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ABSTRACT

Genome instability has been recognized as a key
driver for microbial and cancer adaptation and thus
plays a central role in many diseases. Genome in-
stability encompasses different types of genomic al-
terations, yet most available genome analysis soft-
ware are limited to just one type of mutation. To
overcome this limitation and better understand the
role of genetic changes in enhancing pathogenicity
we established GIP, a novel, powerful bioinformatic
pipeline for comparative genome analysis. Here, we
show its application to whole genome sequencing
datasets of Leishmania, Plasmodium, Candida and
cancer. Applying GIP on available data sets vali-
dated our pipeline and demonstrated the power of
our tool to drive biological discovery. Applied to Plas-
modium vivax genomes, our pipeline uncovered the
convergent amplification of erythrocyte binding pro-
teins and identified a nullisomic strain. Re-analyzing
genomes of drug adapted Candida albicans strains
revealed correlated copy number variations of func-
tionally related genes, strongly supporting a mech-
anism of epistatic adaptation through interacting
gene-dosage changes. Our results illustrate how GIP
can be used for the identification of aneuploidy, gene
copy number variations, changes in nucleic acid se-
quences, and chromosomal rearrangements. Alto-
gether, GIP can shed light on the genetic bases of
cell adaptation and drive disease biomarker discov-
ery.

INTRODUCTION

In recent years, the field of genomics has rapidly expanded
with a fast increase in the number of newly sequenced
genomes (1). This surge is a direct consequence of the de-
velopment of new and ever more efficient, high-throughput

capable sequencing technologies (2). On the one hand, the
improvement in long reads technology allowed the genera-
tion of high-quality genome assemblies (3,4). On the other
hand, the decreasing costs for short-reads sequencing and
the parallel increase in sequencing throughput propelled the
exponential increase of available whole genome sequencing
(WGS) data (5). Thanks to these advances one can reason-
ably expect WGS to rapidly become a key component of
personalized medicine and clinical applications.

Indeed, WGS technologies have revolutionized many ap-
plications in the fields of medicine and microbiology. WGS
can be used for clinical sample screenings in the diagno-
sis, classification and surveillance of microbial pathogens
(6). WGS allows strain identification with better resolution
compared to genetic marker-based methods and can in-
form on the accessory genome of microbes undergoing hor-
izontal gene transfer (6,7). Other important applications of
WGS include antimicrobial resistance (AMR) profiling (8),
the identification of candidate antigens in vaccine develop-
ment (9,10), the tracking of outbreaks within hospitals and
communities (6,11–15) and microbial evolutionary adapta-
tion (16–18), which can have profound effects on human in-
fections. In this adaptation process, cycles of genetic muta-
tion and environmental selection lead to microbial fitness
gain, resulting in drug resistance and shifts in tropism or
virulence. As such, genome instability often determines dis-
ease outcome (19–22) and is a key driver of phenotypic and
genetic variability of microbes and other pathogenetic sys-
tems that rely on genome instability for adaptation, such as
cancer.

In this context, several consortia-based projects have
been established with the goal to produce WGS for the study
of different biological systems (5), and a number of publicly
available databases have been compiled or updated (23).
Parallel to data availability, many bioinformatics tools have
been developed to perform specific genome analysis tasks
(24,25). For instance, tools such as Freebayes (26), CN-
Vnator (27) and DELLY (28) have been respectively used
for the detection or characterization of DNA single nu-
cleotide variants (SNVs), copy number variations (CNVs),
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and structural variations (SVs), but their scope is limited
to the analysis of one genomic feature at the time. A num-
ber of integrative WGS pipelines and workflows have been
established combining the execution of multiple bioinfor-
matics algorithms serving different analysis steps (29). Even
though continuous progress has been made, there is no stan-
dardized or unified approach for genomic investigation. For
the development of improved WGS data analysis pipelines,
several important requirements need be considered, includ-
ing portability, reproducibility, scalability and compatibility
with high-performance computing (HPC) clusters and re-
mote cloud computing. Here we introduce a novel genome
instability pipeline (GIP) that fulfills all these requirements.
GIP facilitates the genome-wide detection, quantification,
comparison and visualization of chromosome aneuploi-
dies, gene CNVs, SNVs and SVs. GIP is implemented in
Nextflow (30), a workflow language that allows to execute
GIP seamlessly in local workstation, on an HPC or re-
motely in the cloud. All required environment and software
dependencies of GIP are fulfilled and provided with a Sin-
gularity container, thus making GIP reproducible, easy-to-
install and easy-to-use. GIP allows the use of giptools, a
tool-suit of R-based modules for genome data exploration,
enabling the comparison of sample sub-sets. GIP and gip-
tools generate a summary report with publication-quality
figures and spreadsheet tables. GIP and giptools constitute
a single framework for WGS analysis suitable both for large
scale batch analysis of individual genomes and compari-
son of samples from different experimental conditions or
origins. Lastly, a key strength of GIP and giptools is the
general applicability to different eukaryotic species. We al-
ready successfully applied GIP on the analysis of Leishma-
nia genomes (16,31,32). In this study, we validate the use of
GIP and giptools using WGS data from published datasets
of the three major human pathogens Leishmania infantum,
Plasmodium vivax and Candida albicans and as well as three
human cancer cell lines. Furthermore, we demonstrate how
the extensive and powerful analytical approach operated by
GIP and giptools can be used to find new biological signal
that escaped previous analyses.

MATERIALS AND METHODS

Genome sequencing and genome assembly data

WGS reads were downloaded from the Sequence Read
Archive (SRA) (33), the European Nucleotide Archive
(ENA) (34) repositories and the Encyclopedia of DNA El-
ements (ENCODE) dashboard (35) (Supplementary Table
S1). For L. infantum the GCA 900500625 genome refer-
ence and gene annotations available from the ENSEMBL
protists server (release-48) were used (36). For C. albicans
the assembly 21 of the SC5314 strain genome reference
and gene annotations available from the Candida Genome
Database (CGD) were used (37). For P. vivax the P01 ref-
erence genome and gene annotations available from Plas-
moDB (release-50) were used (38). For the cancer cell lines,
the human genome GRCh38 primary assembly and gene
annotations available from ENSEMBL (release-102) were
used (36).

GIP and giptools

All results presented in this study were generated using GIP
and giptools version 1.0.9. GIP code is maintained and
freely distributed at the github page: https://github.com/
giovannibussotti/GIP. Figure 1 and Supplementary Figure
S1 provide a schematic representation of the GIP work-
flow. The giptools container is accessible from the Singular-
ity cloud at https://cloud.sylabs.io/library/giovannibussotti/
default/giptools. The GIP configuration files (Supplemen-
tary Data 1) and the giptools command options used to gen-
erate all results (Supplementary Data 2) are provided. The
full documentation of GIP and giptools including a descrip-
tion of all options is available from https://gip.readthedocs.
io/en/latest/.

Read alignment

The repetitive elements of reference genomes were soft-
masked by GIP using Red (39). WGS reads were mapped
by GIP using BWA-mem (version 0.7.17) (40,41) run
with option -M to label shorter split hits as sec-
ondary. Then the alignment files were sorted, indexed
and reformatted by GIP using Samtools (version 1.8)
(42). Finally, read duplicates were removed by GIP us-
ing Picard MarkDuplicates (http://broadinstitute.github.
io/picard) (version 2.18.9) with the option ‘VALIDA-
TION STRINGENCY = LENIENT’. In the four consid-
ered datasets, WGS reads were aligned against full assem-
blies, including unsorted contigs if present. However just the
canonical assembled chromosomes were considered for all
downstream analyses (‘chrs’ option, Supplementary Data
1). A minimum read alignment MAPQ score was adopted
to select genes for cluster analysis, and to call for SNVs
and SVs (‘MAPQ’ option, Supplementary Data 1). Alto-
gether a total of 6 306 951 266 reads were aligned to the
respective reference genomes. The ‘giptools overview’ mod-
ule was run to gather the alignment statistics as estimated
by Picard CollectAlignmentSummaryMetrics (Supplemen-
tary Table S2).

Genomic bins and genes quantification

GIP was used to evaluate the mean sequencing coverage and
the mean read MAPQ of genomic bins and genes. For ge-
nomic bins, GIP partitioned the input genomes into adja-
cent windows of user defined lengths (‘binSize’ option, Sup-
plementary Data 1). The coverage GC-content score bias
was corrected (‘CGcorrect’ option, Supplementary Data
1) fitting a LOESS regression with a 5-fold cross valida-
tion to optimize the model span parameter. A larger win-
dow length was utilized to bin the reference genomes for
circos plot representations (‘binSizeCircos’ option, Supple-
mentary Data 1). In Figure 1 (‘Genomic bins’ and ‘Gene
CNVs’ plots), Figure 2, Supplementary Figures S2, S3 and
Figure 4 bins and genes coverage scores were normalized by
median chromosome coverage to highlight amplifications
or depletions with respect to the chromosome copy num-
ber. In Figure 1 (‘Structural variants’ plot), Figure 3E–G,
Figure 5B, Supplementary Figure S6B, C, and Supplemen-
tary Figure S7 bins and genes coverage scores were normal-
ized by median genome coverage to account for sequenc-
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Figure 1. GIP workflow. The schema on the left recapitulates the GIP inputs, processes and outputs (see Materials and Methods). Blue, orange, green and
purple boxes indicate genome reference pre-processing, read mapping, quantification and variants computation modules, respectively. The panels on the
right demonstrate example plots included in the GIP report computed for individual samples. The ‘Karyotype’ plot shows the coverage distributions for
each chromosome (y-axis). The ‘Genomic bins’ plot shows the genomic position (x-axis) and the normalized genomic bin sequencing coverage (y-axis).
The ‘Gene CNVs’ plot shows the normalized gene sequencing coverage. The ‘Structural variants’ panel shows a Circos plot representing translocations
(black links in the inmost part of the plot), and other possible structural variations in the outer tracks, including insertions, duplications, deletions and
inversions. The outmost track shows the normalized sequencing coverage. The ‘Single nucleotide variants’ plot shows on the x and y axes respectively the
genomic position and variant allele frequency of detected SNVs.

ing library size differences. GIP evaluated statistically sig-
nificant copy number variant bins and genes (Figure 1 ‘Ge-
nomic bins’ and ‘Gene CNVs’ plots) using a P-value thresh-
old of 0.001 (‘covPerBinSigOPT’ and ‘covPerGeSigOPT’
options, Supplementary Data 1). Estimated P-values for
bins and genes CNVs were corrected for multiple testing
using the Benjamini – Yekutieli (‘–padjust BY’) and the
Benjamini – Hochberg (‘–padjust BH’) methods. The somy
scores shown in Figure 1 (‘Karyotype’ plot) and Figure
5A were computed multiplying the median genome cover-
age normalized bin coverage by 2. GIP enabled the CNV
analysis of genes sharing high sequence identity by cluster-
ing the nucleotide sequences of the genes with low mean
MAPQ score into groups with cd-hit-est (version 4.8.1)
(43) with options ‘-s 0.9 -c 0.9 -r 0 -d 0 -g 1’. Then for
each gene cluster GIP computed the mean gene coverage
normalized by median chromosome coverage (Figure 2E,
Supplementary Figure S3B). The predictions of CNV re-
gions returned by GIP for the P. vivax dataset were com-
pared to the ones available from previously published work

(44). For the analysis we utilized the 178 available samples
not affected by national export restrictions. The sample list
is available from https://www.malariagen.net/sites/default/
files/PvGV May2016 sample data 2.xlsx. To enable the
comparison, GIP was re-executed considering the same
genome refence (Pvax Sal1) and CNV length cutoff (>3 kb)
used in the published work.

Gene ontology and metabolic pathway enrichment

The FungiDB online tool (Release 52, 20 May 2021) (45)
was used to evaluate the functional enrichment of network
gene clusters. For the gene ontology analysis, the biological
process (BP), molecular function (MF) and cellular com-
partment (CC) terms enrichments were tested, considering
both computed and curated evidences and a P-value cut-
off of 0.05. For the metabolic pathway enrichment, both
KEGG (46) and MetaCyc (47) pathway sources were con-
sidered with a P-value cutoff of 0.05. Terms and pathways
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with Benjamini – Hochberg adjusted P-values <0.05 were
considered statistically significant.

Sequencing coverage density estimates

GIP was used to convert the read alignment files (.bam
format) in binary data files reflecting sequencing coverage
(.bigWig format). The coverage file were produced using
bamCoverage from the deepTools2 suite (48) (version 3.5.1)
with options ‘–normalizeUsing RPKM –ignoreDuplicates
–binSize 10 –smoothLength 30’ (‘bigWigOPT’ option,
Supplementary Data 1). The coverage track of sample
PD0689 C was visualized with IGV using the ‘Bar Chart’,
‘Autoscale’ and windowing function ‘Mean’ options.

Single-nucleotide variant analysis

GIP was used to call SNVs using Freebayes (version
1.3.2) (‘freebayesOPT’ option, Supplementary Data 1)
and filter its output (‘filterFreebayesOPT’ option, Sup-
plementary Data 1). Filters included the minimum allele
frequency (‘–minFreq’), the minimum number of reads
supporting the alternative alleles (‘–minAO’) and min-
imum mean mapping quality of the reads supporting
the reference (‘–minMQMR’) or the alternative allele
(‘–minMQM’). A higher number of reads supporting the
variants was requested for predictions positioned inside
simple repeats of the same nucleotide (homopolymers)
(‘–minAOhomopolymer’). The homopolymers were de-
fined as the DNA region spanning ±5 bases from the
SNV (‘–contextSpan 5’), with over 40% of identical
nucleotides (‘–homopolymerFreq 0.4’). Further, GIP
discarded SNVs with sequencing coverage above or below
4 median absolute deviations (MADs) from the median
chromosome coverage (‘–MADrange’). SnpEff (version
4.3t) (49) was used to predict the impact of SNVs on
coding sequence. The predicted effects that GIP consid-
ered synonymous mutations are: ‘synonymous variant’,
‘stop retained variant’ and ‘start retained’. The predicted
effects that GIP considered non-synonymous muta-
tions are: ‘missense variant’, ‘start lost’, ‘stop gained’,
‘stop lost’ and ‘coding sequence variant’. The phyloge-
netic tree was computed by the giptools module ‘phylogeny’
using IQtree2 (version 2.1.2) (50,51) with options ‘–seqtype
DNA –alrt 1000 -B 1000’. The Venn-diagram comparison
considered the strains QS0044 C, QS0001 C, QS0037 C,
QS0016 C and SGH 358 that were sampled from different
locations in Ethiopia, respectively Habala, Badowacho,
Arbaminch, Hawassa and Jimma. The strains were selected
to have comparable average genome coverage (52). To
infer the tree GIP considered the set of filtered SNV and
adopted the IUPAC ambiguous notation for the positions
with allele frequency <70%. The tree was visualized by
giptools using the ggtree R-package (53).

Analysis of structural variants

GIP was used to detect structural variants including in-
sertions, tandem duplications, deletions, inversions and
translocations with DELLY (version 0.8.7) (28). SVs pre-
dictions were performed on individual samples sepa-

rately. To reduce incorrect predictions the DELLY out-
put was additionally filtered (‘filterDellyOPT’ option, Sup-
plementary Data 1). GIP discarded poor predictions with
DELLY label ‘LowQual’ (‘–rmLowQual’) and low median
MAPQ score of mapping reads (‘–minMAPQ’). SVs po-
sitioned in proximity of chromosome ends were removed
(‘–chrEndFilter’) to limit false predictions caused by po-
tential misassembled regions close to the telomeric ends.
To ease visualization and limit the analysis only to best
supported SVs GIP restricted the output only to the top
predictions (‘–topHqPercentIns’, ‘–topHqPercentDel’, ‘–
topHqPercentDup’ and ‘–topHqPercentInv’) based on the
SV support score as in Formula (1), where DV, DR, RV and
RR are respectively the number of high-quality variant
pairs, reference pairs, variant junction reads and reference
junction reads.

DV + RV
DV + RV + DR + RR

∗100

Formula 1: SV support score.
The predicted structural variants were represented with

Circos (version 0.69–9) (54).

Comparison of CNV callers

GIP was compared to CNVnator (version 0.4.1) (27) and
cn.MOPS (version 1.36.0) (55) to predict gene CNVs in the
L. infantum dataset (Supplementary Table S1). To run CN-
Vnator the commands ‘-tree’, ‘-his’, ‘-stat’, ‘-partition’ and
‘-call’ were used. Following the authors’ recommendations,
the ‘binSize’ parameter was benchmarked using the ‘-eval’
command optimizing the ratio of average read depth sig-
nal to its standard deviation. A common optimal ‘binSize’
value of 150 was selected considering the read length and
the read depth of the sequencing libraries. Cn.MOPS was
run using a windows length (WL) of 150. The WL value was
chosen accounting for read depth differences between sam-
ples to have approximately an average of 50–100 reads per
segment. To account for ploidy differences between sam-
ples cn.MOPS was run applying separate normalizations
for each chromosome. The estimated chromosome somy
score rounded to its closest integer was used as normaliza-
tion factor with the ‘normalizeChromosomes’ function.

GIP and giptools running time and computational resources

The ‘-with-timeline’ Nextflow option was used to render
HTML timelines for all GIP executed processes. The ‘-with-
report’ Nextflow option was used to summarize GIP com-
putational resources. A detailed description of each of the
two options is available from Nextflow documentation at
https://www.nextflow.io/docs/latest/tracing.html#. The gip-
tools computational requirements were estimated using the
Linux ‘time’ command (URL https://man7.org/linux/man-
pages/man1/time.1.html) together with the ‘-v’ option to
obtain a verbose output.

RESULTS

The GIP workflow

GIP is a tool for scientific investigation compatible with
Linux systems, requiring minimal configuration and dis-
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tributed as a self-contained package. Our integrative ap-
proach provides a broad range of genomic data analyses
and visualizations, and combines new and existing bioinfor-
matic methods (see Materials and Methods). GIP consists
of three files: the Nextflow pipeline code, the configuration
and the Singularity container files. The pipeline container
conveniently provides a working environment with 19 off-
the-shelf applications for genomic analyses and 40 R pack-
ages listed at https://gip.readthedocs.io/en/latest/software/
index.html. The minimum required input is a paired-end
WGS data set and a reference genome assembly in the stan-
dard fastq and FASTA formats, respectively. GIP analy-
ses include (i) extracting genomic features such as assem-
bly gaps or repetitive elements, (ii) mapping the reads, (iii)
evaluating chromosome, gene and genomic bin copy num-
bers, (iv) identifying and visualizing copy number varia-
tion with respect to the reference genome, (v) identifying
and quantifying gene clusters, (vi) detecting and annotating
SNVs, (vii) measuring non-synonymous (N) and synony-
mous (S) mutations for all genes, (viii) detecting SVs includ-
ing tandem duplications, deletions, inversions and break-
ends translocations using split-read and read-pair orienta-
tion information and (ix) producing a report file provid-
ing summary statistics, tables and visualizations (Figure
1, Supplementary Figure S1). For SNVs, calling GIP re-
lies on Freebayes, a popular tool that resolves the issue of
having multiple potential ambiguous alignments between
the read and the homologous genomic region by examin-
ing the whole haplotype of the read independently of the
precise alignment positions. It was shown that compared
to alternative variant calling software Freebayes demon-
strates good performance across different aligners and Il-
lumina platforms (56). For SV detection GIP runs DELLY,
a method combining short insert paired-ends, long-range
mate-pairs and split-read alignments to precisely define bal-
anced and unbalanced forms of genomic rearrangements at
single-nucleotide resolution. DELLY’s prediction accuracy
was previously validated by PCR (28) and its performance
compared to other structural variant calling algorithms on
simulated data under different sequencing parameter set-
tings (28). The benchmark results indicate that DELLY pos-
sess very high-positive predictive value and a robust per-
formance across the simulated sequencing parameter space
(28). GIP allows to customize filtering and visualization op-
tions via the configuration file (see methods). The output of
GIP can be used as input for giptools, a tool-suite to com-
pare sample sub-sets and highlight chromosome copy num-
ber, gene copy number and SNV differences.

Applying giptools on a Leishmania infantum case study

GIP permits the batch analysis of a set of individual sam-
ples, where each sample is considered separately and com-
pared only with respect to the provided reference genome
assembly. As a consequence, all variants and copy number
alterations detected in a sample merely reflect the differ-
ences between the sequenced and the reference genomes.
While this application may be sufficient in some circum-
stances, research projects often involve downstream com-
parison between samples. Examples include the compari-
son of gene or chromosome copy variation number between

Table 1. giptools modules

Module name Purpose

karyotype Compare chromosome sequencing coverage
distributions

binCNV Compare bin sequencing coverage in two
samples

geCNV Compare gene sequencing coverage in two
samples

ternary Compare gene sequencing coverage in three
samples

ternaryBin Compare bin sequencing coverage in three
samples

SNV Compare SNVs in multiple samples
binDensity Density plot of bin sequencing coverage of

multiple samples
geInteraction Detect CNV genes in multiple samples and

produce correlation-based networks
genomeDistance Compare sample genomic distances
phylogeny Extract SNV union and infer phylogenetic tree
convergentCNV Detect convergent CNV gene amplifications
overview Overview of sequencing coverage of

chromosomes, genomic bins and genes
panel Extract genomic information of a gene panel

for example drug resistant and drug susceptible samples, or
the juxtaposition of SNVs detected in isolates from different
geographic areas. For this purpose, we developed giptools,
a suit of thirteen modules that allows to compare samples
processed by GIP (Table 1). All modules in giptools are fully
embedded in the Singularity container and they are pro-
vided with their own documentation.

To illustrate the type of exploratory data analyses and the
biological questions that can be addressed, we tested gip-
tools on a previously analyzed dataset of seven clinical L.
infantum isolates from Tunisia (31). Leishmania is the eti-
ological agent of leishmaniasis, a life-threatening human
and veterinary disease affecting 12 million people world-
wide (57). Parasites were derived from seven patients af-
fected with visceral leishmaniasis, expanded in cell culture
and their genomes were sequenced. This dataset includes
four Glucantime drug susceptible isolates and three iso-
lates from relapsed patients, and their comparison may in-
form on genetic factors resulting in treatment failure. Gip-
tools allowed the detection and visualization of pervasive
intra-chromosomal CNVs across the thirty-six Leishmania
chromosomes (Figure 2A). Additionally, giptools enables
targeted comparison of normalized genomic bin sequenc-
ing coverage of sample pairs. We used giptools’ ‘binCNV’
module to compute the ratio between corresponding ge-
nomic bins of the strains LIPA83 over ZK43, which corre-
spond to a first-episode and a relapse leishmaniasis isolate,
respectively. Giptools represents different chromosomes as
separate panels (Figure 2B), as part of single genome-
wide overview (Supplementary Figure S2A) or as distinct
plots (Supplementary Figure S2B). This analysis allowed
the identification of 2,905 and 2,208 bins that were re-
spectively amplified or depleted in LIPA83 with respect
to ZK43. The results are returned by giptools as a Mi-
crosoft Excel table (.xlsx format) providing ratio scores at
each genomic position (Supplementary Table S3). Like-
wise, giptools permits three-way comparisons of normal-
ized genomic bin sequencing coverage with ternary plots

https://gip.readthedocs.io/en/latest/software/index.html


e36 Nucleic Acids Research, 2022, Vol. 50, No. 6 PAGE 6 OF 16

Figure 2. Comparing Leishmania infantum genomes with giptools. (A) Density plot representing the genomic coverage of the seven L. infantum isolates. The
x-axis shows the log10 normalized coverage of genomic bins. The y-axis reflects the genomic position. The thirty-six different chromosomes are materialized
as separate panels. The blue shading indicates the (2D) kernel density estimates of genomic bins. The two red vertical lines mark the 1.5 and 0.5 coverage
values. A selection of 50 000 bins with coverage >1.5 or <0.5 is shown as black dots. (B) Scatterplot of the genomic bin normalized sequencing coverage
ratio of samples LIPA83 over ZK43. The x any y axes show the ratio score and the genomic position respectively. Ratio scores >1.25 are labelled in orange
and indicate genomic bin amplification. Ratio scores <0.75 are labelled in blue and indicate genomic bin depletion. (C) Ternary comparison showing the
relative abundance of the genomic in samples LIPA83, ZK43 and ZK28. The axes report the fraction of the bins normalized sequencing coverage in the
three strains. The blue contour indicates the log10 bin density. A subset of 5,000 bins is shown as black dots. Each given point in the plot is adding up to 100.
The density area at the center of the plot indicates bins with equal copy number and thus a ∼33 distribution across the three axes. (D) Scatterplot showing
the log10 normalized sequencing coverage of annotated genes in ZK43 (x-axis) and LIPA83 (y-axis). The red line indicates the bisector. Dots represent
individual genes. (E) Sequencing coverage ratio of gene clusters in samples LIPA83 and ZK43. Dots represent gene clusters. For plots D and E, the ratio
scores >1.5 or <0.5 are labelled in orange and blue respectively.



PAGE 7 OF 16 Nucleic Acids Research, 2022, Vol. 50, No. 6 e36

(Figure 2C). We used this representation to display the ge-
nomic bin relative abundance in samples ZK43, LIPA83
and ZK28. The analysis shows important strain-specific dif-
ferences in bin copy number that are visualized by shifts of
the signals out of the center. Similar to genomic bin anal-
ysis, giptools makes it possible to compare the sequenc-
ing depth of annotated genes and thus the copy number in
two or three samples (Figure 2D and Supplementary Fig-
ure S3). However, the determination of gene copy number
might be impeded by (i) short read length or fragment in-
sert size, (ii) the complexity of the target genome, or (iii)
the presence of repetitive elements. Together with the cover-
age, GIP also computes a mean read map quality (MAPQ)
score for each gene and allows a different strategy to de-
termine the copy number of low MAPQ genes (see meth-
ods). This gene MAPQ score is a measure that reflects how
much each gene is supported by unambiguously mapped
reads (high MAPQ) in contrast to multimapping reads (low
MAPQ). The evaluation of LIPA83 and ZK43 gene cov-
erage ratio scores revealed 13 gene CNVs with a stringent
MAPQ cutoff of 50 (Supplementary Table S4). The maxi-
mum normalized coverage value of 6.5 was observed for a
putative amastin surface glycoprotein (LINF 310009800).
Other examples of gene CNVs in this set include the pu-
tative surface antigen protein 2 (LINF 120013500) and the
heat shock protein HSP33 (LINF 300021600) (Supplemen-
tary Table S4). Genes falling below a user defined MAPQ
score and sharing high level of sequence similarity are as-
signed to the same gene cluster, and their measured cov-
erage scores are averaged across all members of the group.
Low MAPQ scores can also be associated with single genes,
e.g. in the case of internal repetitive elements that cause
multiple ambiguous alignments inside the gene itself, or
if mapping occurs in possibly misannotated intergenic re-
gions. The LIPA83/ZK43 comparison showed 27 CNV
gene clusters, including cluster cl303 (three genes annotated
as ‘amastin-like’) and cluster cl16 (2 tb-292 membrane-
associated protein-like proteins) (Figure 2E, Supplemen-
tary Table S4). These results demonstrate the power of GIP
and giptools to detect and compare intra-chromosomal
CNVs in Leishmania at genomic bin level. Conveniently,
analogous two- or three-ways comparisons can be applied
to reveal copy number variations at individual gene or gene
cluster levels.

Benchmarking of prediction tools

GIP uses Freebayes and DELLY to perform SNVs and
SVs calls while providing additional options to filter and
reformat their output for downstream analyses. Freebayes
and DELLY predictions were already extensively bench-
marked against other tools and validated in previous re-
ports (28,56,58). GIP implements its own approach to
quantify, normalize, compare and visualize genomic bins
and genes. One gene CNV predicted using GIP was exper-
imentally tested in a separate study where we confirmed
by PCR the deletion of a NIMA-like kinase gene (59). In
the following we used the L. infantum dataset to compare
the gene CNV predictions returned by GIP with the ones
of two popular CNV detection tools, CNVnator (27) and
cn.MOPS (55). The three methods use sequencing cover-

age depth information extracted from DNA read align-
ments. The comparison indicates that most of GIP pre-
dictions overlap with the ones of both CNVnator and
cn.MOPS (169 or 61.4%) or with CNVnator only (96 or
34.9%) (Supplementary Figure S4A). Overall CNVnator
and cn.MOPS predict 13.4 and 3.2 times more CNV genes
than GIP, respectively. While this result could reflect a supe-
rior sensitivity, it suggests a high rate of false positive pre-
dictions caused by confounding chromosome aneuploidy.
The chromosomes with the greatest number of CNVna-
tor and cn.MOPS predictions are the ones which are am-
plified in at least one of the considered isolates (Supple-
mentary Figure S4B). CNVnator can be run on individual
samples only, therefore it is not suited to account for po-
tential between-samples chromosome copy number differ-
ences. cn.MOPS can be run on multiple samples together
and allows the possibility to apply adapted normalizations
on each chromosome separately. This approach alleviates
the problem of aneuploidy-induced false gene CNV predic-
tions, demonstrating to be effective for some chromosomes
(e.g. LinJ12 or LinJ13, Supplementary Figure S4B) but still
failing for chromosomes LinJ06, LinJ16, and partially for
LinJ23 and LinJ24. In cn.MOPS the normalization fac-
tor is an integer value representing the chromosome ploidy.
Conceivably, the normalization in cn.MOPS suffers from
the within-sample population mosaicism, in which individ-
ual cells present chromosome copy number differences. On
the contrary, to call bin or gene CNVs GIP normalizes by
the actual measured median chromosome sequencing cov-
erage, thus accounting for ‘partial’ chromosome copy num-
ber shifts. Overall, GIP uses a maximum of 1.057 Gigabytes
of random access memory (RAM) in the ‘covPerGe’ step
to calculate normalized gene sequencing coverage values,
plus 0.39236 Gigabytes in the ‘geInteraction’ giptools step
to evaluate the copy number variant genes. CNVnator and
cn.MOPS require 2.727132 and 0.791924 Gb respectively.
The cumulative running time to execute the GIP ‘covPerGe’
step on each individual sample and to execute the ‘geIn-
teraction’ giptools step is of 18 min and 59.06 s. For com-
parison CNVnator employs 12 min and 46.53 s, while and
cn.MOPS takes 6 min and 21.04 s. Altogether, these results
show that to compute gene CNVs on the L. infantum dataset
our pipeline has similar memory requirements but longer
execution times compared to CNVnator and cn.MOPS. The
analysis confirms that the CNV gene predictions produced
by our pipeline largely recapitulate the ones produced by
CNVnator or cn.MOPS. Furthermore, GIP provides the
added benefit of a higher robustness when predicting intra-
chromosomal CNVs in the event of chromosomal aneu-
ploidy.

Comparative genomics of a Plasmodium vivax WGS dataset

We next applied GIP and giptools on other biological sys-
tems to demonstrate its broad applicability outside the
Leishmania field, including the human apicomplexan par-
asite P. vivax. Plasmodium vivax is a protist parasite and a
human pathogen causing malaria. Plasmodium vivax gives
rise every year to 130 million clinical cases (60), and it is
estimated that 2.5 billion people are at risk of infection
worldwide (61–63). We applied GIP and giptools to inves-
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tigate genomic variations across a sizeable dataset of 222
P. vivax genomes isolated from clinical samples of 14 coun-
tries worldwide (44,52) (Supplementary Table S1). The GIP
quantification analysis was able to recover 5 out of the
11 previously reported CNV regions and predicted 73 new
large (>3 kb) copy number variant areas (Supplementary
Figure S5, Supplementary Table S5). Unmatched CNVs
could be explained by sample sets differences. The published
study considered a set of 228 samples from which two un-
specified samples were removed showing excessive variation
in read coverage. Conversely, in our analysis we considered
the set of 178 available samples not affected by national ex-
port restrictions. The phylogenetic tree reconstruction and
PCA analyses (Figure 3A and B) showed a high correlation
between genotypes and the geographic origin of the sam-
ples. However, we detected substantial genomic variabil-
ity between isolates collected at smaller geographical scale,
with 14 555 SNVs (∼42% of the total) uniquely character-
izing representative samples from five Ethiopian study sites
(52) (Figure 3C and D). This result may reflect diverging
evolutionary trajectories radiating from few founder strains.
At gene level we profiled the copy number variations of
two gene panels. The first panel accounts for 43 previously
described genes encoding for potential erythrocyte binding
proteins suggested to operate at the interface of the parasite-
host invasion process (52). The second panel includes two
drug resistance markers comprising the chloroquine resis-
tance transporter PVP01 0109300 and the multidrug resis-
tance protein 1 PVP01 1010900, and four proteins impli-
cated in red blood cell invasion, such as the merozoite sur-
face protein gene MSP7 PVP01 1219700, the reticulocyte
binding protein gene 2c PVP01 0534300, the serine-repeat
antigen 3 PVP01 0417000, and the reticulocyte binding pro-
tein 2b PVP01 0800700) (64–73). Read depth analysis in-
dicated that four genes in the first panel (PVP01 0623800,
PVP01 1031400, PVP01 1031200, PVP01 1031300) show a
high degree of variability, with amplifications observed in
samples from distinct geographic (Figure 3E). This conver-
gence is sign of strong natural selection, which further sus-
tains the functional importance of these genes in the infec-
tion process. Furthermore, six genes positioned on chromo-
some 14 are absent in the Thai strain PD0689 C as a re-
sult of the loss of this chromosome (nullisomy) (Figure 3E
and F). Finally, the comparison of synonymous and non-
synonymous SNVs in the panel of genes revealed impor-
tant differences between sample groups. Our analysis indi-
cates an overall higher number of non-synonymous muta-
tions in Ethiopian compared to Cambodian isolates, there-
fore suggesting a stronger evolutionary pressure acting on
the African strains (Figure 3G). Taken together these anal-
yses well illustrate how GIP and giptools can be readily ap-
plied for bulk analysis of P. vivax genomes to assess genome
diversity, extract evolutionary information and identify po-
tential disease biomarkers.

Gene CNV analysis of Candida albicans evolutionary
adapted strains

We next applied GIP and giptools to the human fun-
gal pathogen C. albicans, an opportunistic yeast exhibit-
ing major genome plasticity (74–83) and causing hun-

dreds of thousands of severe infections each year (84).
Candidemia, a bloodstream infection with Candida, are
often associated with high rates of morbidity and mor-
tality (15–50%) notwithstanding existing antifungal treat-
ments (85,86). We applied GIP and giptools to a C. albi-
cans WGS dataset described in a recent study that covers
five different progenitor strains (P75063, P75016, P78042,
SC5314, AMS3050) and investigates CNVs driving toler-
ance and resistance to anti-fungal azole drugs (87) (Sup-
plementary Table S6). We analyzed nineteen samples, in-
cluding (i) four clinical isolates (P75063, P75016, P78042,
SC5314), (ii) seven strains selected in vitro against the
anti-fungal drug fluconazole (FLC) (AMS4104, AMS4105,
AMS4106, AMS4107, AMS4397, AMS4444, AMS4702),
(iii) four isogenic colonies adapted to the drug micona-
zole (AMS3051, AMS3052, AMS3053 and AMS3054) to-
gether with their progenitor (AMS3050) and (iv) three
colonies derived from a miconazole-adapted population
and isolated on a rich medium (AMS3092, AMS3093
and AMS3094) (87–89). GIP and giptools were able to
reproduce previous observations of the amplification of
the genes for the drug efflux pumps TAC1 (orf19.3188)
and ERG11 (orf19.922), for the stress response pro-
teins HSP70 (orf19.4980), CGR1 (orf19.2722), ERO1
(orf19.4871), TPK1 (orf19.4892), ASR1 (orf19.2344), PBS2
(orf19.7388) and CRZ1 (orf19.7359), and for proteins in-
volved in membrane and cell wall integrity, including CDR3
(orf19.1313), NCP1 (orf19.2672), ECM21 (orf19.4887),
MNN23 (orf19.4874), RHB1 (orf19.5994) and KRE6
(orf19.7363) (Supplementary Table S6). Furthermore, the
powerful comparative approach of our pipeline permitted
the discovery of 1505 genes showing correlating or anti-
correlating copy number variations (Figure 4A and B, Sup-
plementary Table S6), which could be assigned to nine dis-
tinct correlation clusters (CC) (Supplementary Figure S6A,
Supplementary Table S7) that escaped previous analyses.
We verified the sequencing coverage of genomic regions en-
compassing gene CNVs, including three regions amplified
in fluconazole resistant strains (Figure 4B, Supplementary
Figure S6B) (87) and a region whose amplification corre-
lates with the level of miconazole resistance (87) (Supple-
mentary Figure S6C), as well as the loss of heterozygosity
associated to the depletion of chromosome 3 left arm in
sample AMS3051 (Supplementary Figure S6D) (87). Even-
tually, by representing genes and absolute correlation re-
spectively as nodes and edges of a network, we identified
nine highly interconnected network clusters (NC) (Figure
4C, Supplementary Table S8). NC7, NC8 and NC9 embody
genes from individual chromosomes, respectively chromo-
somes 1, 3 and 4. The most parsimonious explanation for
the high levels of correlation observed in these NCs (Fig-
ure 4C) is the occurrence of sub-chromosomal amplifica-
tions affecting several adjacent genes. A different scenario is
pictured for each of the remaining NCs (NC1–6) where the
genes are located on different chromosomes thus suggesting
genetic interactions that causes coordinated changes in gene
copy number. The gene ontology (GO) and metabolic path-
way analyses revealed a significant functional enrichment of
genes expressed on the cell surface and involved in the inter-
action with the host (NC2), gibberellin biosynthesis (NC3),
transmembrane nucleobase transporters (NC4) and gluco-
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Figure 3. Plasmodium vivax genomic diversity. (A) Predicted maximum likelihood phylogenetic tree reconstruction. (B) PCA analysis of the phylogenetic
distances estimated from the tree in (A). Each dot indicates a sample. The colour code reflects the geographic origin of the samples and matches with the
colours of the legend in (A). (C) Venn diagram comparing the SNVs of five representative Ethiopian strains. (D) Pairwise scatterplot comparing the variant
allele frequency of all detected SNVs in the five Ethiopian strains. (E) Gene panel analysis. The x-axis reports a set of genes of interest. The y-axis indicates
the normalized mean gene coverage. The boxplots demonstrate the coverage values distributions for each gene across all samples. Each dot represents the
coverage of the indicated gene in a given sample. Dot colours reflect the sample geographic origin as in (A). (F) Reads per kilo base per million mapped
reads (RPKM) normalized sequencing coverage density track of sample PD0689 C. The boundaries of the 14 chromosomes are shown on the bottom. (G)
Comparison of non-synonymous (N) and synonymous (S) mutations between Ethiopia and Cambodia sample groups. Dots represent genes. The x-axis
represents the difference between the mean non-synonymous mutation count in the two sample groups. The y-axis represents the difference between the
mean synonymous mutation count in the two sample groups. The dot size demonstrates the ratio of the mean normalized sequencing coverage between the
two sample groups for each gene. Red and blue dot colors indicate genes belonging to the 43 genes panel (52) and the custom 6 genes panel respectively.
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Figure 4. Gene CNVs interactions. (A) All-vs-all normalized sequencing coverage correlation heatmap. The heatmap is symmetrical along its diagonal
and reports both on the rows and the columns the detected gene CNVs. The colour scale indicates with green and pink high levels of positive and negative
Pearson correlation, respectively. The side ribbons demonstrate in different colours the chromosome and the correlation cluster of each gene. (B) Gene CNV
heatmap. The columns and the rows report respectively the samples and the detected gene CNVs. The colour scale indicates the normalized sequencing
coverage of the genes. To ease visualization, coverage values greater than 3 are reported as 3 (red). Black boxes highlight the genomic regions shown in
Supplementary Figure S6B (panels 1, 2 and 3) and Supplementary Figure S6C. The ribbons on the left indicate the chromosome and the correlation cluster
of each gene. Top ribbons indicate the genotype and the strains resulting from the different evolutionary experiments. (C) Gene interaction network. Nodes
indicate gene CNVs. Edges reflect the absolute Pearson correlation value. The closer the nodes are, the higher is the correlation. Only significant interactions
(Benjamini–Hochberg adjusted P-value < 0.01) are shown. The colour of the edges indicates in red and blue respectively positive and negative correlations.
The colour of the nodes denotes the predicted network cluster for each gene.
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neogenesis (NC5) (Supplementary Table S9). Altogether,
GIP and giptools are validated by reproducing previously
published results, and beyond that can drive new biological
findings as documented by the discovery of a network of
epistatic CNV interactions supporting genomic adaptation
in C. albicans populations under drug selection.

Exploring instability of larger genomes using cancer cell lines
as a benchmark

The larger genome size, and the higher number of genes and
WGS reads can represent a challenge when working with
higher eukaryotes. For the purpose of comparison, the hu-
man genome is ∼216 times larger than the one of C. albicans
we analyse in this study. Therefore, we sought to evaluate the
applicability of the GIP and giptools framework to human
data and utilized a panel of genomes from cancer cell lines
as a test set. In our analyses we considered publicly avail-
able WGS data of the cell lines T47D, NCI H460 and K562
(90), which respectively derive from human breast, lung and
blood cancers. The karyotype analysis revealed aneuploidy
for all chromosomes except chromosome 4 (Figure 5A).
The observed heterogeneity in read depth across chromo-
somes, illustrated by large interquartile range in the box-
plot, suggests sub-chromosomal or episomal copy number
variations, or the co-existence of karyotypically different
sub-populations. Indeed, the coverage analysis confirmed
the pervasive presence of CNVs both at chromosomal and
sub-chromosomal levels (Supplementary Figure S7) with
remarkable instability observed for specific chromosomes,
e.g. chromosomes 6, 9, 10 and 16 (Figure 5B). Overall, we
detected 1 647 016 SNVs (Supplementary Data 3) and al-
lele frequency shifts with respect to the reference genome,
suggesting haplotype selection and the preferential expres-
sion of distinct alleles in different cell lines (Figure 5C and
Supplementary Figure S8). Furthermore, we identified re-
peated loss of heterozygosity events and uneven distribution
of SNVs that form ‘patches’ of high frequency correlating
with chromosomal and sub-chromosomal CNVs (Figure
5D, E and Supplementary Figure S9). These results identify
GIP and giptools as a powerful new platform to reveal loci,
genes or alleles that are under natural selection in cancer
cells, thus allowing important new insight into the genetic
basis of tumor development, cancer cell evolution and drug
resistance.

Running times and computational resources

We used the Nextflow built-in options to render the pro-
cess execution time and the computational resources of each
task executed by GIP for each sample considered in this
study. As exemplified for the cancer cell line dataset, the GIP
read mapping process accounts for the longest execution
time for all three samples (Supplementary Figure S10A)
and the highest I/O (Input/Output) data access, with peaks
of read and written bytes of 773.4 and 598.8 Gb, respec-
tively (Supplementary data 4). The process requiring the
highest physical memory is ‘bigWigGenomeCov’ (mean us-
age 37.18 Gb) (Supplementary Figure S10B). This step runs
deepTools2 and bedGraphToBigWig (91) to create wiggle
(wig) type files representing continuous-valued sequencing

coverage data in indexed binary format (bigWig). The time
line and the computational resources usage including CPU,
memory, job duration and I/O of all datasets are provided
(Supplementary data 4). The computational resources and
process execution statistics to run all giptools commands
described in this study are provided (Supplementary Table
S10). The longest running time (474 578.57 and 4 417.61
s in user and system time, respectively) and the maximum
required RAM size (9 465 100 Kb) were measured for the es-
timation of P. vivax phylogeny (Supplementary Table S10),
and largely explained by the execution of IQtree2.

DISCUSSION

Genome instability is a key driver of evolution for micro-
bial pathogens and cancer cells (92) and a major source of
human morbidity. Here we introduce GIP and giptools, an
integrated framework for the genotype profiling of biolog-
ical systems exploiting genome instability for adaptation.
While our pipeline relies on existing genome analysis tools
(Supplementary Figure S1), it also implements its own algo-
rithm that quantifies, corrects by GC content, normalizes,
compares, estimates significance and visualizes coverage of
genomic bins and genes. Furthermore, it defines and quanti-
fies gene clusters, detects chromosome aneuploidies and dis-
covers gene interactions. We document the power and versa-
tility of GIP and giptools by performing genomic screenings
of three major pathogenic eukaryotes and human cancer
cell lines. While originally deployed for Leishmania genome
analysis, in this study we validate the use of our pipeline on
other organisms reproducing expected results. For example,
in C. albicans we confirmed the CNVs correlating to drug
resistance as well as a loss of heterozygosity event (Supple-
mentary Figure S6B–D). Parallel to this we also show how
GIP and giptools can be used for data mining and discov-
ery of new signals that escaped existing tools. New find-
ings include (i) the discovery of the convergent amplifica-
tion of erythrocyte binding proteins in P. vivax strains sam-
pled from distinct geographic areas (Figure 3E), (ii) the de-
tection of a nullisomic strain (Figure 3F), (iii) the identifi-
cation of correlated copy number variations between genes
positioned on separate chromosomes of C. albicans adapt-
ing strains, and (iv) the functional association of such genes,
strongly supporting a mechanism of epistatic interactions
exerted through gene-dosage changes, and corroborating
previous reports on adapting Leishmania populations (59).

Importantly, GIP and giptools overcome key limitations
of current analysis tools, such as the breadth of analysis
that is often limited to individual types of mutations, and
the lack of genome-wide, comprehensive reports. To ease
genome instability investigations our pipeline offers a single
solution to karyotype, gene CNV, SNV and SV batch anal-
yses, providing summary reports and high-quality, genome-
wide visualizations. Furthermore, some tools (27,93–95)
identify variations with respects to a reference assembly
only, which leaves the between samples comparisons to ex-
ternal tools that need installing, may be incompatible in
terms of file format, and may rely on different analytical as-
sumptions. To address this limitation giptools enables cus-
tom sample comparisons, to explore differences and com-
mon features between genomes, and provides a vast choice
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Figure 5. Cancer cell lines genome instability. Green, brown and grey colours indicate respectively samples K562, NCI H460 and T47D. (A) Chromosome
coverage analysis. The x-axis reports the chromosomes. The y-axis reports the estimated somy score. The boxes show the somy score distributions. (B)
Sub-chromosomal copy number variation. Dots indicate genomic bins. Different panels indicate different chromosomes. The panel columns indicate from
left to right four selected chromosomes: 6, 9, 10 and 16. The panel rows show top to bottom the samples K562, NCI H460 and T47D. The x-axis indicates
the genomic position. The y-axis indicates the normalized genomic bin sequencing coverage values. Coverage values greater than 5 are reported as 5. (C)
SNV frequency density plots. The four different panels represent different selected chromosomes: 6, 9, 10 and 16. The x-axis reports the variant allele
frequency. The y-axis the estimated kernel density between 0 and 3. (D) SNV frequency scatter plots. The four different panels represent different selected
chromosomes: 6, 9, 10 and 16. The x-axis indicates the genomic position. The y-axis indicates the variant allele frequency. (E) Chromosome 11 combined
SNV and bin coverage plot. To ease visualization, giptools allows the simultaneous displaying of variant allele frequencies (y-axis, left) and sequencing
coverage (y-axis, right). Dots represent SNVs. The lines represent the normalized bin sequencing coverage. The x-axis indicates the genomic position.
Coverage values >5 are shown as 5.
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of analytical tools with compatible features. Likewise, cur-
rent tools are often restricted to the analysis of data from
one or few species only (96–100), but are not generally
applicable to different biological systems, which interferes
with the investigation of genome variations across multiple
species and the exploration potentially conserved genomic
adaptation mechanisms. By contrast, our pipeline limits as
much as possible the use of hardcoded parametrization,
which could limit its use to a specific organism. Therefore,
GIP’s flexible design makes it adapted for the genome anal-
ysis of both model and non-model organisms, including
Leishmania or human.

Many current tools are further limited in software porta-
bility and reproducibility across different computer envi-
ronments, which can produce faulty results calling their
clinical application into question. Conversely, thanks to the
Singularity implementation all required software are em-
bedded and provided within the software container. As a
consequence, users can easily recreate the same work envi-
ronment just by downloading the pipeline container, and re-
produce exactly the same publication-quality plots and ta-
bles presented in this study. Lastly, one more common limi-
tation is posed by software scalability. In the WGS domain,
with the rapid increase new samples made available and
the enormous amount of data generated in each sequenc-
ing run, the CPU and memory resources of local worksta-
tion risk to quickly become inadequate for data analysis.
Therefore, it is paramount that WGS tools are implemented
to run on high-performance computing (HPC) clusters and
feature remote cloud computing solutions. Because of its
Nextflow implementation GIP can be executed on a local
machine, on cluster resource manager or the cloud. GIP can
be applied on individual samples and without additional ef-
fort on large WGS data sets for batch computation as shown
for the 222 P. vivax genomes.

These results well illustrate how GIP and giptools can be
applied to perform extended genomic analyses in different
biological systems and drive biomedical discovery. To con-
clude, we believe that GIP and giptools represent a step for-
ward toward reproducible research in genomics, and pro-
vide a robust computational framework to study how mi-
crobes and tumor cells harness genome instability for envi-
ronmental adaptation and fitness gain.
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