior parietal 616 

lobule; however, effects did not appear to be specific to the left hemisphere (Supplementary 617 

Figure 32). In contrast, brain-behavior associations with mean diffusivity did not replicate in right 618 

hemisphere homologue tracts. In a subset of data, we also tested whether associations were 619 

specific to phonological processing, to other reading subskills, or to cognitive measures in 620 

general. Effects with phonological processing persisted in this subset for all brain-behavior 621 

associations except for intercepts of surface area in left inferior parietal and superior temporal 622 

cortices. However, similar effects were not observed for oral language skills or nonverbal general 623 

cognitive ability (Supplementary Table 7). 624 

 625 

3.5. Contributions of literacy-related factors to longitudinal trajectories of brain structure and white 626 

matter organization 627 

Next, we sought to examine whether the brain-behavior associations, observed in both the full 628 

sample and the New England cohort only, are driven by two common literacy-related factors: 629 

family history of reading difficulty and the home literacy environment. When modeled as fixed 630 

effects, neither constituted significant contributors to the longitudinal trajectories of early brain 631 

development that predicted phonological processing (Supplementary Table 8). Furthermore, BIC 632 

estimates for models with versus without literacy-related covariates were not significantly different 633 

for any brain measures or regions (Supplementary Table 9). 634 

 635 

3.6. Indirect effects between longitudinal trajectories of early brain development and word 636 

reading outcomes via phonological processing 637 

Finally, we examined whether literacy subskills mediated the relationship between brain 638 

development curve features (e.g., intercepts and slopes) and decoding and word reading 639 

outcomes. As a prerequisite for mediation, the mediator (i.e., phonological processing) must be 640 

associated with both the predictor (i.e., brain estimate) and outcome (i.e., word reading). We 641 

limited the potential mediator to phonological processing, which related to both decoding (r = 0.48; 642 
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p < 0.005) and word reading (r = 0.53; p < 0.001), as measured by the Woodcock Reading Mastery 643 

Tests III word attack and word identification subtests (114), because brain-behavior associations 644 

with oral language were few and inconsistent in sensitivity analyses, and we limited the potential 645 

predictors to brain measures and regions/tracts surviving FDR correction in the main analysis. 646 

Indirect effects were reported when the 95% confidence intervals, based on 20,000 bootstrapped 647 

samples, for the average causal mediation effect did not include 0 (please see Methods).  648 

 Phonological processing mediated the relationship between brain and decoding and 649 

between brain and word reading for the following measures and regions: intercepts of gray matter 650 

volume development in the left banks of the superior temporal sulcus (Figure 5A). Phonological 651 

processing skill also mediated associations between decoding/word reading and slopes of white 652 

matter volume development and intercepts and slopes of surface area development in left 653 

temporo-parietal and inferior frontal regions (Figure 5B, C; Supplementary Tables 10, 11). Indirect 654 

effect sizes nominally attenuated when controlling for TIV curve features for decoding (average 655 

estimate with TIV = 0.016, average estimate without TIV = 0.020) and word reading (average 656 

estimate with TIV = 0.024, average estimate without TIV = 0.031; Supplementary Tables 12, 13). 657 

Lastly, phonological processing skill mediated associations between slopes of mean diffusivity 658 

development in left arcuate fasciculus and decoding and word reading (Figure 5D). 659 

 660 

 661 
Figure 5. Phonological processing skill mediates the relationship between early brain 662 
development and decoding and word reading. Indirect effects (filled arrows) were found for (A) 663 
intercepts of gray matter volume in the left banks of the superior temporal sulcus; (B) slopes of 664 
white matter volume and (C) intercepts and slopes of surface area in left temporo-parietal and 665 
inferior frontal regions; and (D) slopes of mean diffusivity in left arcuate fasciculus (nodes 6-25, 666 
green). Note: indirect effects are depicted for surface area slopes only; surface area intercept 667 
effects are reported in Supplementary Tables 10, 11.  668 
 669 

  670 

Phonological Processing

Decoding and Word Reading

A B C

Figure 5. Phonological processing skill mediates the relationship between early brain 
development and decoding and word reading. Indirect effects (filled arrows) were found for 
(A) intercepts of gray matter volume in the left banks of the superior temporal sulcus; (B) 
slopes of white matter volume and (C) intercepts and slopes of surface area in left temporo-
parietal and inferior frontal regions; and (D) slopes of mean diffusivity in left arcuate 
fasciculus (nodes 6-25, green). Note: indirect effects are depicted for surface area slopes 
only; surface area intercept effects are reported in Supplementary Tables 10, 11. 
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4.    Discussion 671 

The brain regions and tracts that eventually support decoding and word reading begin to develop 672 

long before the skills themselves emerge. Here, we examined the relationship between 673 

longitudinal trajectories of early brain development and acquisition of reading-related (sub)skills 674 

in four objectives. First, we generated longitudinal trajectories of early brain structure, including 675 

white matter organization, from infancy to school age in regions and tracts previously linked to 676 

literacy development (30–32, 34, 50–58) using a novel processing and analysis pipeline 677 

appropriate for the early developmental period. Findings showed that longitudinal trajectories 678 

were best modeled using logarithmic, compared with linear and quadratic, functions. Second, we 679 

examined associations between curve features of longitudinal trajectories and a key literacy 680 

subskill: phonological processing. Results showed that curve intercepts (i.e., birth brain estimates) 681 

of gray matter volume and surface area and curve slopes (i.e., early brain development) of white 682 

matter volume, surface area, and mean diffusivity predicted phonological processing measured 683 

in preschool/early kindergarten. While effects were robust in hypothesized left temporo-parietal, 684 

occipito-temporal, and inferior frontal regions and tracts, specificity analyses suggest that these 685 

brain-behavior associations are not limited to these regions. The predominance and magnitude 686 

of slope-outcome associations in comparison with intercept-outcome associations suggests a 687 

less stable, more dynamic relationship between brain and literacy development (34). Third, we 688 

examined whether familial risk of reading difficulty and home literacy environment, two common 689 

literacy-related covariates, influenced those trajectories and found that they did not. Fourth, we 690 

expanded the scope of our inquiry to long-term literacy development, showing that phonological 691 

processing mediated associations between early brain development and decoding and word 692 

reading skills between late kindergarten and second grade. Overall, these findings suggest that 693 

the neural foundations for the subsequent development of phonological processing may be 694 

partially present at birth but are still forming in the years between birth and preschool and 695 

eventually support the development of decoding and word reading skills. 696 

 Trajectories of early brain development have been generated from longitudinal studies up 697 

to the first two years of life (e.g., 35) and from combined cross-sectional and longitudinal datasets 698 

spanning infancy to school age (e.g., 36). However, methodological challenges associated with 699 

infant MRI and longitudinal designs in general have created a relative vacuum of longitudinal MRI 700 

studies spanning infancy to school age (43). The current study fills this gap as a purely longitudinal 701 

examination of early structural brain development in which longitudinal trajectories are generated 702 

with a pipeline designed for the early developmental period. Overall, longitudinal trajectories of 703 

gray and white matter volume, surface area, fractional anisotropy, and mean diffusivity exhibited 704 
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rapid postnatal growth that slowed with age, which largely comports with previous early 705 

developmental studies using cross-sectional (150–154) and combined longitudinal and cross-706 

sectional designs (13, 36, 46, 48, 155, 156). As shown previously (49, 154), the curves for cortical 707 

thickness and mean curvature were generally less steep compared with other brain measures, 708 

both initially following birth and into childhood. Nonetheless, empirical comparisons with linear 709 

and quadratic functions showed that logarithmic models were more parsimonious for all measures 710 

examined.  711 

After generating longitudinal trajectories, we examined how this brain development 712 

influenced literacy development by relating curve features of individual trajectories to reading-713 

related subskills measured in preschool/early kindergarten as well as decoding and word reading 714 

skills measured between kindergarten and second grade. The finding of direct links to 715 

phonological processing and indirect links to decoding and word reading from curve intercepts of 716 

gray matter volume (i.e., gray matter volume at birth) specifically in the left banks of the superior 717 

temporal sulcus is compelling in the context of a recent large-scale genomics study showing 718 

common genetic influences on surface area in this region and reading-related skills (60), including 719 

from a gene involved in neurogenesis and axon formation (78). Combined with observed 720 

intercept-outcome associations for surface area in other left hemisphere regions and prior work 721 

showing an association between reading difficulty and left temporo-parietal sulcal patterns 722 

determined in utero (157), these findings offer convergent evidence for a mechanistic pathway 723 

through which genetic factors shape the foundations of reading development via prenatal left 724 

temporo-parietal brain development. While this intercept-outcome effect remained robust through 725 

all four sensitivity analyses, this interpretation should be viewed with caution, as specificity 726 

analyses suggest intercept-outcome effects may not be limited to the left banks of the superior 727 

temporal sulcus. 728 

The intercept-outcome findings also support the hypothesis that school-age literacy skill 729 

builds on an early-developing foundation (33) or ‘neural scaffold’ (30–32). However, the paucity 730 

of intercept-outcome associations in contrast to the multitude and magnitude of slope-outcome 731 

associations suggests that this neural scaffold develops substantially over the first several years 732 

of life. While the mechanisms driving these divergent associations with outcomes will ultimately 733 

require further investigation, it is conceivable that they reflect links to distinct early precursors of 734 

phonological skills. For instance, the intercept-outcome associations may reflect stable relations 735 

with foundational perception skills that develop earlier (e.g., prosody, differentiating phonemes) 736 

and remain necessary for the development of more advanced phonological processing skills, 737 

whereas slope-outcome associations reflect dynamic associations with more advanced 738 
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phonological processing skills such as syllable or phoneme deletion or substitution. Overall, the 739 

presence of slope-outcome associations offers insights into the early development of a neural 740 

scaffold for literacy and in doing so, underscores the importance of examining individual 741 

longitudinal trajectories (2), as opposed to cross-sectional and prospective associations.  742 

It was also interesting that most of the slope-outcome findings were with white matter 743 

properties, and nearly all of these remained significant in all sensitivity analyses, with some effects 744 

becoming even more robust (e.g., please see inferior parietal white matter in second sensitivity 745 

analysis). While no prior study has examined the relationship between long-term literacy subskills 746 

and longitudinal trajectories of white matter development beginning in infancy (or early 747 

development of surface-based measures), there is a small corpus of literature that has linked 748 

reading-related skill performance to short-term, school-age developmental changes in left 749 

temporo-parietal white matter volume (158) and organization, most consistently in the left arcuate 750 

fasciculus (34, 56, 57, 158). This is especially compelling when considering that the slope-751 

outcome relationship we observed with white matter organization was specific to the left arcuate 752 

fasciculus and to phonological processing, which is highly predictive of subsequent word reading 753 

and decoding performance (4, 8–10). Work from genomics might offer further explanation for the 754 

dominance of white matter associations, as genes involved in axon guidance (159), axon 755 

formation (78), and oligodendrocyte maturation (160) have also been linked to reading-related 756 

skills (60) and reading disability (76, 77). Although white matter volume and organization are not 757 

strongly associated and thought to be sensitive to different properties (161), their reliance on 758 

myelination, the primary function of oligodendrocytes, and other axonal properties suggests that 759 

they may represent another mechanism through which genetic factors may shape early brain 760 

development.  761 

Interestingly, specificity analyses showed direct brain-behavior associations with 762 

phonological processing but not with oral language skills or nonverbal general cognitive abilities. 763 

Prior brain imaging studies in preschoolers/kindergarteners comport with this finding as 764 

phonological processing seems to exhibit more consistent associations with brain architecture  765 

(15–20), compared with oral language skills (21–23); c.f., (17, 24). While both subskills are 766 

considered critical for higher-level reading-related skills, they are thought to function on two 767 

distinguishable developmental pathways, whereby phonological processing is more involved in 768 

recognizing and decoding printed words and oral language skills are more essential for the 769 

development of reading comprehension skills (please see Scarborough’s Reading Rope; (8). It 770 

should be noted that this framework also fits with our mediation findings, which show indirect 771 

relations between early brain development and decoding and (printed) word reading via 772 
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phonological processing. Furthermore, whereas phonological processing is limited in its scope, 773 

as specifically one’s ability to recognize and manipulate sounds in a word (4–7), oral language 774 

was measured in the current study as a composite of vocabulary and oral comprehension 775 

subtests, with the latter requiring children to engage with semantic and syntactic cues. As different 776 

brain regions may be more specialized for certain component language skills (e.g., pars 777 

opercularis may be more involved in syntactic processing while pars triangularis and middle 778 

temporal gyrus may be more involved in semantics; (162, 163)), aggregating distinct oral 779 

language skills may have obscured brain-behavior associations. Conversely, it is also conceivable 780 

that oral language acquisition requires additional, moderating factors that were not modeled in 781 

the present study (e.g., social interactions (164) or conversational turn-taking (21)). Nevertheless, 782 

the necessity of phonological processing for literacy development and its relation to early brain 783 

development reported here underscore the importance of examining reading-related subskills at 784 

the very beginnings of life. 785 

Turning to literacy-related covariates, familial history of reading difficulty (FHD) was 786 

hypothesized to influence longitudinal trajectories of early brain development, based on previous 787 

findings showing FHD-related alterations in brain architecture in infancy (71, 72) and preschool 788 

(16, 18, 57). Consequently, the observation that FHD status did not influence longitudinal 789 

trajectories in any regions or tracts examined was initially unexpected. However, it is important to 790 

recognize that a child who has an older sibling or parent with a reading difficulty (FHD+) does not 791 

necessarily have a genetic susceptibility for reading difficulty (165), nor will they necessarily 792 

develop reading challenges given the multifactorial nature of reading difficulties. Rather, FHD 793 

status should be considered one of multiple risk factors that can contribute to long-term literacy 794 

development (166, 167), either through intergenerational transmission of genes or environment 795 

(168). Consistent with this, roughly half of FHD+ children develop typical reading skills (62, 63), 796 

and those who do develop typical reading skills have, as a group, been shown to recruit right- and 797 

inter-hemispheric compensatory pathways (169, 170), a pattern similar to children with reading 798 

difficulty who subsequently show improvements (171). Although the specificity analysis examining 799 

brain-behavior effects in non-a-priori brain regions did not point to literacy-related effects solely in 800 

the left hemisphere, right hemisphere regions and tracts were not thoroughly assayed in the 801 

current study. Therefore, it may behoove future studies with larger sample sizes to examine the 802 

development of right hemisphere regions and tracts in the context of FHD status and to distinguish 803 

FHD+ children who develop typical reading skills from FHD+ children who do not.  804 

 The home literacy environment also did not significantly influence longitudinal trajectories 805 

in the regions and tracts examined, despite reported links to brain structure and function in infants 806 
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(95, 96) and preschoolers/kindergarteners (21, 24, 91–94). However, with few exceptions (e.g., 807 

common associations to arcuate fasciculus fractional anisotropy in infants (96) and kindergarten 808 

(24)), specific brain measures and regions/tracts linked to home literacy environment variables 809 

identified at the infant time point were not also identified at the preschool/kindergarten time point, 810 

suggesting that brain-home literacy environment  relations may vary across this developmental 811 

window. Future longitudinal studies with more frequent sampling of observations will be needed 812 

to test whether this explanation is accurate. Also, as examination of home literacy was limited to 813 

longitudinal trajectories for brain measures and regions/tracts that were associated with 814 

phonological processing, it is likely that measures and regions/tracts related to the home literacy 815 

environment went untested in the current study. 816 

 This study had five main limitations. First, consistent with prior work (36), the models we 817 

fit to early brain development generated smooth longitudinal trajectories. In actuality, it is unlikely 818 

that early brain development transpires as predictably, especially during sensitive and critical 819 

periods (172) or specific learning milestones (2). Although participants in the current study were 820 

sampled over three times on average, which is preferred for modeling growth curves (173) and 821 

more than most longitudinal imaging studies (174), future studies would benefit from increased 822 

sampling, particularly around learning milestones germane to literacy development. Second, the 823 

sample size in the current study was relatively small when compared with the sample sizes used 824 

in multi-site, combined cross-sectional and longitudinal studies (e.g., 13, 36). While sensitivity 825 

analyses for the most part demonstrated the robustness of the results, future studies with larger 826 

sample sizes will be needed to confirm the findings presented here. Third, cortical thickness, 827 

mean curvature, fractional anisotropy, and mean diffusivity exhibited high correlations between 828 

random parameters (i.e., intercept-slope correlations) when modeled with logarithmic functions, 829 

which spurred concerns over the accuracy of the estimated random parameters. For the current 830 

findings, inaccurate random parameters could have generated false negatives for the former three 831 

measures and false positives for mean diffusivity. Consequently, for the former three parameters, 832 

even though they were consistently better fit with logarithmic functions, we re-analyzed intercept-833 

outcome and slope-outcome associations using random parameters from models with quadratic 834 

functions, which had considerably lower intercept-slope correlations. Despite this, results 835 

remained non-significant. Meanwhile, the first sensitivity analysis addressed concerns for mean 836 

diffusivity by showing that nonlinear mixed effects models using asymptotic functions decoupled 837 

intercepts and slopes while maintaining the significant results observed in the main analysis. It is 838 

also important to note that this limitation does not apply to findings for gray and white matter 839 

volume or surface area. Fourth, we examined somewhat narrowly literacy-related factors that 840 
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could contribute to early brain development by only including FHD status and home literacy 841 

environment, and it is likely that factors not included also contribute to the longitudinal trajectories 842 

examined (e.g., teaching quality, educational opportunities, executive functioning skills (166, 843 

175). Fifth, our longitudinal analysis pipeline identifies and removes brain estimates preceding or 844 

following developmental changes that are too steep to occur neuroanatomically and more likely 845 

to emerge from region or tract mislabeling, despite our quality control efforts. Consequently, it is 846 

possible that estimates without steep developmental changes also suffer mislabeling but remain 847 

undetected. Overall, interpretations of findings should be considered in the context of these 848 

limitations.  849 

 In conclusion, this study examined associations between longitudinal trajectories of early 850 

brain development beginning in infancy and long-term reading acquisition, specifically literacy 851 

subskills. Longitudinal trajectories were generated using a novel, reproducible pipeline we 852 

designed specifically for examining early brain development and included familial risk of a reading 853 

difficulty and environmental covariates. Findings indicate that preschool/early kindergarten 854 

phonological processing, one of the strongest predictors of subsequent word reading 855 

development, relates to gray matter volume and surface area at birth and development of white 856 

matter volume, surface area, and mean diffusivity across early development. These results offer 857 

further evidence for a neural scaffold for literacy development, which is present at birth and 858 

continues forming across the first several years of life. The present study also provides a roadmap 859 

for future longitudinal studies to examine the relationship between early brain development and 860 

acquisition of other academic skills. Understanding when the foundations for reading emerge can 861 

deliver important insights into the development of instructional approaches and preventative, and 862 

intervention strategies. 863 

 864 
 865 
 866 
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 868 
 869 
 870 
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 872 
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Supplementary Methods 
1. Participants 

New England cohort 

Children participated in a longitudinal investigation of brain and literacy development from infancy 

to school age (NIH–NICHD R01 HD065762). Families of these children were recruited from the 

New England Area using the Research Participant Registry provided by the Division of 

Developmental Medicine at Boston Children’s Hospital, and with flyers and ads disseminated in 

local schools and newspapers, at community events, and on social media. Children were enrolled 

as infants with the expectation that participation would continue at subsequent developmental 

stages across the first decade of life. Children were excluded from the study if at any timepoint 

they were diagnosed with neurological, sensory, or motor disorders or had contraindications for 

MRI evaluation (e.g., metal implants). All children included were from English-speaking families 

and were born at gestational week 37 or later. Race demographics, whose reporting is 

encouraged to improve equitability in neuroscience (1), are as follows: 70% White/Caucasian, 6% 

Black/African American, 5% Asian, 16% Multiracial, and 5% Hispanic. Neuroimaging and 

behavioral testing were conducted at Boston Children’s Hospital prior to 2021 and at the Center 

for Brain Science at Harvard University from 2021 onward. At Boston Children’s Hospital, 

children’s anatomical MRI scans (please see parameters below) did not show any potentially 

malignant brain features, as reviewed by a pediatric neuroradiologist. This study was approved 

by the Institutional Review Boards of Boston Children’s Hospital (IRB-P00023182) and Harvard 

University (IRB21-0916). Informed written consent was provided by each participating infant’s 

parent(s) and children gave verbal assent for participation after 50 months of age.  

 

Calgary cohort 

Children in the Calgary, Alberta area were recruited from the ongoing study on pregnancy 

outcomes and nutrition (2). Children in this study were predominantly (roughly 90%) from 

Caucasian families, but also included Asian/Pacific Islander, African, Filipino, Latino/Hispanic, 

and Multiracial children. Children were born at gestational week 36 or later and did not have 

diagnosed genetic, neurological, or neurodevelopmental disorders. The study was approved by 

the University of Calgary Conjoint Health Research Ethics Board (REB13-0020). Parent and/or 

guardian consent and child assent were acquired for all participants. For additional information, 

please see the open-source repository (https://osf.io/axz5r/) and previous publications (3–9). 
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2. Further description for the phonological processing composite in the New England cohort 

The phonological processing composite comprises three subtests: word access, word fluency, 

and substitution. For the word access subtest, the child is asked to provide a word that has a 

specific phonemic element in a specific location. For example, the child may be shown an image, 

told what it is, and then shown three additional images and asked to select the one that begins 

with the same sound as the first image. For the word fluency subtest, the child is asked to name 

as many words as possible that begin with a specific sound within a 1-minute time frame. For 

example, the child may be asked to name words that begin with the /b/ sound. Lastly, for the 

substitution subtest, the child is asked to substitute part of one word to create a new word. For 

instance, the child may be asked to say the resulting word when they replace the /b/ sound in 

“bunny” with the /s/ sound. Overall, these assessments are designed to probe phonological and 

phonemic processing/awareness. 

 

3. MRI data acquisition 

New England cohort 

All data were acquired on a 3.0 T Siemens scanner with a 32-channel head coil. Please note, 

sequence parameters varied to optimize acquisition for the increasing head size and 

neuroanatomy of the participants across the developmental window. Structural T1-weighted 

magnetization-prepared rapid gradient-echo (MPRAGE) scans were acquired with the following 

parameters: TR = 2270-2520 ms, TE = 1.66-1.73 ms, field of view = 192-224 mm, 1 mm3 voxels, 

144-176 sagittal slices. Diffusion echo planar images were acquired using the following 

parameters: TR = 3800-8320 ms, TE = 88-89 ms, flip angle = 90°, field of view = 180-256 mm, 

voxel size = 2 x 2 x 2 mm3, 62-78 slices, 30 b = 1000 s/mm2 gradient directions, 10-11 b = 0 

s/mm2 non-diffusion-weighted volumes. Diffusion data were acquired with slice-acceleration 

(SMS/MB) factor = 2 and one reverse phase encoding (i.e., posterior-to-anterior) volume. Please 

note, sequence parameters varied to optimize acquisition for the increasing head size and 

neuroanatomy of the participants across the developmental window. 

 

Calgary cohort 

All data were acquired on a 3.0 T General Electric scanner with a 32-channel head coil. Structural 

T1-weighted scans were acquired with the following parameters: TR = 8.23 ms, TE = 3.76 ms, 

field of view = 230 mm, 0.45 x 0.45 x 0.9 mm3 voxels, 210 slices. Diffusion echo planar images 

were acquired using the following parameters: TR = 6750 ms, TE = 79 ms, flip angle = 90°, field 

of view = 200 mm, voxel size = 0.78 x 0.78 x 2.2 mm3, 50-55 slices, 30 b = 750 s/mm2 gradient 
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directions, 5 b = 0 s/mm2 non-diffusion-weighted volumes. Diffusion acquisition did not use a slice-

acceleration factor and did not include a reverse phase encoding (i.e., posterior-to-anterior) 

volume. 

 

4. Algorithm for combining FreeSurfer and iBEATv2.0 segmentations 

Segmentations from each software package were then hybridized using in-house MATLAB code 

that combined the cortical pial and white matter boundaries labeled by iBEATv2.0 with the 
FreeSurfer subcortical parcellations (i.e., effectively relabeling cortical gray and white matter in 

the FreeSurfer segmentation using iBEATv2.0 tissue-class demarcations). Herein, iBEATv2.0 3-
class tissue segmentations were first resampled to the space of the aseg file. iBEATv2.0 gray 

matter and cerebrospinal fluid voxels that overlapped with the aseg gray matter and cerebrospinal 

fluid labels, respectively, inherited the latter’s labels. iBEATv2.0 white matter voxels overlapping 
with aseg white or gray matter received the aseg white matter label; as iBEATv2.0 does not 

distinguish hemispheres in its labels and FreeSurfer generally overestimates gray matter in this 
age group, gray matter information was also used here for relabeling. iBEATv2.0 voxels unlabeled 

by these procedures were then submitted to a nearest neighbor search to identify aseg labels at 
minimum Euclidean distance. As FreeSurfer generally performed better compared with 

iBEATv2.0 on subcortical areas, all subcortical (non-cerebellum areas) were relabeled with 
subcortical FreeSurfer labels. Finally, hybridized segmentation files were converted to 

FreeSurfer-style white matter files and submitted to a modified version of the standard FreeSurfer 
v7.3 “recon” pipeline. 

 

5. Preparation of Euler numbers 
Similar to Bethlehem and colleagues 2022, for further quality control, we also extracted Euler 

numbers (10), which quantify topological defects in FreeSurfer’s cortical reconstruction and have 

been shown to correlate with visual ratings and mark artifactual images (11). Euler numbers from 

each hemisphere were averaged across observations for each participant (average: (11); sum: 

(12)) and used in sensitivity analyses. 

 

6. Implementations of pyAFQ and pyBabyAFQ 

Whole-brain tractography was then submitted for fiber tract segmentation to the open-source 

instantiation of Automated Fiber Quantification (AFQ; (13, 14). Herein, waypoint regions-of-

interest (ROIs) and a probabilistic fiber atlas were mapped from a standard template to the 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 6, 2025. ; https://doi.org/10.1101/2024.06.29.601366doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.29.601366
http://creativecommons.org/licenses/by-nc-nd/4.0/


individual brain. Fibers were delineated into separate tracts according to the waypoint ROIs 

through which they passed and the tract they were most likely to belong based on the probability 

atlas. Additional fibers were removed (i.e., outlier detection) if they deviated sufficiently from the 

core of the tract. While all diffusion data underwent the above processes, parameters differed by 

age group. For brains > 25 months, the standard pyAFQ pipeline was used, in which ROIs and 

the probability fiber atlas were mapped from an adult MNI template and fibers were removed if 

they were more than five standard deviations from the core of the tract (14). In contrast, for brains 

≤ 24 months, we used pyBabyAFQ (15), an implementation in the pyAFQ suite designed to 

accommodate the smaller neuroanatomy in infants. Accordingly, ROIs and the probabilistic fiber 

atlas are mapped from an infant template (16), the ROIs are smaller compared to those used by 

standard pyAFQ, an additional ROI was used for tracts with acute curves, and the fiber outlier 

detection threshold was reduced to four standard deviations from the tract core. Importantly, 

varying the parameters used to segment the tracts by age group preserves the accuracy with 

which tracts are segmented and reduces age-related bias that would emerge if using standard 

(i.e., suboptimal) parameters for younger children. 

 

7. Quality control procedures for longitudinal trajectory estimation 

Prior to modeling, estimates of brain structure and white matter organization, excepting cortical 
thickness and mean curvature, underwent a final quality control procedure to remove 

neuroanatomically implausible observations by setting annual change thresholds. For instance, it 

was unlikely that gray matter volume in any particular brain area changed by more than 10% per 
year in children over 25 months. Accordingly, for brains > 25 months, observations for brain 

regions and tracts of interest (please see above) were flagged if they were preceded or followed 
by ≥ 10% annual change (positive or negative). To improve model convergence in the first 

sensitivity analysis (with nonlinear mixed effects models), the threshold for mean diffusivity was 
lowered from 10% to 5%. To mitigate data loss, we next identified which timepoint—the earlier 

timepoint or later timepoint—was more likely to be inaccurate, using an outlier detection 

procedure. Herein, we generated average (across participants) estimates for each brain area/tract 

and each brain measure by timepoint (roughly, grade level) to which to compare the observations 

flagged in the previous step. Out of the pair of flagged observations, the one farther from the 

average estimate corresponding to its timepoint was discarded and the other flagged observation 

was preserved. This process was done iteratively to handle cases in which children over 50 

months had MRI observations from more than two timepoints. A similar quality control procedure 

was used for brains ≤ 24 months, but it needed to account for the rapid brain growth already 
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thoroughly reported (17, 18). Consequently, observations were only flagged when inter-timepoint 

changes were negative for gray/white matter volume, surface area, or fractional anisotropy, or 

positive for mean diffusivity. No inter-timepoint threshold was used for cortical thickness or mean 

curvature for brains ≤ 24 months. All remaining participants after these additional quality control 

procedures had multiple observations (i.e., longitudinal datasets), including one from ≤ 24 months. 

 

8. Sensitivity analyses 

To test the reliability of our results, we performed a replication analysis on gray/white matter 

volume, and surface area with nonlinear mixed effects models using asymptotic functions from 

the R ‘nlme’ package (19), similar to that described in Alex and colleagues (18); 

https://github.com/knickmeyer-lab/ORIGINs_ICV-and-Subcortical-volume-development-in-early-

childhood). Intercepts and asymptotes were modeled as fixed and random effects; rate constants 

were modeled as fixed effects. The reason that this model was not used in the main analysis is 

that it does not use a random slopes term, and a key aspect of the current study is to examine 

the relation between brain growth and literacy subskills. However, it should be noted that the 

nonlinear model does provide an indirect examination of the relation between growth and literacy 

subskills; e.g., if there is no association between the intercept and the literacy subskill, but there 

is an association between the asymptote and the literacy subskill, then it could be inferred that 

there is an association between brain growth and the literacy subskill. Although both linear and 

nonlinear models have different requirements (e.g., linear models require relationships between 

predictors and outcomes to be linear), the functional forms used on the current dataset in both 

cases fit the data closely (Supplementary Figure 8), suggesting random parameters were similar 

or proportional across models. 

For the main analysis, we opted to model brain development prior to testing brain-behavior 

associations because this comports with the temporal order theorized, that brain development 

effects subsequent behavioral skills. Also, our sample size is larger for longitudinal brain data 

alone compared with longitudinal brain data plus reading-related outcomes; therefore, longitudinal 

models of brain development would be improved if not including outcomes in the model. However, 

in practice, contributions of phonological processing main and age x phonological interaction 

terms should be analogous to associations between phonological processing and curve intercepts 

and slopes, respectively. Consequently, we also examined phonological processing main and 

age x phonological processing interaction terms included in the linear mixed effects models. 

In addition, we did not initially control for total intracranial volume (TIV) when modeling 

longitudinal trajectories of brain structure, consistent with other work examining developmental 
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trajectories of brain structure beginning in infancy (12, 18, 20–23). Further, recent work has shown 

that TIV correction may be problematic, reducing brain-behavior predictive accuracies for gray 

matter volume and surface area or potentially generating spurious predictions for cortical 

thickness (24). Given these concerns and recommendations to report both raw and TIV-corrected 

results (25), we thought that an appropriate use of TIV would be to recompute brain-behavior 

associations for volumetric and surface-based measures using semipartial correlations (Pearson) 

with the random terms from longitudinal modeling with TIV as covariates of no interest. We report 

results of the linear mixed model run on brain-behavior relations with TIV. 

Lastly, for volumetric and surface-based measures, visual ratings of cortical surfaces were 

used to identify sub-optimal datasets (visual ratings of tract reconstructions were for measures of 

white matter organization). However, Euler numbers, which quantify the number the topological 

defects in FreeSurfer’s cortical surface reconstruction (10), have been shown to consistently 

correlate with quality ratings (11) and to serve as reproducible alternatives to manual quality 

control, including manual editing (26). Comparable to Rosen and colleagues, visual ratings and 

Euler numbers were highly correlated after controlling for age and biological sex (r = 0.44, p < 

0.001). Therefore, to account for residual variance due to segmentation quality in a data-driven, 

reproducible manner, we submitted volumetric and surface-based brain-behavior associations to 

semipartial correlations (Pearson) with average (across timepoint) Euler numbers. 
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Supplemental Tables 
 
Supplementary Table 1. Participant demographics 

 
  

Structure Diffusion 
General information N. participants 98 128 

N. observations 276 396 
N. observations per participant 3 ± 1 3 ± 1 
Age at literacy-related subskill testing 
(months) 

63 ± 5.3  63 ± 5.1  

Age at decoding/word reading testing 
(months) 

82 ± 6.4  82 ± 6.4  

Covariates Biological sex (F/M) 46/52 67/61 
Maternal education (years) 17 ± 2.1  17 ± 2.1  
Cohort ([New England]/Calgary) 59/39 77/51 
Family history of reading difficulty (+/-) 30/29 39/38 
Home literacy environment (a.u.) 0.073 ± 0.40 0.041 ± 0.42 

Literacy-related 
subskills 

Phonological processing standard score 108 ± 13 106 ± 14 
Oral language standard score 115 ± 13 113 ± 13 

Decoding/ 
word reading 

Word attack standard score 115 ± 13 112 ± 14 
Word identification standard score 113 ± 17 109 ± 17 

Cognitive abilities Nonverbal general cognitive ability 109 ± 12 106 ± 13 
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Supplementary Table 2. Comparison of Linear Mixed Effects Models for Gray Matter Volume 
Brain Region/Tract Random Intercept Random Intercept and Slope 

 

A. Gray Matter Volume Logarithmic Linear Quadratic Logarithmic Linear Quadratic p 
bankssts 3264 3332 3292 3242 3330 3283 < 0.001 
fusiform 4143 4266 4160 4116 4270 4131 < 0.001 
inferiorparietal 4459 4581 4478 4456 4589 4482 < 0.001 
middletemporal 4265 4419 4303 4233 4412 4279 < 0.001 
parsopercularis 3913 4016 3955 3866 4016 3922 < 0.001 
parstriangularis 3797 3943 3812 3777 3946 3797 < 0.001 
superiortemporal 4354 4490 4400 4335 4492 4387 < 0.001 
supramarginal 4201 4325 4235 4178 4326 4207 < 0.001 
                
B. White Matter Volume 

       

bankssts 3311 3356 3334 3253 3326 3292 < 0.001 
fusiform 3765 3799 3772 3706 3777 3733 < 0.001 
inferiorparietal 4030 4081 4046 3968 4047 4006 < 0.001 
middletemporal 3735 3759 3734 3664 3718 3686 < 0.001 
parsopercularis 3639 3685 3653 3552 3636 3586 < 0.001 
parstriangularis 3396 3422 3399 3285 3360 3311 < 0.001 
superiortemporal 4031 4044 4039 3949 3977 3966 < 0.001 
supramarginal 4171 4218 4188 4068 4168 4103 < 0.001 
                
C. Surface Area 

       

bankssts 2923 2970 2943 2900 2963 2931 < 0.001 
fusiform 3523 3641 3554 3503 3644 3547 < 0.001 
inferiorparietal 3807 3902 3831 3793 3903 3829 < 0.001 
middletemporal 3517 3595 3552 3511 3595 3552 < 0.001 
parsopercularis 3189 3267 3225 3150 3254 3207 < 0.001 
parstriangularis 3110 3202 3143 3072 3194 3124 < 0.001 
superiortemporal 3555 3639 3591 3536 3632 3580 < 0.001 
supramarginal 3645 3724 3676 3615 3714 3650 < 0.001 
                
D. Cortical Thickness 

       

bankssts -235 -226 -225 -258 -233 -235 < 0.001 
fusiform -392 -372 -389 -425 -394 -409 < 0.001 
inferiorparietal -385 -375 -382 -403 -386 -395 < 0.001 
middletemporal -268 -217 -260 -290 -228 -288 < 0.001 
parsopercularis -335 -321 -322 -361 -332 -341 < 0.001 
parstriangularis -298 -277 -298 -324 -287 -314 < 0.001 
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superiortemporal -336 -283 -319 -348 -286 -330 < 0.001 
supramarginal -334 -315 -330 -339 -314 -333 < 0.001 
                
E. Mean Curvature 

       

bankssts -1611 -1594 -1615 -1649 -1614 -1654 < 0.001 
fusiform -1448 -1432 -1447 -1472 -1439 -1471 < 0.001 
inferiorparietal -1498 -1484 -1494 -1554 -1518 -1543 < 0.001 
middletemporal -1435 -1423 -1435 -1447 -1426 -1448 < 0.001 
parsopercularis -1505 -1495 -1502 -1536 -1513 -1526 < 0.001 
parstriangularis -1482 -1470 -1479 -1502 -1478 -1492 < 0.001 
superiortemporal -1525 -1513 -1525 -1533 -1515 -1535 < 0.001 
supramarginal -1441 -1425 -1444 -1469 -1440 -1475 < 0.001 
                
F. Fractional Anisotropy 

       

Arcuate fasc. -1740 -1564 -1685 -1733 -1557 -1685 NA 
Sup. long. fasc. -1749 -1530 -1700 -1742 -1525 -1713 NA 
Inf. long. fasc. -1667 -1526 -1607 -1662 -1523 -1611 NA 
                
G. Mean Diffusivity 

       

Arcuate fasc. -6706 -6501 -6593 -6750 -6525 -6647 < 0.001 
Sup. long. fasc. -6950 -6711 -6816 -7001 -6741 -6868 < 0.001 
Inf. long. fasc. -6384 -6214 -6294 -6410 -6232 -6321 < 0.001 
Bold indicates lowest BIC value; I, intercept; S, slope 
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Supplementary Table 3. Brain-behavior associations with nonlinear mixed effects model 
Brain Region/Tract Intercept Asymptote 
A. Gray Matter Volume r p pFDR r p pFDR 
bankssts 0.32 0.0088 0.034 0.28 0.020 0.053 
fusiform 0.02 0.86 0.86 0.08 0.48 0.48 
inferiorparietal 0.28 0.013 0.034 0.28 0.013 0.051 
middletemporal 0.20 0.082 0.11 0.20 0.082 0.11 
parsopercularis 0.17 0.14 0.16 0.22 0.059 0.11 
parstriangularis 0.29 0.0094 0.034 0.32 0.0051 0.040 
superiortemporal 0.22 0.050 0.080 0.19 0.096 0.11 
supramarginal 0.28 0.017 0.034 0.20 0.095 0.11        

B. White Matter Volume 
      

bankssts 0.26 0.026 0.066 0.26 0.027 0.027 
fusiform 0.11 0.34 0.34 0.30 0.0080 0.013 
inferiorparietal 0.30 0.010 0.050 0.43 < 0.001 < 0.001 
middletemporal NA NA NA NA NA NA 
parsopercularis 0.12 0.30 0.34 0.29 0.011 0.014 
parstriangularis 0.23 0.048 0.080 0.40 < 0.001 0.0012 
superiortemporal NA NA NA NA NA NA 
supramarginal NA NA NA NA NA NA        

C. Surface Area 
      

bankssts 0.30 0.014 0.027 0.29 0.015 0.029 
fusiform 0.14 0.24 0.24 0.20 0.084 0.096 
inferiorparietal 0.35 0.0018 0.0072 0.39 < 0.001 0.0023 
middletemporal 0.22 0.062 0.083 0.23 0.050 0.081 
parsopercularis 0.21 0.078 0.089 0.21 0.072 0.096 
parstriangularis 0.39 < 0.001 0.0046 0.39 < 0.001 0.0023 
superiortemporal 0.30 0.011 0.027 0.30 0.010 0.027 
supramarginal 0.26 0.030 0.049 0.20 0.097 0.097        

D. Mean Diffusivity 
      

Arcuate fasc.* -0.22 0.033 NA 0.03 0.65 NA 
*averaged across pFWE < 0.05 significant nodes 
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Supplementary Table 4. Contributions of outcomes to linear mixed effects model 
Brain Region/Tract Main Effect Interaction 
A. Gray Matter Volume Effect size p pFDR Effect size p pFDR 
bankssts 1.8x10+01 < 0.001 0.0044 -1.1x10+00 0.52 0.90 
fusiform 1.1x10+01 0.52 0.52 -7.4x10-01 0.87 0.90 
inferiorparietal 4.0x10+01 0.073 0.14 3.1x10+00 0.58 0.90 
middletemporal 2.9x10+01 0.066 0.14 -6.7x10-01 0.90 0.90 
parsopercularis 1.7x10+01 0.14 0.19 -7.1x10-01 0.82 0.90 
parstriangularis 8.3x10+00 0.21 0.24 2.4x10+00 0.18 0.90 
superiortemporal 3.4x10+01 0.087 0.14 -3.2x10+00 0.62 0.90 
supramarginal 4.5x10+01 0.014 0.055 -2.3x10+00 0.70 0.90    

B. White Matter Volume 
      

bankssts 3.3x10+00 0.33 0.37 1.9x10+00 0.18 0.18 
fusiform -1.0x10+01 0.35 0.37 7.3x10+00 0.015 0.017 
inferiorparietal -2.9x10+01 0.027 0.13 2.0x10+01 < 0.001 < 0.001 
middletemporal -1.8x10+01 0.092 0.17 9.9x10+00 0.0017 0.0035 
parsopercularis -9.8x10+00 0.050 0.13 5.0x10+00 0.0054 0.0072 
parstriangularis -7.2x10+00 0.11 0.17 5.5x10+00 < 0.001 < 0.001 
superiortemporal -2.3x10+01 0.033 0.13 1.3x10+01 < 0.001 < 0.001 
supramarginal -1.1x10+01 0.37 0.37 1.2x10+01 0.0049 0.0072    

C. Surface Area 
      

bankssts 4.9x10+00 0.0078 0.062 -2.1x10-02 0.97 0.97 
fusiform 1.4x10+00 0.73 0.73 1.0x10+00 0.35 0.56 
inferiorparietal 9.4x10+00 0.21 0.42 3.2x10+00 0.11 0.43 
middletemporal 3.0x10+00 0.55 0.62 1.4x10+00 0.29 0.56 
parsopercularis 1.6x10+00 0.45 0.60 4.8x10-01 0.53 0.70 
parstriangularis 1.9x10+00 0.20 0.42 1.1x10+00 0.026 0.21 
superiortemporal 4.5x10+00 0.35 0.56 1.8x10+00 0.22 0.56 
supramarginal 1.4x10+01 0.019 0.076 -7.2x10-01 0.71 0.81      

D. Mean Diffusivity 
      

Arcuate fasc.* -2.4x10-06 0.0092 NA < 0.001 0.0069 NA 
*averaged across pFWE < 0.05 significant nodes 
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Supplementary Table 5. Brain-behavior associations controlling for TIV 
Brain Region Measure-Curve Feature r p pFDR 
bankssts GMV-intercept 0.37 0.0021 0.017 
fusiform WMV-slope 0.21 0.068 0.11 
inferiorparietal WMV-slope 0.41 < 0.001 0.0022 
middletemporal WMV-slope 0.23 0.050 0.10 
parsopercularis WMV-slope 0.19 0.11 0.14 
parstriangularis WMV-slope 0.35 0.0030 0.012 
superiortemporal WMV-slope 0.23 0.046 0.10 
supramarginal WMV-slope 0.15 0.19 0.22 
inferiorparietal SA-intercept 0.31 0.0067 0.027 
parstriangularis SA-intercept 0.35 0.0024 0.019 
superiortemporal SA-intercept 0.26 0.029 0.075 
inferiorparietal SA-slope 0.20 0.092 0.37 
parstriangularis SA-slope 0.24 0.043 0.34 
superiortemporal SA-slope 0.01 0.96 0.99 
TIV, total intracranial volume 
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Supplementary Table 6. Brain-behavior associations controlling for Euler numbers 
Brain Region Measure-Curve Feature r p pFDR 
bankssts GMV-intercept 0.38 0.0013 0.011 
fusiform WMV-slope 0.33 0.0037 0.0049 
inferiorparietal WMV-slope 0.50 < 0.001 < 0.001 
middletemporal WMV-slope 0.36 0.0016 0.0031 
parsopercularis WMV-slope 0.30 0.0089 0.010 
parstriangularis WMV-slope 0.46 < 0.001 < 0.001 
superiortemporal WMV-slope 0.38 < 0.001 0.0016 
supramarginal WMV-slope 0.33 0.0034 0.0049 
inferiorparietal SA-intercept 0.32 0.0053 0.021 
parstriangularis SA-intercept 0.36 0.0017 0.014 
superiortemporal SA-intercept 0.28 0.016 0.042 
inferiorparietal SA-slope 0.33 0.0031 0.013 
parstriangularis SA-slope 0.37 0.0012 0.0097 
superiortemporal SA-slope 0.27 0.019 0.050 
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Supplementary Table 7. Associations between brain measures and literacy-related and cognitive (sub)skills   
Phonological processing Oral language Nonverbal general 

cognitive ability 
Brain Region/Tract Measure-Curve 

Feature 
r p pFDR r p pFDR r p pFDR 

bankssts GMV-intercept 0.56 < 0.001 0.0011 0.17 0.22 0.47 0.09 0.54 0.76 
fusiform WMV-slope 0.39 0.0063 0.020 0.13 0.34 0.40 0.18 0.19 0.29 
inferiorparietal WMV-slope 0.63 < 0.001 < 0.001 0.28 0.044 0.12 0.09 0.53 0.55 
middletemporal WMV-slope 0.50 < 0.001 0.0024 0.20 0.17 0.29 0.14 0.30 0.40 
parsopercularis WMV-slope 0.41 0.0045 0.018 0.16 0.25 0.37 0.25 0.073 0.17 
parstriangularis WMV-slope 0.50 < 0.001 0.0024 0.15 0.28 0.40 0.21 0.13 0.25 
superiortemporal WMV-slope 0.56 < 0.001 < 0.001 0.14 0.33 0.40 0.13 0.36 0.40 
supramarginal WMV-slope 0.44 0.0022 0.010 0.09 0.52 0.55 0.24 0.083 0.18 
inferiorparietal SA-intercept 0.38 0.0089 0.054 0.00 1.00 0.99 0.07 0.60 0.66 
parstriangularis SA-intercept 0.41 0.0038 0.045 0.25 0.077 0.18 0.26 0.057 0.15 
superiortemporal SA-intercept 0.39 0.0067 0.054 0.19 0.18 0.39 0.30 0.027 0.096 
inferiorparietal SA-slope 0.45 0.0014 0.019 0.22 0.12 0.25 0.00 1.00 1.00 
parstriangularis SA-slope 0.43 0.0023 0.019 0.30 0.032 0.13 0.24 0.086 0.25 
superiortemporal SA-slope 0.41 0.0041 0.025 0.16 0.27 0.37 0.17 0.21 0.35 
Arcuate fasc.* MD-slope 0.24 0.015 NA ns ns NA ns ns NA 
*averaged across pFWE < 0.05 significant nodes; ns indicates no nodes were significant after FWE correction 

 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 6, 2025. ; https://doi.org/10.1101/2024.06.29.601366doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.29.601366
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Table 8. Contributions of literacy-related covariates to growth curves   
FHD HLE 

Brain Region/Tract Measure Effect size p Effect size p 
bankssts GMV 6.8x10+01 0.59 2.2x10+02 0.17 
fusiform WMV 1.0x10+02 0.51 1.4x10+02 0.48 
inferiorparietal WMV -1.1x10+02 0.67 3.9x10+02 0.25 
middletemporal WMV -8.4x10+01 0.65 5.5x10+02 0.021 
parsopercularis WMV 7.0x10+01 0.42 9.6x10+00 0.93 
parstriangularis WMV 1.9x10+02 0.025 -3.0x10+01 0.79 
superiortemporal WMV 3.4x10+01 0.86 1.8x10+02 0.48 
supramarginal WMV -2.7x10+02 0.32 3.5x10+02 0.32 
inferiorparietal SA 1.0x10+01 0.95 2.2x10+02 0.28 
parstriangularis SA 8.2x10+01 0.031 5.3x10+00 0.92 
superiortemporal SA 6.5x10+01 0.51 1.0x10+02 0.42 
Arcuate fasc. MD ns ns ns ns 
FHD, family history of reading difficulty 
HLE, home literacy environment 
ns indicates no nodes were significant after FWE correction 
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Supplementary Table 9. Comparison of Linear Mixed Effects Models with versus 
without Literacy-Related Covariates 
Brain Region/Tract Measure without covariate with covariate p 
A. Family history of reading difficulty 

   

bankssts GMV 2328.2 2332.5 0.37 
fusiform WMV 2505.3 2509.9 0.51 
inferiorparietal WMV 2670.1 2675.0 0.67 
middletemporal WMV 2496.7 2501.6 0.66 
parsopercularis WMV 2311.7 2315.9 0.34 
parstriangularis WMV 2274.7 2275.0 0.028 
superiortemporal WMV 2530.3 2535.3 0.86 
supramarginal WMV 2647.6 2651.3 0.24 
inferiorparietal SA 2451.3 2456.4 0.97 
parstriangularis SA 2012.9 2013.6 0.036 
superiortemporal SA 2354.4 2359.0 0.50 
Arcuate fasc. MD -3358.7 -3354.7 0.26      

B. Home literacy Environment 
   

bankssts GMV 2328.2 2331.4 0.17 
fusiform WMV 2505.3 2509.9 0.49 
inferiorparietal WMV 2670.1 2673.9 0.25 
middletemporal WMV 2496.7 2496.4 0.021 
parsopercularis WMV 2311.7 2316.8 0.93 
parstriangularis WMV 2274.7 2279.7 0.79 
superiortemporal WMV 2530.3 2534.8 0.48 
supramarginal WMV 2647.6 2651.8 0.32 
inferiorparietal SA 2451.3 2455.3 0.29 
parstriangularis SA 2012.9 2018.0 0.92 
superiortemporal SA 2354.4 2358.8 0.42 
Arcuate fasc. MD -3358.7 -3353.4 1.00 
Bold indicates lower BIC value 
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Supplementary Table 10. Indirect effects between brain structure and decoding via 
phonological processing 
Brain Region/Tract Measure-Curve Feature Effect size Lower CI Upper CI p 
bankssts GMV-intercept 1.7x10-02 3.4x10-03 3.8x10-02 0.011 
fusiform WMV-slope 6.8x10-03 -1.0x10-03 1.9x10-02 0.094 
inferiorparietal WMV-slope 9.1x10-03 5.5x10-04 2.2x10-02 0.032 
middletemporal WMV-slope 9.4x10-03 6.1x10-04 2.3x10-02 0.034 
parsopercularis WMV-slope 2.0x10-02 3.0x10-03 4.1x10-02 0.016 
parstriangularis WMV-slope 2.2x10-02 2.8x10-03 4.9x10-02 0.016 
superiortemporal WMV-slope 8.3x10-03 7.8x10-04 2.2x10-02 0.020 
supramarginal WMV-slope 5.0x10-03 -1.3x10-03 1.3x10-02 0.12 
inferiorparietal SA-intercept 8.5x10-03 -9.7x10-04 1.5x10-02 0.088 
parstriangularis SA-intercept 4.6x10-02 2.3x10-03 1.0x10-01 0.036 
superiortemporal SA-intercept 1.6x10-02 -1.9x10-03 3.6x10-02 0.083 
inferiorparietal SA-slope 2.3x10-02 2.0x10-03 5.9x10-02 0.024 
parstriangularis SA-slope 7.4x10-02 3.7x10-03 1.8x10-01 0.034 
superiortemporal SA-slope 1.8x10-02 -3.8x10-03 4.6x10-02 0.11 
Arcuate fasc.* MD-slope 2.6x10+05 6.8x10+04 6.2x10+05 0.014 
*averaged across pFWE < 0.05 significant nodes 
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Supplementary Table 11. Indirect effects between brain structure and word reading via 
phonological processing 
Brain Region/Tract Measure-Curve Feature Effect size Lower CI Upper CI p 
bankssts GMV-intercept 2.6x10-02 9.2x10-03 5.4x10-02 < 0.001 
fusiform WMV-slope 9.7x10-03 -1.3x10-03 2.5x10-02 0.083 
inferiorparietal WMV-slope 1.4x10-02 2.7x10-03 3.2x10-02 0.0070 
middletemporal WMV-slope 1.4x10-02 1.6x10-03 3.3x10-02 0.026 
parsopercularis WMV-slope 2.9x10-02 6.2x10-03 5.8x10-02 0.011 
parstriangularis WMV-slope 3.4x10-02 6.9x10-03 7.2x10-02 0.013 
superiortemporal WMV-slope 1.3x10-02 3.2x10-03 3.2x10-02 0.0042 
supramarginal WMV-slope 7.1x10-03 -1.6x10-03 1.8x10-02 0.10 
inferiorparietal SA-intercept 1.2x10-02 3.8x10-04 2.1x10-02 0.045 
parstriangularis SA-intercept 6.6x10-02 3.3x10-03 1.4x10-01 0.041 
superiortemporal SA-intercept 2.6x10-02 3.1x10-03 4.9x10-02 0.026 
inferiorparietal SA-slope 3.7x10-02 7.1x10-03 8.6x10-02 0.013 
parstriangularis SA-slope 1.1x10-01 5.3x10-03 2.5x10-01 0.039 
superiortemporal SA-slope 3.1x10-02 -3.0x10-04 6.6x10-02 0.052 
Arcuate fasc.* MD-slope 3.1x10+05 7.0x10+04 6.8x10+05 0.020 
*averaged across pFWE < 0.05 significant nodes 
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Supplementary Table 12. Indirect effects between brain and decoding via phonological 
processing controlling for TIV 
Brain Region Measure-Curve Feature Effect size Lower CI Upper CI p 
bankssts GMV-intercept 1.7x10-02 3.2x10-03 3.8x10-02 0.010 
fusiform WMV-slope 3.5x10-03 -4.6x10-03 1.6x10-02 0.37 
inferiorparietal WMV-slope 8.5x10-03 -1.5x10-05 2.5x10-02 0.051 
middletemporal WMV-slope 7.1x10-03 -3.1x10-03 2.3x10-02 0.16 
parsopercularis WMV-slope 1.4x10-02 -5.3x10-04 3.7x10-02 0.065 
parstriangularis WMV-slope 1.7x10-02 -1.7x10-03 4.6x10-02 0.085 
superiortemporal WMV-slope 7.7x10-03 -5.2x10-04 2.2x10-02 0.079 
supramarginal WMV-slope 2.2x10-03 -5.9x10-03 1.1x10-02 0.56 
inferiorparietal SA-intercept 8.4x10-03 -1.2x10-03 1.5x10-02 0.10 
parstriangularis SA-intercept 4.5x10-02 1.6x10-03 1.1x10-01 0.039 
superiortemporal SA-intercept 1.6x10-02 -3.4x10-03 3.7x10-02 0.10 
inferiorparietal SA-slope 1.8x10-02 -1.4x10-03 5.9x10-02 0.078 
parstriangularis SA-slope 5.2x10-02 -1.2x10-02 1.7x10-01 0.14 
superiortemporal SA-slope 8.3x10-03 -3.1x10-02 4.3x10-02 0.67 
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Supplementary Table 13. Indirect effects between brain and word reading via 
phonological processing controlling for TIV 
Brain Region Measure-Curve Feature Effect size Lower CI Upper CI p 
bankssts GMV-intercept 2.6x10-02 8.4x10-03 5.3x10-02 0.0017 
fusiform WMV-slope 5.0x10-03 -6.6x10-03 2.0x10-02 0.38 
inferiorparietal WMV-slope 1.3x10-02 1.4x10-03 3.3x10-02 0.020 
middletemporal WMV-slope 1.0x10-02 -4.9x10-03 3.2x10-02 0.15 
parsopercularis WMV-slope 2.1x10-02 -8.0x10-04 4.9x10-02 0.060 
parstriangularis WMV-slope 2.6x10-02 -3.8x10-03 6.3x10-02 0.093 
superiortemporal WMV-slope 1.2x10-02 -2.4x10-04 3.2x10-02 0.056 
supramarginal WMV-slope 2.9x10-03 -8.7x10-03 1.4x10-02 0.57 
inferiorparietal SA-intercept 1.2x10-02 -6.5x10-05 2.1x10-02 0.051 
parstriangularis SA-intercept 6.6x10-02 2.5x10-03 1.4x10-01 0.042 
superiortemporal SA-intercept 2.6x10-02 5.2x10-04 5.1x10-02 0.047 
inferiorparietal SA-slope 2.8x10-02 -1.3x10-03 8.5x10-02 0.061 
parstriangularis SA-slope 7.2x10-02 -2.6x10-02 2.2x10-01 0.17 
superiortemporal SA-slope 1.4x10-02 -4.3x10-02 6.4x10-02 0.60 
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Supplementary Figures 
 

 
 
 
Supplementary Figure 1. Distribution of home literacy environment variables. Histograms depict 
the distribution of home literacy environment questionnaire responses across five developmental 
timepoints. New England data only, as these data were not collected in the Calgary dataset. 
  

Supplementary Figure 1. Distribution of home literacy environment variables. Histograms depict the 
distribution of home literacy environment questionnaire responses across five developmental 
timepoints. New England data only, as these data were not collected in the Calgary dataset.
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Supplementary Figure 2. Distribution of home literacy environment scores. Histogram depicts 
the distribution of home literacy environment scores normalized from the responses shown in 
Supplementary Figure 1. New England data only, as these data were not collected in the Calgary 
dataset. 
  

Supplementary Figure 2. Distribution of home literacy environment scores. Histogram depicts the 
distribution of home literacy environment scores normalized from the responses shown in 
Supplementary Figure 1. New England data only, as these data were not collected in the Calgary 
dataset.
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Supplementary Figure 3. Distribution of raw literacy-related outcomes. Histograms depict the 
distributions of New England data for (A) subtests constituting phonological processing and oral 
language composite scores and KBIT-2, and (B) word ID and word attack assessments. (C) 
Histogram for raw phonological processing scores from the Calgary dataset. WJ-IV, Woodcock-
Johnson edition IV; KBIT-2, Kaufman Brief Intelligence Test edition 2; WRMT, Woodcock Reading 
Mastery Tests; NEPSY-II, Neuropsychological Assessment. 
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distributions of New England data for (A) subtests constituting phonological processing and oral 
language composite scores and KBIT-2, and (B) word ID and word attack assessments. (C) Histogram 
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Supplementary Figure 4. Distribution of standardized literacy-related outcomes. Histograms 
depict the distributions of for (A) literacy-related subskills, (B) decoding/word reading 
assessments and (C) nonverbal general cognitive abilities. Phonological processing scores sum 
WJ-IV estimates from the New England dataset and NEPSY-II estimates from the Calgary 
dataset. WJ-IV, Woodcock-Johnson edition IV; NEPSY-II, Neuropsychological Assessment; 
WRMT, Woodcock Reading Mastery Tests; KBIT-2, Kaufman Brief Intelligence Test edition 2. 
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Supplementary Figure 5. Infant Structural Processing Pipeline Overview. Raw images without 
visual artifacts were processed using a combination of iBEATv2.0 Docker, Infant FreeSurfer, 
FreeSurfer, and in-house scripts. Cortical surfaces were visually inspected for tissue classification 
accuracy (please see Methods section for details).  
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Supplementary Figure 5. Infant Structural Processing Pipeline Overview. Raw images without visual 
artifacts were processed using a combination of iBEATv2.0 Docker, Infant FreeSurfer, FreeSurfer, and 
in-house scripts. Cortical surfaces were visually inspected for tissue classification accuracy (please see 
Methods section for details). 
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Supplementary Figure 6. Diffusion Processing Pipeline Overview. Diffusion data were denoised 
and then corrected for susceptibility distortions, eddy currents, head motion, and intensity 
inhomogeneity using MRtrix with FSL and ANTs implementations. Fiber orientation densities 
(FODs) were generated using constrained spherical deconvolution. Fibers were tracked with 
Anatomically Constrained Tractography, which leveraged the tissue segmentations from the 
structural processing pipeline (Supplementary Figure 1): the hybrid segmentation for brains < 50 
months and the standard FreeSurfer segmentation for brains > 50 months. Fibers were 
segmented into tracts using pyBabyAFQ for brains ≤ 24 months and pyAFQ for brains > 50 
months (the left arcuate fasciculus is depicted as an example). PE, phase encoding. 
  

Supplementary Figure 6. Diffusion Processing Pipeline Overview. Diffusion data were denoised and 
then corrected for susceptibility distortions, eddy currents, head motion, and intensity inhomogeneity 
using MRtrix with FSL and ANTs implementations. Fiber orientation densities (FODs) were generated 
using constrained spherical deconvolution. Fibers were tracked with Anatomically Constrained 
Tractography, which leveraged the tissue segmentations from the structural processing pipeline 
(Supplementary Figure 1): the hybrid segmentation for brains < 50 months and the standard FreeSurfer 
segmentation for brains > 50 months. Fibers were segmented into tracts using pyBabyAFQ for brains ≤ 
24 months and pyAFQ for brains > 50 months (the left arcuate fasciculus is depicted as an example). 
PE, phase encoding.
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Supplementary Figure 7. Statistical Analysis Overview. (A, B) Structural and diffusion brain 
estimates for regions and tracts of interest are first cleaned to remove observations with annual 
changes that are not neurophysiologically plausible (example inter-observation segments in red); 
remaining observations are then bridged (pink segment). Please see Methods for determining 
whether to remove the estimate preceding or following the problematic annual change. (C) Mixed 
effects models, here using logarithmic functions and random intercept and slope terms, were used 
to generate (D) individual growth curves. (E) Brain-behavior associations were tested using curve 
features (i.e., random intercepts and slopes). (F) Individual growth curves for measures and 
regions/tracts with significant brain-behavior associations were divided into low (< 85, dotted line), 
average (85 – 115, solid line), and high (> 115, dashed line) behavioral performance, meaned 
within groups, and plotted. 
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Supplementary Figure 7. Statistical Analysis Overview. (A, B) Structural and diffusion brain estimates 
for regions and tracts of interest are first cleaned to remove observations with annual changes that are 
not neurophysiologically plausible (example inter-observation segments in red); remaining observations 
are then bridged (pink segment). Please see Methods for determining whether to remove the estimate 
preceding or following the problematic annual change. (C) Mixed effects models, here using logarithmic 
functions and random intercept and slope terms, were used to generate (D) individual growth curves. 
(E) Brain-behavior associations were tested using curve features (i.e., random intercepts and slopes). 
(F) Individual growth curves for measures and regions/tracts with significant brain-behavior associations 
were divided into low (< 85, dotted line), average (85 – 115, solid line), and high (> 115, dashed line) 
behavioral performance, meaned within groups, and plotted.
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Supplementary Figure 8. Individual growth curves for inferior parietal white matter in a subset 
of participants. Projected longitudinal trajectories (blue lines) show close fits to raw brain 
estimates (black dots) for both linear and nonlinear models.  
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Supplementary Figure 8. Individual growth curves for inferior parietal white 
matter in a subset of participants. Projected longitudinal trajectories (blue 
lines) show close fits to raw brain estimates (black dots) for both linear and 
nonlinear models. 
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Supplementary Figure 9. Distribution of curve features of gray matter volume. Top row depicts 
histograms for curve intercepts. Bottom row depicts histograms for curve slopes. Brain estimates 
were scaled for visualization purposes, but skewness was not altered. 
 
 
 
 
 
 
 

 
 
Supplementary Figure 10. Distribution of curve features of white matter volume. Top row depicts 
histograms for curve intercepts. Bottom row depicts histograms for curve slopes. Brain estimates 
were scaled for visualization purposes, but skewness was not altered. 
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Supplementary Figure 9. Distribution of curve features of gray matter volume. Top row depicts histograms for 
curve intercepts. Bottom row depicts histograms for curve slopes. Brain estimates were scaled for visualization 
purposes, but skewness was not altered.

Supplementary Figure 10. Distribution of curve features of white matter volume. Top row depicts histograms 
for curve intercepts. Bottom row depicts histograms for curve slopes. Brain estimates were scaled for 
visualization purposes, but skewness was not altered.
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Supplementary Figure 9. Distribution of curve features of gray matter volume. Top row depicts histograms for 
curve intercepts. Bottom row depicts histograms for curve slopes. Brain estimates were scaled for visualization 
purposes, but skewness was not altered.

Supplementary Figure 10. Distribution of curve features of white matter volume. Top row depicts histograms 
for curve intercepts. Bottom row depicts histograms for curve slopes. Brain estimates were scaled for 
visualization purposes, but skewness was not altered.
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Supplementary Figure 11. Distribution of curve features of surface area. Top row depicts 
histograms for curve intercepts. Bottom row depicts histograms for curve slopes. Brain estimates 
were scaled for visualization purposes, but skewness was not altered. 
 
 
 
 
 
 
 
 

 
 
Supplementary Figure 12. Distribution of curve features of cortical thickness. Top row depicts 
histograms for curve intercepts. Bottom row depicts histograms for curve slopes. Brain estimates 
were scaled for visualization purposes, but skewness was not altered. 
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Supplementary Figure 11. Distribution of curve features of surface area. Top row depicts histograms for curve 
intercepts. Bottom row depicts histograms for curve slopes. Brain estimates were scaled for visualization 
purposes, but skewness was not altered.

Supplementary Figure 12. Distribution of curve features of cortical thickness. Top row depicts histograms for 
curve intercepts. Bottom row depicts histograms for curve slopes. Brain estimates were scaled for visualization 
purposes, but skewness was not altered.
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Supplementary Figure 11. Distribution of curve features of surface area. Top row depicts histograms for curve 
intercepts. Bottom row depicts histograms for curve slopes. Brain estimates were scaled for visualization 
purposes, but skewness was not altered.

Supplementary Figure 12. Distribution of curve features of cortical thickness. Top row depicts histograms for 
curve intercepts. Bottom row depicts histograms for curve slopes. Brain estimates were scaled for visualization 
purposes, but skewness was not altered.
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Supplementary Figure 13. Distribution of curve features of mean curvature. Top row depicts 
histograms for curve intercepts. Bottom row depicts histograms for curve slopes. Brain estimates 
were scaled for visualization purposes, but skewness was not altered. 
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Supplementary Figure 13. Distribution of curve features of mean curvature. Top row depicts histograms for 
curve intercepts. Bottom row depicts histograms for curve slopes. Brain estimates were scaled for visualization 
purposes, but skewness was not altered.
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Supplementary Figure 14. Distribution of curve features of fractional anisotropy. Top row depicts 
histograms for curve intercepts. Bottom row depicts histograms for curve slopes. Brain estimates 
were scaled for visualization purposes, but skewness was not altered.  
 
 
 
 

 
 
Supplementary Figure 15. Distribution of curve features of mean diffusivity. Top row depicts 
histograms for curve intercepts. Bottom row depicts histograms for curve slopes. Brain estimates 
were scaled for visualization purposes, but skewness was not altered. 
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Supplementary Figure 14. Distribution of curve features of fractional anisotropy. Top row depicts histograms 
for curve intercepts. Bottom row depicts histograms for curve slopes. Brain estimates were scaled for 
visualization purposes, but skewness was not altered. 

Supplementary Figure 15. Distribution of curve features of mean diffusivity. Top row depicts histograms for 
curve intercepts. Bottom row depicts histograms for curve slopes. Brain estimates were scaled for visualization 
purposes, but skewness was not altered.
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Supplementary Figure 14. Distribution of curve features of fractional anisotropy. Top row depicts histograms 
for curve intercepts. Bottom row depicts histograms for curve slopes. Brain estimates were scaled for 
visualization purposes, but skewness was not altered. 

Supplementary Figure 15. Distribution of curve features of mean diffusivity. Top row depicts histograms for 
curve intercepts. Bottom row depicts histograms for curve slopes. Brain estimates were scaled for visualization 
purposes, but skewness was not altered.
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Supplementary Figure 16. Age distributions by modality of longitudinal datasets from infancy to 
late childhood. All children had (A) structural and/or (B) diffusion MRI data from at least two 
observations (dots). Blue, New England cohort; orange, Calgary cohort. 
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Supplementary Figure 16. Age distributions by modality of longitudinal datasets from infancy 
to early adolescence. All children had (A) structural and/or (B) diffusion MRI data from at least 
two observations (dots). Blue, New England cohort; orange, Calgary cohort.
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Supplementary Figure 17. Longitudinal trajectories of gray matter volume between infancy and 
late childhood. Raw estimates of gray matter volume (gray spaghetti plot backdrop) were 
submitted to linear mixed effects models using a logarithmic function. Individual growth curves 
predicted by this model were averaged to show the overall longitudinal trajectory of the sample 
(blue line). 
  

Supplementary Figure 17. Longitudinal trajectories of gray matter volume between infancy and early 
adolescence. Raw estimates of gray matter volume (gray spaghetti plot backdrop) were submitted to 
linear mixed effects models using a logarithmic function. Individual growth curves predicted by this 
model were averaged to show the overall longitudinal trajectory of the sample (blue line).

1000

2000

3000

4000

5000

0 25 50 75 100 125
Age (Months)

G
ra

y 
M

at
te

r V
ol

um
e 

(m
m

3 )
bankssts

6000

9000

12000

15000

0 25 50 75 100 125
Age (Months)

G
ra

y 
M

at
te

r V
ol

um
e 

(m
m

3 )

fusiform

5000

10000

15000

20000

0 25 50 75 100 125
Age (Months)

G
ra

y 
M

at
te

r V
ol

um
e 

(m
m

3 )

inferiorparietal

5000

10000

15000

0 25 50 75 100 125
Age (Months)

G
ra

y 
M

at
te

r V
ol

um
e 

(m
m

3 )

middletemporal

2000

4000

6000

8000

0 25 50 75 100 125
Age (Months)

G
ra

y 
M

at
te

r V
ol

um
e 

(m
m

3 )

parsopercularis

2000

3000

4000

5000

6000

7000

0 25 50 75 100 125
Age (Months)

G
ra

y 
M

at
te

r V
ol

um
e 

(m
m

3 )

parstriangularis

5000

10000

15000

20000

0 25 50 75 100 125
Age (Months)

G
ra

y 
M

at
te

r V
ol

um
e 

(m
m

3 )

superiortemporal

5000

10000

15000

20000

0 25 50 75 100 125
Age (Months)

G
ra

y 
M

at
te

r V
ol

um
e 

(m
m

3 )

supramarginal

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 6, 2025. ; https://doi.org/10.1101/2024.06.29.601366doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.29.601366
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 
Supplementary Figure 18. Longitudinal trajectories of white matter volume between infancy and 
late childhood. Raw estimates of white matter volume (gray spaghetti plot backdrop) were 
submitted to linear mixed effects models using a logarithmic function. Individual growth curves 
predicted by this model were averaged to show the overall longitudinal trajectory of the sample 
(blue line). 
  

Supplementary Figure 18. Longitudinal trajectories of white matter volume between infancy and early 
adolescence. Raw estimates of white matter volume (gray spaghetti plot backdrop) were submitted to 
linear mixed effects models using a logarithmic function. Individual growth curves predicted by this 
model were averaged to show the overall longitudinal trajectory of the sample (blue line).
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Supplementary Figure 19. Longitudinal trajectories of surface area between infancy and late 
childhood. Raw estimates of surface area (gray spaghetti plot backdrop) were submitted to linear 
mixed effects models using a logarithmic function. Individual growth curves predicted by this 
model were averaged to show the overall longitudinal trajectory of the sample (blue line). 
  

Supplementary Figure 19. Longitudinal trajectories of surface area between infancy and early 
adolescence. Raw estimates of surface area (gray spaghetti plot backdrop) were submitted to linear 
mixed effects models using a logarithmic function. Individual growth curves predicted by this model 
were averaged to show the overall longitudinal trajectory of the sample (blue line).
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Supplementary Figure 20. Longitudinal trajectories of cortical thickness between infancy and 
late childhood. Raw estimates of cortical thickness (gray spaghetti plot backdrop) were submitted 
to linear mixed effects models using a logarithmic function. Individual growth curves predicted by 
this model were averaged to show the overall longitudinal trajectory of the sample (blue line). 
  

Supplementary Figure 20. Longitudinal trajectories of cortical thickness between infancy and early 
adolescence. Raw estimates of cortical thickness (gray spaghetti plot backdrop) were submitted to 
linear mixed effects models using a logarithmic function. Individual growth curves predicted by this 
model were averaged to show the overall longitudinal trajectory of the sample (blue line).
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Supplementary Figure 21. Longitudinal trajectories of mean curvature between infancy and late 
childhood. Raw estimates of mean curvature (gray spaghetti plot backdrop) were submitted to 
linear mixed effects models using a logarithmic function. Individual growth curves predicted by 
this model were averaged to show the overall longitudinal trajectory of the sample (blue line). 
  

Supplementary Figure 21. Longitudinal trajectories of mean curvature between infancy and early 
adolescence. Raw estimates of mean curvature (gray spaghetti plot backdrop) were submitted to linear 
mixed effects models using a logarithmic function. Individual growth curves predicted by this model 
were averaged to show the overall longitudinal trajectory of the sample (blue line).
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Supplementary Figure 22. Longitudinal trajectories of fractional anisotropy and mean diffusivity 
between infancy and late childhood. Raw diffusion estimates (gray spaghetti plot backdrop) were 
submitted to linear mixed effects models using a logarithmic function. Individual growth curves 
predicted by this model were averaged to show the overall longitudinal trajectory of the sample 
(green line). 
  

Supplementary Figure 22. Longitudinal trajectories of fractional anisotropy and mean diffusivity 
between infancy and early adolescence. Raw diffusion estimates (gray spaghetti plot backdrop) were 
submitted to linear mixed effects models using a logarithmic function. Individual growth curves predicted 
by this model were averaged to show the overall longitudinal trajectory of the sample (green line).
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Supplementary Figure 23. Statically significant associations between growth curve features of 
brain volume and surface area and preschool/early kindergarten phonological processing. (A) 
Gray matter volume in the left banks of the superior temporal sulcus exhibited an association 
between growth curve intercepts and phonological processing, whereas (C) all associations with 
white matter volume were between growth curve slopes and phonological processing. Both 
surface area intercepts (B) and slopes (D) exhibited associations with phonological phonological 
processing. All associations pass pFDR < 0.05. WJ-IV, Woodcock-Johnson IV. 
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Supplementary Figure 23. Statically significant associations between growth curve features of brain volume and 
surface area and preschool/early kindergarten phonological processing. (A) Gray matter volume in the left banks of 
the superior temporal sulcus exhibited an association between growth curve intercepts and phonological 
processing, whereas (C) all associations with white matter volume were between growth curve slopes and 
phonological processing. Both surface area intercepts (B) and slopes (D) exhibited associations with phonological 
phonological processing. All associations pass pFDR < 0.05. WJ-IV, Woodcock-Johnson IV.
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Supplementary Figure 24. Statistically significant associations between growth curve features 
of white matter organization and preschool/early kindergarten phonological processing skill. Mean 
diffusivity in the left arcuate fasciculus exhibited associations between growth curve slopes and 
phonological processing. Association is cluster-level corrected at pFWE < 0.05. Note: removal of 
outlier (orange circle) did not abolish cluster-level significance. WJ-IV, Woodcock-Johnson IV. 
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Supplementary Figure 24. Statistically significant 
associations between growth curve features of white 
matter organization and preschool/early kindergarten 
phonological processing skill. Mean diffusivity in the left 
arcuate fasciculus exhibited associations between growth 
curve slopes and phonological processing. Association is 
cluster-level corrected at pFWE < 0.05. Note: removal of 
outlier (orange circle) did not abolish cluster-level 
significance. WJ-IV, Woodcock-Johnson IV.

r  = 0.23
p = 0.019
nodes 6-25

arcuate fasciculus

WJ-IV Phonological Processing

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 6, 2025. ; https://doi.org/10.1101/2024.06.29.601366doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.29.601366
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 
Supplementary Figure 25. Longitudinal trajectories of gray matter volume between infancy and 
late childhood generated for sensitivity analyses. Raw estimates of gray matter volume (gray 
spaghetti plot backdrop) were submitted to nonlinear mixed effects models using an asymptotic 
function. Individual growth curves predicted by this model were averaged to show the overall 
longitudinal trajectory of the sample (blue lines). 
  

Supplementary Figure 25. Longitudinal trajectories of gray matter volume between infancy and early 
adolescence generated for sensitivity analyses. Raw estimates of gray matter volume (gray spaghetti 
plot backdrop) were submitted to nonlinear mixed effects models using an asymptotic function. 
Individual growth curves predicted by this model were averaged to show the overall longitudinal 
trajectory of the sample (blue lines).
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Supplementary Figure 26. Longitudinal trajectories of white matter volume between infancy and 
late childhood generated for sensitivity analyses. Raw estimates of white matter volume (gray 
spaghetti plot backdrop) were submitted to nonlinear mixed effects models using an asymptotic 
function. Individual growth curves predicted by this model were averaged to show the overall 
longitudinal trajectory of the sample (blue lines). 
  

Supplementary Figure 26. Longitudinal trajectories of white matter volume between infancy and early 
adolescence generated for sensitivity analyses. Raw estimates of white matter volume (gray spaghetti 
plot backdrop) were submitted to nonlinear mixed effects models using an asymptotic function. 
Individual growth curves predicted by this model were averaged to show the overall longitudinal 
trajectory of the sample (blue lines).
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Supplementary Figure 27. Longitudinal trajectories of surface area between infancy and late 
childhood generated for sensitivity analyses. Raw estimates of surface area (gray spaghetti plot 
backdrop) were submitted to nonlinear mixed effects models using an asymptotic function. 
Individual growth curves predicted by this model were averaged to show the overall longitudinal 
trajectory of the sample (blue lines). 
  

Supplementary Figure 27. Longitudinal trajectories of surface area between infancy and early 
adolescence generated for sensitivity analyses. Raw estimates of surface area (gray spaghetti plot 
backdrop) were submitted to nonlinear mixed effects models using an asymptotic function. Individual 
growth curves predicted by this model were averaged to show the overall longitudinal trajectory of the 
sample (blue lines).
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Supplementary Figure 28. Longitudinal trajectories of mean diffusivity between infancy and late 
childhood generated for sensitivity analyses. Raw estimates of mean diffusivity (gray spaghetti 
plot backdrop) were submitted to a nonlinear mixed effects model using an asymptotic function. 
Individual growth curves predicted by this model were averaged to show the overall longitudinal 
trajectory of the sample (green lines). 
  

Supplementary Figure 28. Longitudinal trajectories of mean diffusivity between infancy and early 
adolescence generated for sensitivity analyses. Raw estimates of mean diffusivity (gray spaghetti plot 
backdrop) were submitted to a nonlinear mixed effects model using an asymptotic function. Individual 
growth curves predicted by this model were averaged to show the overall longitudinal trajectory of the 
sample (green lines).
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Supplementary Figure 29. Longitudinal trajectories of brain structure from infancy to late 
childhood according to phonological processing skill in preschool/early kindergarten for sensitivity 
analyses. Graphs depict average trajectories for children with low (< 85), average (85 – 115), and 
high (> 115) standardized phonological processing scores for measures and regions whose (A) 
intercepts, (B) slopes, or (C) both intercepts and asymptotes correlated with phonological 
processing (pFDR < 0.05). Correlation statistics are reported adjacent to their corresponding plots; 
intercept and asymptote statistics for surface area averaged here for visualization purposes but 
reported separately in Supplemental Table 3.  
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Supplementary Figure 29. Longitudinal trajectories of brain structure from infancy to early adolescence 
according to phonological processing skill in preschool/early kindergarten for sensitivity analyses. Graphs depict 
average trajectories for children with low (< 85), average (85 – 115), and high (> 115) standardized phonological 
processing scores for measures and regions whose (A) intercepts, (B) slopes, or (C) both intercepts and 
asymptotes correlated with phonological processing (pFDR < 0.05). Correlation statistics are reported adjacent to 
their corresponding plots; intercept and asymptote statistics for surface area averaged here for visualization 
purposes but reported separately in Supplemental Table 3. 
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Supplementary Figure 30. Statistically significant associations between growth curve features 
of white matter organization and preschool/early kindergarten phonological processing for 
sensitivity analyses. Mean diffusivity in the left arcuate fasciculus exhibited a negative association 
between growth curve intercepts and phonological processing. Association is cluster-level 
corrected at pFWE < 0.05. WJ-IV, Woodcock-Johnson IV. 
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Supplementary Figure 30. Statistically significant 
associations between growth curve features of white 
matter organization and preschool/early kindergarten 
phonological processing for sensitivity analyses. Mean 
diffusivity in the left arcuate fasciculus exhibited a 
negative association between growth curve intercepts and 
phonological processing. Association is cluster-level 
corrected at pFWE < 0.05. WJ-IV, Woodcock-Johnson IV.
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Supplementary Figure 31. Longitudinal trajectories of mean diffusivity from infancy to 
early adolescence according to phonological processing skill in preschool/early 
kindergarten for sensitivity analyses. Graph depicts average trajectories for children with 
low (< 85), average (85 – 115), and high (> 115) standardized phonological processing 
scores for the left arcuate fasciculus nodes whose intercepts correlated negatively with 
phonological processing (pFWE cluster-level < 0.05).
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analyses. Graph depicts average trajectories for children with low (< 85), average (85 – 115), and 
high (> 115) standardized phonological processing scores for the left arcuate fasciculus nodes 
whose intercepts correlated negatively with phonological processing (pFWE cluster-level < 0.05). 
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Supplementary Figure 30. Statistically significant 
associations between growth curve features of white 
matter organization and preschool/early kindergarten 
phonological processing for sensitivity analyses. Mean 
diffusivity in the left arcuate fasciculus exhibited a 
negative association between growth curve intercepts and 
phonological processing. Association is cluster-level 
corrected at pFWE < 0.05. WJ-IV, Woodcock-Johnson IV.
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Supplementary Figure 31. Longitudinal trajectories of mean diffusivity from infancy to 
early adolescence according to phonological processing skill in preschool/early 
kindergarten for sensitivity analyses. Graph depicts average trajectories for children with 
low (< 85), average (85 – 115), and high (> 115) standardized phonological processing 
scores for the left arcuate fasciculus nodes whose intercepts correlated negatively with 
phonological processing (pFWE cluster-level < 0.05).
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Supplementary Figure 32. Maps of brain-behavior associations. Brain maps show associations 
between curve features (intercepts and slopes) and preschool/early kindergarten phonological 
processing across brain regions in the Desikan-Killiany atlas for gray matter volume, white matter 
volume, and surface area. Note: no model convergence for superior frontal volume and no white 
matter volume measures were available for anterior cingulate cortex. 
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Supplementary Figure 32. Maps of brain-behavior associations. Brain maps show associations between curve 
features (intercepts and slopes) and preschool/early kindergarten phonological processing across brain regions 
in the Desikan-Killiany atlas for gray matter volume, white matter volume, and surface area. Note: no model 
convergence for superior frontal volume and no white matter volume measures were available for anterior 
cingulate cortex.
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