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Abstract: High frequency guided-waves offer a trade-off between the high sensitivity of local bulk
ultrasonic thickness measurements and the large area scanning of lower frequency guided-waves,
so it has been a growing interest for corrosion inspection with the dispersive SH1 mode. However,
according to the dispersive curve, it is hard to generate the pure SH1 mode since the non-dispersive
SH0 mode will be excited simultaneously. Thus, this paper investigates a transducer design method
to generate a pure SH1 guided-wave, where the dual periodic-permanent-magnet electromagnetic
acoustic transducers (PPM EMATs) are placed on exactly opposite positions either side of the plate
symmetrically. The suppression effect for SH0 and the enhancement effect for SH1 of the dual PPM
EMATs are mainly discussed by theoretical analysis and simulation analysis, and the influence of
positioning errors of PPM EMATs placed on opposite sides of the plate on its performances are
analyzed. Employing the proposed dual PPM EMATs, some experiments are performed to verify the
reliability of finite element simulation. The results indicate that the dual PPM EMATs can suppress
the SH0 mode and generate the pure SH1 mode effectively. Moreover, the longitudinal and lateral
positioning errors can affect the dual PPM EMATs performances significantly.
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1. Introduction

Nowadays the local bulk ultrasonic thickness measurements [1] and the low frequency
guided-waves [2] have been proven to be efficient for corrosion damage inspection. The former
has high detection sensitivity, small scanning region and long detection period, and the latter can scan
large areas rapidly for big defects with lower detection sensitivity. As a compromise choice of the
above two methods, the high frequency guided-waves is presented for corrosion inspection which can
improve the detection sensitivity of guided-waves at the cost of scanning regions. The low frequency
guided-waves conventionally try to suppress the dispersive behavior of guided-waves to acquire
higher detection precision. However, the high frequency guided-waves evaluate the defects by the
change of wave transit-time of dispersive guided-waves, and the dispersion behavior of guided-waves
is a benefit to improve the detection sensitivity of high dispersive guided-waves [3]. In addition,
for the distributed imaging of wall-loss defects, the scanning region of guided-waves should not be
too large [4–6]. Therefore, the high frequency guided-waves has an increasing interest for corrosion
damage inspection.

Currently, A0, S0, and SH1 mode can be used as highly dispersive guided-waves for corrosion
inspection. Instanes G. [7] utilized the dispersion characteristic of A0 mode to inspect the corrosion
defects in the circular pipe. Volker A. [8] monitored the circumferential thickness of pipes by measuring
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the arrival time and amplitude loss of high order circumferential passes. F. Jenot [9] evaluated the
corrosion condition of the pipe by measuring the variation of group velocity of S0 mode. Compared with
Lamb waves, SH guided-waves have such advantages as simpler dispersion property, less interference
from surrounding media, and more convenient signal processing [10–12]. Uribe S.A. [13] and
Nurmalia H. [14] investigated the mode conversion phenomenon when SH waves interact with
the notch and found that SH0 mode can convert to SH1 mode as the inspected plate thickness increases
abruptly more than two times. Nurmalia H. [15] studied the effect of the inclined angle of the
wedge-shaped defect on propagation characteristics of the SH1 mode and found that the total reflection
of SH1 mode can be observed if the inclination angle is small. Additionally, if the inclined angle
becomes higher, the SH1 mode will convert to SH0 mode in the defect region and then convert back to
SH1 mode after passing through the defect. Hirao M. [16] detected the dish-like defect in pipes by
dispersive circumferential SH1 mode, compared with that of SH0 mode, the amplitude and the phase of
SH1 mode is more sensitive to the defect. Since it is very difficult for the non-dispersive mode to detect
the corrosion defect at a support location [17], Andruschak [18] utilized dispersive SH1 to inspect
the corrosion defect at a support location. Richard [19] approximated pipes as planar waveguides
and analyzed the detectability of corrosion damage with S0, SH0, and SH1 mode, respectively,
and demonstrated the potential of high frequency short-range guided-waves detection technique.
Accordingly, dispersive SH1 mode has the potential to be widely used in corrosion damage inspection.

According to the dispersive curve, the SH0 mode would be generated while exciting the dispersive
SH1 mode. Thus, it is very difficult to generate pure dispersive SH1 mode while inspecting corrosion
damages [20]. Alan C. Kubrusly et al. [21] proposed a method to generate pure SH1 guided-waves
with dual PPM EMATs, but they only explain the phenomenon from the linear superposition point of
view. In this paper, the theoretical model based on the transduction mechanism and solid mechanics
is established. Section 2 presents the theoretical model of generating and receiving pure SH1 mode
based on the transduction equations. Section 3 describes the characters of the magnetic field generated
by single and double permanent magnet arrays, respectively, establish a theoretical model based on
solid mechanics to discuss the influence of the lateral and longitudinal position errors of dual PPM
EMATs on its performance. Section 4 reports and analyzes the experimental measurement results of
the proposed dual PPM EMATs.

2. Transduction Mechanism

2.1. Excitation Mechanism

Supposed that free charge does not exist and the effect of displacement current is ignored in the
system consisting of EMAT coils and the non-ferromagnetic specimen, the dynamic magnetic field
equations of pulsed eddy current can be deduced based on Ampere’s Laws and Faraday’s Laws.
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where A is magnetic vector potential, σ is conductivity, S is the cross-sectional area of the coil, and i is
the total current in the coil.

The eddy current density Je in the coil and the non-ferromagnetic specimen gives

Je = −σ
∂A
∂t

(2)

Based on the definition of Lorentz force, the Lorentz force fL in the nonferromagnetic specimen is

fL = B0 × Je (3)
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where B0 is the magnetic flux density of the static bias magnetic field. Generally, the dynamic magnetic
field is ignored as it is much weaker than the static one when the excitation current is not high [22].

Assuming that the non-ferromagnetic specimen is isotropic, linear elastic and continuous,
the equation of particle motion in the non-ferromagnetic specimen under the Lorentz force fL is

G∇2u + (G + κ)∇(∇·u) + fL = ρ
∂2u
∂t2 (4)

where G and κ are the Lame constant, u is the particle displacement matrix, ρ is the density of
the specimen.

As shown in Figure 1, two racetrack coils with opposite spiral direction are placed on the exact
opposite sides of the aluminum plate symmetrically. In order to install magnets and enhance the
vertical bias magnetic field effectively, magnetic poles of PPM on the two sides of the aluminum plate
are in the same direction. The red and blue arrows in Figure 1 represent the direction of external
current in the upper and lower racetrack coils respectively. The green arrows represent the direction
of particle vibration in the aluminum plate. It can be seen that the direction of loaded current in the
upper and lower coil are opposite, namely

Jeup = −Jedown (5)

where Jeup and Jedown are the eddy current density on the upper and lower surfaces of aluminum
plate, respectively.

Substituting Equation (5) into Equations (3) and (4), gives

uxup = −uxdown (6)

where uxup and uxdown are the tangential particle displacement on the upper and lower sides of
aluminum plate respectively. Equation (6) illustrates that the tangential particle displacement on the
two sides are opposite, namely the generation of symmetric mode can be suppressed effectively by
dual PPM EMATs.
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Figure 1. Schematic of the SH1 wave excited by dual PPM EMATs.

2.2. Receiving Mechanism

When the guided-wave in the aluminum plate travels along the area covered by coils, under the
external bias magnetic field, the alternating current will be induced in the coil by the vibration of
charged particles, which can generate dynamic magnetic field in and around the aluminum plate.
The receiving coil in the dynamic magnetic field will generate induced voltage. In general, if the
receiving coil is open and its total current is zero, the control equation satisfied by the receiving coil
and the tested sample is
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where JL is dynamic current density, JL = σv×B0, v is the velocity of the charged particles. Additionally,
the electromotive force at some point in the receiving coil can be calculated by the line integral for
electric field intensity.

Vpout =

∫
l
−
∂A
∂t
·dl (8)

The output voltage can be obtained by averaging the electromotive force in the receiving coil.

Vout =

s
S VpoutdS
s

S dS
(9)

Figure 2a shows the receiving process of SH0 waves detected by dual PPM EMATs, and green
arrows represent the vibration direction of particles on the upper and lower surfaces of the aluminum
plate, red and blue arrows represent the direction of induced current in the upper and lower racetrack
coils respectively. As shown in Figure 2a, the vibration direction of particles on the two opposite sides
are the same because SH0 waves is the symmetric mode, namely

v0up = v0down (10)

where v0up and v0down are the vibration velocity of particles on the upper and lower surfaces of the
aluminum plate.Sensors 2019, 19, x 5 of 17 
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Substituting Equation (10) into JL = σv×B0, gives:

JL0up = JL0down (11)

where JL0up and JL0down are the density of dynamic current on the upper and lower surfaces of the
aluminum plate, respectively.

Substituting Equation (11) into Equations (7)–(9), gives:

Va0out = Vb0out (12)

where Va0out and Vb0out are the output voltage of the upper and lower transducers, respectively.
Additionally, the output voltage Vab0 under SH0 waves is

Vab0 = Va0out −Vb0out = 0 (13)



Sensors 2019, 19, 3019 5 of 15

Equation (13) shows that when the SH0 waves reach the receiving coil of dual PPM EMATs,
the directions of dynamic current in the upper and lower racetrack coils are the same due to the
same vibration direction of particles on the two sides, and the output voltage of the receiving coil is
zero. Thus, the receiving dual PPM EMATs can filter out the voltage signal generated by SH0 mode
effectively, and improve the SNR of receiving signal.

Similarly, Figure 2b is the receiving process of SH1 waves detected by dual PPM EMATs, and green
arrows represent the vibration direction of particles on the upper and lower surfaces of the aluminum
plate, red and blue arrows represent the induced current in the upper and lower racetrack coils,
respectively. However, as shown in Figure 2b, the vibration direction of particles on the upper and
lower surfaces are opposite because SH1 waves is the anti-symmetric mode, that is

v1up = −v1down (14)

where v1up and v1down are the vibration velocity of particles on the upper and lower surfaces of the
aluminum plate.

Substituting Equation (14) into JL = σv×B0 gives:

JL1up = −JL0down (15)

where JL0up and JL0down are the density of dynamic current on the upper and lower surfaces of the
aluminum plate.

Substituting Equation (15) into Equations (7)–(9) gives:

Va1out = −Vb1out (16)

where Va1out and Vb1out are the output voltage of the upper and lower transducers, respectively.
Additionally, the output voltage Vab1 under SH1 waves is

Vab1 = Va1out −Vb1out = 2Va1out (17)

Equation (17) shows that when the SH1 waves reach the receiving coil of dual PPM EMATs,
the directions of dynamic current in the two racetrack coils are the opposite due to the opposite vibration
directions of particles on the upper and lower surface, and the output voltage of the receiving coil is
doubled. Thus, in the receiving process of the guided-waves, the dual PPM EMATs can enhance the
voltage signal generated by SH1 mode effectively. The dual PPM EMATs can suppress the symmetric
mode in the generation of SH1 mode, and enhance the anti-symmetric mode in the receiving of
SH1 mode.

3. Simulation Analysis

The distribution characteristics of static magnetic field of conventional PPM EMATs and dual PPM
EMATs proposed in this paper are firstly investigated, and the suppression for SH0 mode are analyzed
by comparing the excitation signal excited by two different PPM EMATs, respectively. Additionally,
the effects of lateral and longitudinal position errors of the PPM EMATs on the SNR of excitation
signals are discussed.

3.1. Distribution of Static Magnetic Field Induced by Conventional PPM EMATs and Dual PPM EMATs

Static bias magnetic field is a major factor affecting the transducing efficiency of EMATs [23].
Optimizing the geometric structure and dimension parameters of EMATs can enhance the intensity [24,25]
and uniformity [26,27] of bias magnetic field, and improve the transducing efficiency and detection
sensitivity. Dutton [28] enhanced the intensity and uniformity of bias magnetic field significantly using
the compressed magnetic field generated by a couple of permanent magnets. Figure 3a,b show the
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magnetic distribution in plates under the single and dual PPM arrays, and red solid lines represent the
magnetic lines of force, blue arrows represent the direction of the static magnetic field. In Figure 3,
each permanent magnet has 3 mm width and 5 mm thickness, the horizontal spacing is 1 mm, and the
magnetic flux density is 1.5 T. The lift-off between the aluminum plate and permanent magnetic arrays
is 0.5 mm. The aluminum plate is 30 mm long and 3 mm thick, and the density ρ = 2700 kg/m3,
relative permeability µr = 1 and conductivity γ = 3.774 × 107[S/m]. The excitation of SH waves
mainly depends on the coupling of induced eddy current and vertical bias magnetic field Figure 3
shows that the vertical distribution of magnetic lines generated by dual PPM arrays is better than that
by single PPM arrays clearly.
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In order to analyze the distribution uniformity of the static magnetic fields quantitatively,
the vertical and horizontal components of the magnetic flux density along the thickness of aluminum
plate are extracted. Additionally, Figure 4 shows the vertical and horizontal components of the
magnetic flux density along the thickness of aluminum plate (i.e., black dashed line in Figure 3), solid
lines represent the vertical and horizontal components of the magnetic flux density generated by single
PPM arrays, dashed lines represent that of dual PPM arrays. Since the skin depth of the aluminum
plate under 700 kHz is ∆ =

√
2/(ωµγ) = 0.0979 mm, the magnetic flux density in the depth of 0.1 mm

is selected as a reference. From Figure 4, it is found that the vertical component of magnetic flux
density of single PPM arrays Bys = 0.48 T, and that of dual PPM arrays is ByD = 0.58 T, increasing by
21%. Additionally, the horizontal component of magnetic flux density of single PPM arrays Bxs = 0.1 T,
and that of dual PPM arrays is BxD = 0.05 T, decreasing by 50%. That is to say, the dual PPM arrays
can increase the vertical component and reduce the horizontal component of magnetic flux density
at the skin depth, which improves the transducing efficiency. In addition, from the upper surface to
the middle plane of the aluminum plate, the vertical component of magnetic flux density of single
PPM arrays Bys decreases from 0.5 T to 0.2 T with 80% decreasing, and that of dual PPM arrays ByD

decreases from 0.6 T to 0.4 T with 33% decreasing. Obviously, the vertical component of magnetic field
generated by dual PPM arrays distributes more uniform than that of by single PPM arrays, which is
beneficial to suppress the noise and improve the SNR of excitation signal.
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3.2. Signals Excited by Three PPM EMATs with Different Configurations

Figure 5a–c shows three different configurations of PPM EMATs to generate SH waves. The capacity
to suppress symmetric modes of conventional PPM EMATs and dual PPM EMATs are simulated.
To decrease the computation cost and ensure the wave packets separation from SH0 mode and SH1
mode absolutely, the length of aluminum plate in simulation model is set as 50 mm. The transducers
are located at the left side of the aluminum plate, and the vibration displacement amplitude in the x
direction is extracted with 35 mm distance from the transducer center.
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The 3D simulation models for three different PPM EMATs shown in Figure 5 have been developed
based on the COMSOL Multiphysics software. Table 1 shows the geometrical parameters of PPM
EMATs and the physical property of the Aluminum plate in the FEM. In order to avoid the disturbance
of reflected waves, the aluminum plate is surrounded by a layer of absorbing layers with increasing
damping (ALID) [29]. Additionally, the aluminum plate is divided into 15 cubic grids [30] per each
wavelength along and perpendicular to the direction of SH1 waves propagation and into 5 in the
thickness direction to balance the computation cost between the precision. Therefore, the total number
of elements is about 17220. The iteration step time is set as 1× 10−8 s to satisfy the stability criterion as
∆t < 0.8∆x/Cmax, for which ∆x is the element size and Cmax is the velocity of wave that travels fastest
through the material [31].The excitation signal is the sinusoid modulated by five cycles of Hamming
windows. Only one exciting unit of the dual probes is established and the racetrack coil is simplified
as the straight wire to reduce the iteration time with satisfactory accuracy.

Table 1. Parameters and values of PPM EMATs in the finite element model.

Object Parameter Value

Magnet

Width 3 mm
Height 5 mm

Thickness 4 mm
Gap between adjacent magnets 1 mm

lift-off distance 0.5 mm
Magnetic flux density 1.5 T

Coil
Diameter 0.3 mm

lift-off distance 0.5 mm
Resistivity 1.7× 10−8 Ω·m

Aluminum Plate

Length 50 mm
Width 15 mm

Thickness 3 mm
Density 2700 kg/m

Conductivity 3.5× 10−7 S/m
Young’s modulus 70 Gpa

Poisson’s ratio 0.33

Excitation current
Amplitude 1 A
Frequency 700 kHz

Figure 6 shows the signal excited by three different configurations of PPM EMATs shown in Figure 5.
Additionally, the red solid line, blue dash-dotted line and green dashed line in Figure 6 correspond
to the configurations shown in Figure 5a–c, respectively. As shown in Figure 6, the amplitude of
blue signals is 20% higher than that of red signals because the dual PPM arrays enhance the vertical
bias magnetic field. Additionally, compared to the red signals, the amplitude of green signals is
doubled due to the linear superposition effect of dual PPM EMATs. Moreover, wave packet separation
phenomenon between SH0 mode and SH1 mode can be seen in red signals and blue signals, but only
pure SH1 wave packet exists in green signals. In conclusion, compared with the conventional one
shown in Figure 5a,b, the dual PPM EMATs shown in Figure 5c can not only suppress symmetric
modes effectively, but also enhance non-symmetric modes significantly.
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3.3. Effects of Position Errors of Dual PPM EMATs on Its Performances

While dual PPM EMATs can suppress the generation of symmetric modes and enhance the SH1
waves effectively, it is essential to ensure the exact symmetry of PPM EMATs placed on each side of the
inspected plate in applications. Thus, the effects of position errors on the performance of dual PPM
EMATs are discussed in this section. As shown in Figure 7a, the position error of dual PPM EMATs can
be classified as lateral error We and longitudinal error Le. In order to simplify the model and decrease
the computation cost, only one exciting unit of dual probes, which includes one exciting unit of the
upper and lower probe is built in FEM model.
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In order to investigate the effect of longitudinal error Le on the performance of dual probes,
the x1 − x2 − x3 coordinate system for the upper transducer and x′1 − x′2 − x′3 for the lower transducer

are established, as shown in Figure 7b. Additionally, SH waves travel in the x1
(
or x′1

)
direction and

the particles vibrate in the x3
(
or x′3

)
direction. The transformation matrix between two coordinate

systems is: 
x1

x2

x3

 =


1 0 0
0 −1 0
0 0 −1




x′1
x′2
x′3


For any isotropic medium, Navier’s displacement equations of motion must be satisfied:

µ∇2u(x, t) + (G + κ)∇∇·u(x, t) = ρ
∂2u(x, t)
∂t2 (18)
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For SH modes, an x3 component of the particle displacement vector only exists, that is, u1(x, t) =
u2(x, t) = 0. The fact that u3 is independent of x3 means the wavefronts are infinitely extended in the
x3 direction. Then, the Equation (18) can be simplified as

∂2u3

∂x2
1

+
∂2u3

∂x2
2

=
1
c2

T

∂2u3

∂t2 (19)

where c2
T = κ/ρ.

In the x1 − x2 − x3 coordinate system, the form of u3 is specified as

u3(x1, x2, t) = f (x2)ei(kx1−ωt) (20)

and in the similar way, the form of u′3 in the x′1 − x′2 − x′3 coordinate system is

u′3
(
x′1, x′2, t

)
= − f

(
x′2

)
ei[k(x′1+∆x)−ωt] (21)

where k is the wavenumber of the mode (k = ω/cp = 2π/λ) and ω represents circular frequency.
Substituting Equation (20) into Equation (19) results in

f (x2) = [Asin(qx2) + Bcos(qx2)]

Then the displacement field u3(x1, x2, t) generated by the upper probe can be expressed as

u3(x1, x2, t) = [Asin(qx2) + Bcos(qx2)]ei(kx1−ωt) (22)

Substituting Equation (21) into Equation (19) results in

f
(
x′2

)
=

[
Asin

(
qx′2

)
+ Bcos

(
qx′2

)]
Then the displacement field u′3

(
x′1, x′2, t

)
generated by the lower probe can be expressed as

u′3
(
x′1, x′2, t

)
= −

[
Asin

(
qx′2

)
+ Bcos

(
qx′2

)]
ei[k(x′1+∆x)−ωt]

Expressing u′3
(
x′1, x′2, t

)
in the x1 − x2 − x3 coordinate system results in

u′3(x1, x2, t) = −[Asin(−qx2) + Bcos(−qx2)]ei[k(x1+∆x)−ωt] (23)

= [Asin(qx2) − Bcos(−qx2)]ei(kx1−ωt)ei(k∆x)

= [ADsin(qx2) − BDcos(qx2)]ei[kx1−ωt]

where
D = ei(k∆x) = ei(2π∆x/λ) = cos(2π∆x/λ) + i sin(2π∆x/λ) (24)

Based on the linear superposition effect, the displacement field generated by the dual probes can
be expressed as:

u3total(x1, x2, t) = u3(x1, x2, t) + u′3(x1, x2, t)

= [(1 + D)Asin(qx2) + (1−D)BDcos(qx2)]ei[kx1−ωt]

Then, the amplitude of SH1 mode is:

HSH1 =

√
[1− cos(2π∆x/λ)]2 + [sin(2π∆x/λ)]2A = 2Acos(π∆x/λ) (25)
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Additionally, in the similar way, the amplitude of SH0 mode is:

HSH0 =

√
[1− cos(2π∆x/λ)]2 + [sin(2π∆x/λ)]2B = 2Bsin(π∆x/λ) (26)

Figure 8 shows the effect of longitudinal error Le on the performance of dual probes. Figure 8a
gives the simulation waveforms at the point 60 mm from the exciting transducer with different Le.
The amplitude is normalized by the maximum of all signals. The red solid line and blue dash line
in Figure 8b represent the theoretical value of SH0 and SH1 calculated by Equations (25) and (26),
respectively. Additionally, the blue squares and red circles stem from the simulation results of SH0
and SH1, respectively. As shown in Figure 8b, the theoretical values and simulation results agree well.
It can be concluded that the amplitude of SH1 decrease by cosine and that of SH0 increase sinusoidally
with the longitudinal error Le increasing from 0 to half of the wavelength λ/2.

When the longitudinal error Le is zero and the lateral error We is within one wavelength,
the simulation result shows that dual probes can still suppress SH0 mode effectively and generate
pure SH1 mode. The reason may be that the wavefronts are infinitely extended in the x3 direction,
as indicated by Equations (20) and (21), so the transverse vibration of particles can be considered
uniform in the x3 direction when We is within one wavelength.
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4. Experimental Analysis

The theoretical analysis and simulation analysis indicate that dual PPM EMATs can suppress
SH0 mode and enhance SH1 mode in the generation and reception process of SH waves. In order to
verify the above results, an experimental setup, shown in Figure 9, is developed under laboratory
conditions. The experimental setup includes a RITEC RPR-4000 Pulser/Receiver, a Tektronix DPO
3012 Digital Phosphor Oscilloscope (Shanghai, China), an aluminum plate with 3 mm-thickness and
the PPM EMATs. In order to prevent echo interference reflected from the end of the aluminum plate,
the exciting and receiving transducers are placed closed to the left and right edges of the aluminum
plate respectively, which reduce the wave path-difference between the direct waves and the reflected
echo from the left end. As the length of aluminum plate and racetrack coil are 500 mm and 60 mm, it can
be calculated that the distance between exciting and receiving transducers is 380 mm. Additionally,
three cases with different transducers configuration such as single exciting and receiving PPM EMATs
(I), single exciting and dual receiving PPM EMATs (II), dual exciting and single receiving PPM EMATs
(III), are discussed in the experimental platform shown in Figure 9. Comparing with case I and case
II, the suppression effect for SH0 and the enhancement effect for SH1 of the dual PPM EMATs in
the receiving process of SH waves can be analyzed. Similarly, the suppression effect for SH0 and
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the enhancement effect for SH1 of the dual PPM EMATs in the exciting process of SH waves can be
discussed by comparing with case I and case III.
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And the parameters and values of PPM EMATs used in the experiment are shown in Table 2.
Since the frequency of excitation current is 700 kHz and the phase velocity of SH1 mode in the
aluminum plate is 4900 m/s, the wavelength of SH1 mode can be calculated as 7 mm.

Table 2. Parameters and values of PPM EMATs in the experiment.

Object Parameter Value

Periodic Magnet Array

Width 25 mm
Height 25 mm

Thickness 3 mm
Gap between adjacent magnets 1 mm

Lift-off distance 0.3 mm
Magnetic flux density 250 mT

Number of magnets in each periodic magnet array 14

Racetrack Coil

Width 30 mm
Length 60 mm

Thickness 0.1 mm
Copper layer width 0.7 mm
Copper layer depth 0.035 mm

Copper layer interval 0.9 mm
Turns of each coil 13
Lift-off distance 0.1 mm

Aluminum Plate
Length 500 mm
Width 500 mm

Thickness 3 mm

Excitation Signal

Voltage 260 V
Operation Frequency 700 kHz

Duty Ratio 20%
Repetition Frequency 50 Hz

Figure 10 shows the amplitude of receiving signals with different PPM EMATs configurations.
The time of flight it takes to travel through 380 mm indicates that the smaller waveform in Figure 10a
is SH0 waves (1.2 ×10−4 s) and the other is SH1 waves (1.8 ×10−4 s). Compared with case I and case
II, it is found that the amplitude of SH0 wave decreases from 18 mV to zero, and the amplitude of
SH1 waves increases from 77 mV to 97 mV. That is to say, SH0 mode is suppressed effectively and
SH1 mode can be enhanced significantly if the dual PPM EMATs are employed to receive SH waves.
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Similarly, by comparison of case I and case III, it can be seen that the suppression effect for SH0 and the
enhancement effect for SH1 are also effective while using the dual PPM EMATs to excite SH waves.
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The case II will be further investigated to reveal the superposition mechanism of SH0 waves and
SH1 waves. Figure 11a shows the received signals by the single PPM EMATs placed on the upper
and lower surface of the plate respectively while the single exciting PPM EMATs fixed on the upper
surface. The green dashed line represents signals received when the exciting and receiving transducers
are placed on the same side of the aluminum plate, the blue solid line represents signals received,
while the exciting and receiving transducers placed on the different side of the plate. Figure 11b gives
the positive superposition signal received by the upper and lower transducers.
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Figure 11. SH wave signals: (a) Global graph and local enlarged detail of SH0 and SH1; (b) Positive
superposition signals.

As shown in Figure 11a, the signal amplitude is slightly higher when the exciting and receiving
transducers are placed on the same side. The time of flight it takes to travel through 380 mm indicates
that the smaller waveform in Figure 11a is SH0 waves (1.2 × 10−4 s) and the other is SH1 waves
(1.8× 10−4 s). It should be noticed that the phases of SH0 mode received by the upper and lower probes
are opposite, and SH1 mode has the same phases. Compared with Figure 11a, the SH0 waveform is
eliminated in Figure 11b and the peak-to-peak voltage magnitude increases from 77 mV to 137 mV. It can
be concluded that the SH0 mode can be suppressed and the SH1 mode is enhanced if superposing the
signal received by the upper and lower transducers, which agrees with the theoretical and simulation
results well. Additionally, the peak to peak voltage magnitude of waveform shown in Case II of
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Figure 10a is only 96 mV, which is much smaller than that shown in Figure 11b. The discrepancy may
result from the energy loss at the connector for upper and lower probes.

5. Conclusions

A method to generate pure SH1 guided-waves is investigated in this paper. The SH0 suppression
effect and SH1 enhancement effect of dual PPM EMATs are mainly analyzed. The effect of position
errors of the PPM EMATs on its performances is also discussed. The simulation and experimental
results demonstrate that the dual PPM EMATs, placed on the upper and lower sides of the inspected
plates symmetrically, can suppress SH0 mode effectively and enhance the amplitude of SH1 mode by
100% in theory and by 25% in the experiment. Moreover, the longitudinal positioning error has more
significant influence on the SH0 suppression effect and SH1 enhancement effect than the lateral, so the
longitudinal error in the application should be decreased if possible.
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