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In oncology trials, overall survival (OS) is considered the most reliable and preferred endpoint to evaluate the benefit of drug
treatment. Other relevant variables are also collected from patients for a given drug and its indication, and it is important to
characterize the dynamic effects and links between these variables in order to improve the speed and efficiency of clinical oncology
drug development. However, the drug-induced effects and causal relationships are often difficult to interpret because of temporal
differences. To address this, population pharmacokinetic–pharmacodynamic (PKPD) modelling and parametric time-to-event (TTE)
models are becoming more frequently applied. Population PKPD and TTE models allow for exploration towards describing the data,
understanding the disease and drug action over time, investigating relevance of biomarkers, quantifying patient variability and in
designing successful trials. In addition, development of models characterizing both desired and adverse effects in a modelling
framework support exploration of risk-benefit of different dosing schedules. In this review, we have summarized population PKPD
modelling analyses describing tumour, tumour marker and biomarker responses, as well as adverse effects, from anticancer drug
treatment data. Various model-based metrics used to drive PD response and predict OS for oncology drugs and their indications are
also discussed.

Introduction

Cancer remains an unmet medical need [1]. Not only is
there a need to develop new drugs in oncology, but also to
improve the speed and efficiency of clinical oncology drug
development [2]. In the current paradigm, overall survival
(OS), i.e. the time from randomization until death from any
cause, is considered the most reliable and preferred end-
point to evaluate treatment benefit in oncology [3].
However, it may take years for OS data to become mature
such that statistical conclusions can be drawn. Drug
approval (pending) may therefore be granted based on an
improvement in progression-free survival (PFS, time from
randomization until objective tumour progression or
death [3]). Support of PFS as a surrogate for OS, however,
has been shown only with advanced colorectal and
advanced ovarian cancers [4].

There are practical challenges for oncologic drug
development – it may be difficult to characterize the
dose–response relationship as often only one or two
doses are studied in the target patient population, and
placebo data are rarely available. There is also typically a
narrow therapeutic index in that drug concentrations
that cause tumour shrinkage may also cause adverse
effects. In recent years, population pharmacokinetic–
pharmacodynamic (PKPD) modelling has become a key
tool towards streamlining oncologic drug development
through early understanding, identification and quantifi-
cation of various dose–response relationships. Population
PKPD modelling provides a systematic way to develop
and assess model-based metrics as ‘drivers’ for various
responses to treatment which can then be evaluated as
predictors for survival in parametric time-to-event (TTE)
models.
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In this review, we present clinical oncology analyses
that incorporate population PKPD modelling approaches
to describe tumour, tumour marker and biomarker
responses, as well as adverse effects, and highlight analy-
ses that assess model-based metrics and baseline patient
factors as predictors of OS. We also discuss three popula-
tion PKPD models that are frequently applied in clinical
oncology drug development: (1) the tumour growth inhi-
bition (TGI) model for tumour response, (2) the indirect
response (IDR) model for biomarker response and (3) the
myelosuppression model for leukocyte, neutrophil and
platelet responses.

Shown in Figure 1 is a proposed modelling framework,
expanded from Bruno & Claret [5], which encapsulates this
review and illustrates a methodology towards establishing
quantitative relationships between model-based metrics
and treatment outcome. We refer the reader to reviews on
population PK [6, 7], PKPD [8–11] and model-based drug
development [12–15] which have nicely presented these
concepts. The similarity among measurements and end-
points for oncology, regardless of cancer type, makes this
an applicable framework for clinical drug development
programmes. For example, 1) for solid tumours, tumour
sum of longest diameter (SLD) measurements are used as
an indication of treatment effect, 2) circulating biomarkers,
predictive of drug mechanism of action, are assessed as
early indicators of treatment effect, 3) adverse effects, such
as chemotherapy-induced myelosuppression, are noted
across many cancer treatments and 4) PFS and OS are
primary clinical endpoints for evaluating treatment
success.

Population PKPD modelling

As shown in Figure 1, a population PK model, typically
described using compartments, is developed from drug
concentration–time data. PK parameters (e.g. clearance
(CL) and volume of distribution (V)) and their variability are
estimated and individual patient PK parameters can be
obtained. Individual patient characteristics (i.e. covariates),
such as weight, creatinine clearance, etc., can be tested
and implemented into the model to explain the between
patient variability [7]. The development of a population PK
model that well describes the drug concentration–time
data implies an understanding of how the body is process-
ing the drug.

Following this analysis, pharmacometricians may
attempt to incorporate PK model-based metrics to
describe the drug concentration–effect (i.e. PKPD) rela-
tionship(s). ‘PD’ refers to pharmacodynamic variable, and
herein we have reviewed PD measurements associated
with tumour burden, biomarker and adverse effects.
During PKPD model building, PK metrics can be tested as
‘drivers’ of the specific PD response. These include fixed
time point descriptors (e.g. Cmax, Ctrough), summary measure-

ments of overall exposure (e.g. AUC, Css) and the model-
predicted drug concentration–time (t) curve. Factors such
as the drug mechanism of action and the time frame of PD
response, as it relates to the driver and dosing scheme,
should be considered when assessing drivers of PD
response. As shown in Figure 1, metrics derived from the
adverse effect and biomarker PKPD models can also be
assessed as drivers for tumour responses, similar to PK
metrics. These analyses can confirm or drive new hypoth-
eses as to how the drug is reducing tumour burden and
may provide an early indication of anti-tumour efficacy.
The development of clinical oncology PKPD models may
help to design subsequent trials towards minimizing tox-
icity and optimizing efficacy through establishment of an
optimal dose, optimal regimen, for the optimal patient.

Population modelling of
tumour size

In oncology, the Response Evaluation Criteria in Solid
Tumours (RECIST; currently version 1.1) is used to describe
tumour response to treatment [16]. Tumour progression is
defined as a > 20% increase in tumour SLD over baseline
(or from best response), with a minimum 5 mm absolute
increase, or appearance of any new lesions. However,
RECIST 1.1 is not an optimal assessment of drug efficacy: 1)
information is lost when the continuous tumour SLD data
are categorized, including information on the initial
tumour burden, 2) the number of metastases, or meta-
static location, is not considered and 3) with regard to
anti-angiogenic therapies, where drug effect is cytostatic
rather than cytotoxic, a change in tumour size may not
adequately assess treatment efficacy [17]. PKPD modelling
of longitudinal tumour SLD data on a continuous scale
preserves relevant information, and the outcome of other
doses and schedules than those investigated can be more
accurately explored.

Table 1 shows representative analyses, for a diversity of
solid tumour types and treatment drugs, in which the time
course of longitudinal tumour SLD was described by popu-
lation PKPD models. In 2008, Tham et al. [18] proposed a
model describing gemcitabine effect on tumour size in
patients with non-small cell lung cancer (NSCLC). Tumour
response was characterized by a Gompertz-like model
(equation 1) in which the drug effect (Effect), described by
an Emax model, inhibited tumour growth

dSLD

dt turnover
SLD Effect SLD SLD= − ( )( )⋅ ( )⋅

1
0 t t (1)

SLD(t) is the tumour size at time t, the inverse of turnover is
a second order rate constant, and SLD0 is the tumour size
at baseline. Drug exposure in an effect compartment
accounted for the slow onset of tumour response and the
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delay in tumour regrowth after washout. A Gompertz
model has the characteristic of approaching an asymptote,
i.e. a maximal tumour size. However, due to the lack of
repeated pretreatment measurements and data from
placebo treatment in the study, the rate of tumour growth
at baseline could not be estimated and a zero net growth
at baseline was assumed. The model parameterization
could therefore not explain tumour growth above base-
line, as when drug effect wears off, tumour size would
eventually approach an asymptote equal to SLD0. The data
the model was developed from showed, however, no clear
evidence of tumour regrowth and the model successfully
described the tumour SLD time course. The analysis also
demonstrated that gemcitabine dose and gemcitabine
AUC were equally good predictors of changes in tumour
SLD and better than AUC of gemcitabine metabolites.

Wang et al. [19] suggested a model with exponential
drug-dependent shrinkage and linear growth with time
(equation 2) to describe tumour SLD data from four clinical
trials of patients with NSCLC treated with various chemo-
therapies or placebo.

SLD SLD PRSRt e tt( ) = + ⋅⋅ − ⋅
0 (2)

SR was a drug-dependent, but dose-independent, tumour
shrinkage rate constant. PR, the tumour progression rate
constant, described tumour growth as independent of
size. This model structure also described data from NSCLC
patients treated with carboplatin/paclitaxel alone or in
combination with bevacizumab or motesanib [20], as well
as data from renal cell carcinoma (RCC) patients treated
with sorafenib [21], where the tumour natural growth
was first characterized using data from placebo-treated
patients. Of note, this initial version of the model did not
include dose or drug exposure as predictors and therefore
could not be used to simulate tumour response under
other dosing regimens. However, a dose–effect or drug
exposure–effect could replace the shrinkage parameter
(SR), and Stein et al. [22] have applied a model with dose-
dependent exponential tumour shrinkage and linear
tumour growth to tumour SLD data from metastatic RCC
patients treated with everolimus.

Dose,
regimen
changes

Dose

Adverse
effects (AE)

PKPD model

Pharmaco-
kinetic (PK)

model

Tumour
response

PKPD model

Tumour
metrics

TSR, tumour(t)
TTG, Kgrow

Survival
model

PFS, OS

Biomarker
response

PKPD model

Biomarker
metrics

AUC,
biomarker(t)

PK metrics
Ctrough,  AUC

concentration(t)

AE metrics
D baseline,

Circ(t)

Figure 1
Model-based framework for clinical oncology drug development. From development of a population PK model, PK metrics can be implemented into PKPD
models for various responses, i.e. adverse effects, tumour and biomarker responses, and also assessed as predictors for survival. PKPD models can support
dose and regimen changes, as well as provide model-based metrics that can be assessed as drivers for other PD responses and as predictors for survival. Δ
baseline: change from baseline; AUC: area under the curve; biomarker(t): biomarker time course; Circ(t): circulating blood cell (e.g. platelets, neutrophils)
time course; Concentration(t): Drug concentration–time course; Ctrough: drug trough concentrations; Kgrow: tumour growth rate constant parameter; OS:
overall survival; PFS: progression-free survival; PKPD: pharmacokinetic-pharmacodynamic; Tumour(t): tumour time course; TSR: tumour size ratio; TTG: time
to tumour growth
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In 2009, the tumour growth inhibition (TGI) model was
developed by Claret et al. [23] on data from colorectal
cancer patients receiving capecitabine on a schedule of
2 weeks on, 1 week off, or 5-fluorouracil (5-FU) on days 1 to
5 every 4 weeks. This model has been subsequently
applied by several investigators to several cancer types
and drugs. The TGI model is described by equation 3 and
the model structure is presented in Figure 2A.

dSLD

dt
SLD Exposure SLDgrow kill= ( )− ⋅ ( )⋅ ⋅ ⋅− ⋅K t K e ttλ

(3)

From equation 3, the TGI model assumes that, in the
absence of treatment, tumour SLD increases exponentially
according to a disease-specific first order growth rate con-
stant Kgrow. The tumour SLD doubling rate can readily be
derived as ln(2)/Kgrow. Drug-related tumour shrinkage is
accounted for by a metric for drug exposure (e.g. dose [23],
daily AUC accounting for off-treatment periods [24],
model-predicted drug concentration [25], AUC at steady-
state [26]) and a drug-specific cell kill rate constant (Kkill).
Diminishing of drug effect is described by a time-
dependent mono-exponential function defined by the
parameter λ, which is assumed to start acting at the start of
treatment and to be independent of dosing schedule and
drug exposure during the trial. The λ parameter may also
reflect tumour heterogeneity in drug sensitivity within the
tumour at start of treatment, i.e. the most sensitive tumour
cells are killed off during the initial treatment, while the
cells remaining are less affected by drug and thereby the
tumour appears to become resistance to the treatment.

Figure 2B shows a representative plot of drug effect
and tumour SLD time course simulated using the TGI
model. In this version of the model, the drug exposure is
assumed to decrease mono-exponentially via the K param-
eter, allowing for treatment washout. Several tumour
metrics have been derived from the TGI model for assess-
ment as predictors for OS (discussed later in ‘Modelling
of overall survival’ section). These metrics, illustrated in
Figure 2B, include the tumour time course, the tumour size
ratio (TSR), the time to tumour growth (TTG) and Kgrow [27,
28]. TSR is the change in tumour SLD from baseline at a
certain time point, e.g. after one or two treatment cycles
(i.e. 6–8 weeks). TTG corresponds to the time of a patient’s
tumour SLD nadir, at which there is no net tumour growth
(i.e. dSLD/dt = 0). If constant exposure is assumed in equa-
tion 3, TTG can be directly derived from the individual
patient parameter estimates: TTG = [log(Kkill•Exposure) −
log(Kgrow)]/λ [27].

Using the TGI model approach, Hansson et al. [24, 29]
showed that model-predicted changes in soluble
biomarkers from baseline over time can be better predic-
tors of tumour SLD time-courses than measures of drug
exposure. Their study was based on data from gastro-
intestinal stromal tumour (GIST) patients treated with
sunitinib under different treatment schedules. In the final
model for tumour SLD, variable-specific Kkill parameters
described the relationship between drivers of tumour
response (i.e. relative change in stem cell factor receptor
(sKIT), daily AUC, and the relative change in the soluble
vascular endothelial growth factor (VEGF) receptor 3
(sVEGFR-3), and tumour SLD. The use of model-predicted
exposure-driven time courses for the predictors allows for
simulations of tumour SLD under new dosing schedules.
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Figure 2
TGI model structure and representative plot. (A) Compartmental repre-
sentation of the TGI model. Kgrow: tumour growth rate constant; Exposure:
drug exposure metric; K: drug exposure elimination rate constant; Kkill:
tumour kill rate constant; λ: drug resistance parameter. Kgrow, Kkill, and λ
are model parameters to be estimated. K describes drug elimination in
cases where the PKPD driver is dynamic and may be estimated or fixed
based on the drug elimination half-life; the K parameter was not in the
original publication [23] (i.e. K = 0), but can be applied to characterize
reduction in exposure. (B) TGI model-predicted tumour SLD (red curve)
and drug effect (blue curve) time courses for a once every 3 week (q3w)
drug treatment. TSR: tumour size ratio from baseline, typically assessed
after 1 or 2 treatment cycles (6–8 weeks); TTG: time to tumour growth.
TSR, TTG, Kgrow, and tumour SLD time course are metrics that can be
assessed as predictors for survival
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Frances et al. [30] developed a variant of the TGI model
(equation 4) for metastatic breast cancer patients treated
with capecitabine (C) and/or docetaxel (D).

dSLD

dt

SLD

SLD
SLDgrow

kill C
C

=
( )

⎡
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⋅ ( )

−

⋅
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t

K e C tt
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,
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D D SLD,
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(4)

Kkill,C and Kkill,D are efficacy rate constants of the two drugs
and λC and λD are drug-specific resistance parameters. This
model included a Gompertz growth, where the prolifera-
tion was dependent on the rate constant Kgrow and an esti-
mated maximum tumour burden SLDmax, resulting in that
tumour growth rate slowed down as the tumour size
increased. When administered in combination, the analy-
sis identified a synergistic anti-tumour effect of the two
drugs but no diminished effect of capecitabine was sup-
ported by the data (λC was 0).

Ribba et al. [31] proposed a model for low grade
glioma treated with chemotherapy or radiotherapy to
provide a biological interpretation for the prolonged
response following cessation of treatment. In this model,
proliferative cells grow according to a logistic function
but can transition to quiescence. By damaging DNA, the
treatment affects both proliferative and quiescent/non-
proliferative tissue. While damaged proliferative tissue is
directly eliminated, damaged quiescent cells are either
eliminated or can repair their DNA damages and re-enter
the cell cycle and return to the proliferative state. Bruno
et al. [32] described SLD data from metastatic breast
cancer patients treated with a combination of docetaxel
and capecitabine using the TGI model assuming an addi-
tive effect of both drugs and resistance development for
both drugs.

In oncology, patients who progress on placebo are
generally switched to treatment and patients on treat-
ment showing disease progression (i.e. tumour growth or
regrowth, new lesions) usually drop out from the study;

the natural tumour size growth is often difficult to assess.
This explains the variety of models that have been applied
to characterize tumour growth on data from clinical trials
(linear, exponential, logistic, Gompertz, etc.). It also has
the consequence that growth-related parameters can be
difficult to estimate precisely and thereby the possibilities
to describe accurately changes related to the drug effect
may be limited. Noteworthy, neglecting informative
dropout due to disease progression can potentially bias
tumour growth and/or tumour shrinkage parameter esti-
mates [33]. To be accurate, simulation-based tumour
model evaluation or simulation of tumour SLD for new
trials should take into account the frequency and time
course of dropout, which is dependent on tumour SLD,
and can be described, e.g. by a TTE or logistic regression
model [34].

Population modelling of
tumour markers

Currently, a number of circulating tumour markers are
used in clinical practice for some cancer types to diagnose
cancer, monitor treatment response, plan treatment and
detect disease progression or relapses. These tumour
markers are produced in high amount by cancer cells or by
other cells of the body in response to cancer. Examples
include prostate specific antigen (PSA) in prostate cancer,
M-protein in myeloma, cancer antigen 125 (CA-125) in
ovarian cancer and carcinoembryonic antigen (CEA) in
colorectal cancer. These tumour markers are readily meas-
ured in blood, and may be more indicative of the overall
cancer burden in the body compared with tumour SLD.
Tumour SLD measurements, according to RECIST 1.1, only
assess a maximum of five target lesions [16], and tradi-
tional two dimensional scans do not reveal changes in
tumour density or metabolic activity [35]. Tumour SLD
measurements are also subjective, costly and evaluations
are limited to every 6 to 8 weeks. Shown in Table 2 are

Table 2
Population analyses of clinical tumour marker response

Tumour type Treatment PD measurement (s)
Driver of PD
response Model type

Predictors for survival
ReferenceModel-based Other

Prostate Prostatectomy PSA None Two compartment CLPSA (*) – You et al., 2009 [36]
NSGCT Bleomycin, etoposide, cisplatin AFP None One compartment AUCAFG-hCG (*) – You et al., 2010 [37]

hCG None One compartment

Multiple myeloma Dexamethasone M-protein Dose TGI – – Jonsson et al., 2010 [38]
Ovarian C/P; carboplatin/pegylated

liposomal doxorubicin
CA-125 Tumour(t) IDR III – – Wilbaux et al., 2011 [39]

AFP, alpha fetoprotein; AUC, area under the concentration curve; C/P, carboplatin/paclitaxel; CA125, cancer antigen 125; CL, clearance; hCG, human chorionic gonadotropin; IDR,
indirect response model; NSGCT, non-seminomatous germ cell tumour; PD, pharmacodynamics; PSA, prostate-specific antigen; TGI, tumour growth inhibition model. (*) Survival
analysis was performed using non-parametric methods.
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clinical analyses in which the time-course of a tumour
marker was described by a population modelling
approach.

PSA is often elevated in men with prostate cancer or
other prostate disorders. You et al. [36] utilized population
models to describe PSA levels after prostatectomy in pros-
tate cancer patients. The decline in PSA levels over time
was modelled using a two compartment (bi-exponential)
model. Similarly, You et al. [37] modelled alpha-
fetoprotein (AFP) and human chorionic gonadotropin
(hCG) levels in non-seminomatous germ cell tumour
patients treated with conventional chemotherapy using
mono-exponential models.

In multiple myeloma, excessive amounts of monoclo-
nal immunoglobulin proteins (M-protein) are produced by
malignant plasma cells. The M-protein concentration–time
curves are similar in shape to tumour SLD–time curves,
with some patients appearing to progress with increasing
M-protein concentrations after developing resistance,
some patients responding to treatment with decreasing
M-protein and some patients progressing directly from the
start of the study. A drug exposure-driven model, with the
same parameterization as the TGI model (equation 3), was
applied by Jonsson et al. [38] to describe the time course of
M-protein levels in multiple myeloma patients treated
with dexamethasone.

CA-125 is a protein that has been shown to play a role
in advancing tumour genesis and tumour proliferation
which may be elevated in blood serum in some cancers
such as ovarian cancer. Wilbaux et al. [39] developed a
joint model for drug exposure, tumour SLD and CA-125
concentration following chemotherapy in relapsed
ovarian cancer. Tumour SLD was described by an indirect
response (IDR) model (see next section and Table 1) where
the drug inhibits the production of tumour growth (Kin).

Model-predicted tumour SLD stimulated the production of
CA-125, which turnover was quantitatively characterized
by another IDR model.

Population modelling of
biomarkers

From the National Cancer Institute, a biomarker is defined
as ‘a biological molecule found in blood, other body fluids
or tissues that is a sign of a normal or abnormal process, or
of a condition or disease. A biomarker may be used to
see how well the body responds to a treatment for a
disease or condition’ (http://www.cancer.gov/dictionary).
Biomarkers may be assessed early in drug development to
indicate that drug has reached its target and elicited some
response. Table 3 shows representative analyses in which
the time course of a biomarker was described by popula-
tion PKPD models. The majority of these studies involved
VEGF-related biomarkers and utilized the family of indirect
response (IDR) models outlined by Sharma & Jusko [40].

The IDR models and equations are presented in
Figure 3. Briefly, in the absence of drug, the rate of
biomarker change is described by a zero order rate con-
stant for production of the response, Kin, and a first order
rate constant for loss of the response, Kout. The biomarker
baseline is typically assumed to be constant over time and
can be derived as the ratio Kin : Kout, although disease pro-
gression or circadian rhythm in production or elimination
can be accounted for [41]. The drug effect is commonly
defined as a function of drug exposure (e.g. model-
predicted drug concentration or daily AUC) and modelled
to inhibit (models I and II) or stimulate (models III and IV)
the production or loss of biomarker response (Figure 3A).
In Figure 3A, the drug effect is parameterized as an Emax

Table 3
Population analyses of clinical biomarker response

Tumour type Treatment
PD measurement
(s)

Driver of PD
response Model type

Predictors for survival
ReferenceModel-based Other

Healthy volunteers Sunitinib VEGF-A Concentration(t) transduction
function

– – Lindauer et al., 2010 [42]

sVEGFR-2 Concentration(t) IDR I
mCRC Sunitinib sVEGFR-2 Concentration(t) IDR I Concentration(t), AUC (*) Age Kanefendt et al., 2012 [44]

sVEGFR-3 Concentration(t) IDR I

GIST Sunitinib VEGF Daily AUC IDR II sVEGFR-3(t) tumour SLD0 Hansson et al., 2011 [24],
Hansson 2012 [29]sVEGFR-2 Daily AUC IDR I

sVEGFR-3 Daily AUC IDR I

sKIT Daily AUC IDR I
Solid tumours;

lymphomas
E7820 α2-integrin Concentration(t) IDR I – – Keizer et al., 2011 [47]

AUC, area under the curve; GIST, gastro-intestinal stromal tumour; IDR, indirect response; mCRC, metastatic colorectal cancer; sKIT, soluble stem cell factor receptor; SLD, sum of
longest tumour diameters; SLD0, baseline sum of longest diameters; sVEGFR-2,3, soluble vascular endothelial growth factor receptor 2, 3; VEGF, vascular endothelial growth factor.
(*) Survival analysis was performed using non-parametric methods.
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model where Imax and Smax are the maximal fractional ability
of drug to inhibit and stimulate, respectively; IC50 and SC50

are exposures that produce 50% of maximum inhibition
and stimulation, respectively. If the mechanism of action of
a drug is known a priori, the appropriate IDR model (I-IV)
can be implemented. Otherwise, the model that best fits
the data is typically selected. Representative IDR model-
predicted time courses of biomarkers and drug effect are
shown in Figure 3B for an inhibitory effect on Kin (IDR I) and
Kout (IDR II).

Population PKPD models have been developed to
identify biomarker relationships during treatment with
sunitinib, a multi-targeted tyrosine kinase inhibitor, in dif-
ferent populations. In a small cohort of healthy volunteers,
model-predicted concentrations of sunitinib and its active
metabolite were used as drivers for modelling the time
course of two candidate biomarkers, VEGF-A and its
soluble receptor sVEGFR-2, after sunitinib administration
over 3–5 days [42]. The sVEGFR-2 time course was
described by an IDR model with inhibition of its produc-
tion while the VEGF-A time course was described by
a sunitinib-induced transduction function driving the
delayed increase in the biomarker [43]. Kanefendt et al.
[44] used the same sVEGFR-2 IDR model structure to
describe sVEGFR-2 and sVEGFR-3 data in patients with
metastatic colorectal cancer treated with sunitinib.

Hansson et al. [24, 29] fitted IDR models to the time
courses of VEGF, sVEGFR-2, sVEGFR-3 and sKIT in GIST
patients treated with sunitinib. A linear disease progres-
sion model described the increase in VEGF and sKIT levels
over the study period in placebo patients. The biomarkers
were estimated to have varying turnover times (3.8 to 101
days for VEGF and sKIT, respectively) and this was also
reflected in the degree of fluctuation in the concentration
during off treatment periods. Based on the biomarker
analysis and the correlations between the biomarker
responses, Hansson et al. proposed a unique analytical
framework in which the relationships between model-
predicted time courses of drug exposure, four biomarkers,
tumour SLD, four adverse effects and survival were inves-
tigated. Model-predicted changes in sKIT and sVEGFR-3
from baseline over time, in addition to daily AUC, were
included as predictors of tumour response in a TGI model.
The relative change in sVEGFR-3 was also a better predic-
tor than daily AUC for several common adverse effects of
sunitinib (myelosuppression, fatigue and hand-foot syn-
drome) [29, 45].

For GIST patients treated with sunitinib, a PKPD model
has also been developed to characterize tumour glucose
metabolism as determined by the maximum standardized
uptake value (SUV) assessed by fluorodeoxyglucose posi-
tron emission tomography (FDG-PET), which has been pro-
posed as a potential biomarker to assess early response to
targeted therapies [46]. Daily AUC was found to be more
predictive of SUV changes than model-predicted time
courses of anti-angiogenic biomarkers or sKIT.

These sunitinib analyses support the use of popula-
tion PKPD modelling for biomarkers to 1) investigate
which biomarkers are of value to be collected, 2)
better understand the mechanism of action of the drug
in vivo, 3) early assess treatment efficacy and 4) predict
long term clinical outcome. Population PKPD models of
biomarkers have also been used to integrate preclinical
and early clinical phase data and serve as a proof of mecha-
nism. This was illustrated in a study on an investigational
anti-angiogenic drug E7820 [47]. An IDR model described
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IDR model structure and representative plot. (A) Compartmental repre-
sentation of the IDR models and associated equations. E: drug exposure;
R: biomarker response; Kin: zero order rate constant for production of
response; Kout: first order rate constant for loss of the response. The drug
effect is exemplified by an Emax model where Imax or Smax are maximal
fractional ability of drug to inhibit or stimulate, respectively and IC50 or
SC50, are exposures that produces 50% of maximum inhibition or stimu-
lation, respectively. Kin, Kout, IC50 (or SC50), and Imax (or Smax) are model
parameters to be estimated. (B) IDR model-predicted biomarker time
courses for inhibition of Kin (IDR I, solid red curve) and inhibition of Kout

(IDR II, dashed red curve) and drug effect time course (blue curve) for a
4 day constant rate drug input with 2 day washout interval
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the drug effect on platelet α2-integrin expression inhibi-
tion in mice, which was subsequently used to drive tumour
growth inhibition. The developed model successfully
fitted data from phase I cancer patients and simulations
from the biomarker–tumour size relationships determined
in mice allowed for identification of doses at which tumour
stasis could be met in man.

Population modelling of
adverse effects

Shown in Table 4 are clinical analyses in which the time
course of an adverse effect was described by a population
modelling approach. For chemotherapy, myelosuppress-
ion is a common adverse effect. Myelosuppression is a con-
dition in which the proliferation of blood cells in the bone
marrow is reduced, resulting in fewer circulating red blood
cells, leukocytes (60–70% neutrophils) and/or platelets.
Given that chemotherapy typically affects rapidly pro-
liferating cells and the importance for neutrophils and
platelets in fighting infections and in blood clotting,
respectively, myelosuppression is dose limiting for many
anticancer agents.

A myelosuppression model was developed by Friberg
et al. [48] in 2002 based on leukocyte and neutrophil
data from six chemotherapeutic agents. This model
has been widely used to characterize neutrophil [49–53],
leukocyte [54] and platelet [50, 53, 55] responses. As
shown in Figure 4A, the myelosuppression model is a
physiologically based based model, with components of
blood cell precursor proliferation, maturation, blood cell

circulation and a feedback mechanism, that aim to sepa-
rate system-related parameters from drug-related param-
eters. From a population PK model, central compartment
concentrations (Cdrug) are derived and induce cell kill by a
linear (Slope • Cdrug (t)), or by a (sigmoid) Emax drug effect.
The model consists of a proliferation cell pool (Prol) com-
partment, three transit compartments (T1, T2, and T3) mim-
icking the maturation of the non-proliferative cells and a
blood circulation compartment (Circ) where the measure-
ments (e.g. neutrophil counts) have been observed over
time. Prior to drug treatment, the system is assumed to be
at steady-state and intercompartmental transfer rate con-
stants (Ktr) are set to be equal. The feedback process is
governed by the parameter (γ), which stimulates the pro-
liferation rate as circulating cell levels are depleted and
slows down proliferation when the circulating neutrophil
counts are above the baseline value.

Shown in Figure 4B is a representative model-
predicted neutrophil and drug effect–time course, for a
once every 3 weeks intravenous drug treatment. Model-
based metrics that may be assessed as indirect measures
of drug exposure to predict response in models of other
variables include the neutrophil–time course (red line) and
the percent change from baseline at nadir (Δ baseline).

The model described by Friberg et al. [48] aimed to be
relatively simple with few estimated parameters thereby
being applicable in a range of different situations, includ-
ing model fitting to sparse data. The mechanism-based
nature allows however for addition to the structure based
on other types of data. One example of an addition to
the myelosuppression model is the work by Quartino et al.
[56] which incorporated granulocyte stimulating colony

Table 4
Population analyses of clinical adverse effects

Tumour type Treatment
PD measurement
(s)

Driver of PD
response Model type

Predictors for survival
ReferenceModel-based Other

Not reported Docetaxel, paclitaxel,
etoposide, DMDC,
irinotecan vinflunine

Leukocytes Concentration(t) MS – – Friberg et al., 2002 [48]

Neutrophils Concentration(t) MS

Breast cancer FEC, docetaxel Neutrophils Concentration(t) MS (modified) – – Quartino et al., 2011 [56]

MBC T-DM1 Platelets Concentration(t) MS (modified) – – Bender et al.,2012 [55]
Non-myeloid

malignancies
Darbepoetin alfa Hemoglobin Concentration(t) IDR III (modified) – – Agoram et al.,2006 [57]

Solid tumours Trabectedin ALT Concentration(t) IDR III (modified) – – Fetterly et al., 2008 [58]
GIST, mRCC Sunitinib Δ dBP Concentrationtrough Direct Emax – – Houk et al., 2010 [25]

GIST Sunitinib Neutrophils sVEGFR-3(t) MS Neutrophil(t),
dBP(t)

tumour
SLD0

Hansson et al., 2012 [45]

dBP Concentration(t) IDR III

Fatigue, HFS sVEGFR-3(t) Prop odds with Markov
CRC Capecitabine HFS Cumulative dose Prop odds with Markov – – Henin et al., 2009 [61]
Solid tumours Irinotecan Diarrhoea score AUC Prop odds – – Xie et al., 2002 [60]

Δ dBP, change in diastolic blood pressure from baseline; ALT, alanine aminotransferase; AUC, area under curve; CRC, colorectal cancer; dBP, diastolic blood pressure; FEC, Fluorouracil
(5FU), epirubicin and cyclophosphamide; GIST, gastro-intestinal stromal tumour; HFS, hand-and-foot syndrome, IDR, indirect response model; MBC, metastatic breast cancer; MS,
myelosuppression model; mRCC, metastatic renal cell carcinoma; Markov, modification of Prop odds modelling where scores are not independent from one time to the other; Prop
odds, proportional odds ratio model for categorical scores; SLD0, baseline sum of longest diameters; sVEGFR-3, soluble vascular endothelial growth factor receptor 3.
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factor (G-CSF) measurements. A turnover model of
G-CSF, where G-CSF elimination was dependent on the
circulating neutrophil counts, replaced the feedback func-
tion and provided a more mechanistic interpretation
which may allow for improved predictive capacity of
chemotherapy-induced myelosuppression. To describe
the effect of TDM-1 on platelets, Bender et al. [55] mod-
elled the proliferation compartment as composed of one
drug sensitive and one drug non-sensitive lineage, in order
to capture the downward drift in platelet nadir, seen in
some patients.

Similar to leukocytes, platelets and neutrophils, other
drug concentration-driven responses associated with
adverse effects from anticancer drugs include haemoglo-
bin reduction (anaemia), elevated liver enzymes (alanine
aminotransferase; ALT) and elevated diastolic blood pres-
sure (dBP). These variables have been described by the

IDR (or modified IDR) model approach. In patients with
chemotherapy-induced anaemia, Agoram et al. [57] used
IDR III to describe the haemoglobin time course upon
stimulation of its production by darbopoeitin alfa. In
patients with trabectedin-induced liver toxicity, Fetterly
et al. [58] modelled the time course of ALT using IDR III.
Keizer et al. [59], and subsequently Hansson et al. [45],
used IDR III to describe the dBP time course after E7080
and sunitinib administration, respectively. Houk et al. [25]
also modelled dBP after sunitinib treatment, using a
direct Emax model to describe the relationship between
trough concentrations and the change in dBP from base-
line. These continuous type adverse effects are often cat-
egorized into the degree of severity, but by retaining
them on a continuous scale, the information is preserved
and thereby more useful for predictions of different
scenarios.

Some toxicities do not have underlying continuous
measurements (e.g. fatigue, hand-and-foot syndrome
(HFS), diarrhoea), and are instead only graded using
ordered categorical scoring systems; grade 0 refers to no
toxicity, and then grades increase in order of toxicity
severity. To model ordered categorical scores with a
population approach, investigators have used a propor-
tional odds model to predict the probability of having
a certain toxicity score. Xie et al. [60] applied such a
model to predict diarrhoea after receiving irinotecan
using AUC as a driver of response. If subsequent toxicity
scores are not independent, i.e. the probability of a
certain score is related to a previous score, a Markov
model extension may be used. Henin et al. [61] devel-
oped a proportional odds ratio model with a Markov
process to predict HFS in patients receiving capecitabine
using cumulative dose as a driver of response. Hansson
et al. [45] applied the same type of model on fatigue and
HFS data in patients receiving sunitinib, where sVEGFR-3
was driving the drug effect.

Modelling of overall survival (OS)

In previous sections we have discussed the development
of population PKPD models of tumour SLD, tumour
markers, biomarkers and adverse effects, and the model-
based metrics that can be derived. As illustrated in Figure 1
and listed in Tables 1–4, these metrics can subsequently be
evaluated and implemented into parametric TTE models
as predictors for OS, thus providing a model-based predic-
tion for survival benefit. We introduce the basic concepts
regarding modelling of survival below, and refer the
reader to a recent tutorial on TTE analysis for pharma-
cometricians [62] and a textbook on modelling survival
data [63] for further background.

Shown in equation 5 is the hazard function, h(t),
describing the instantaneous rate at which an event (in our
case, death) occurs.
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Myelosuppression model structure and representative plot. (A) Compart-
mental representation of the of the myelosuppression model. Prol: pro-
liferation cell pool compartment; T1, T2 and T3: transit compartments; Circ:
blood circulation compartment; Drug effect: slope•exposure; Exposure:,
e.g. the drug–concentration time course; Slope: drug inhibition constant;
Circ0: baseline neutrophil count; γ: feedback term; MTT: mean transit time,
derived as Ktr/(n + 1), where n is the number of transit compartments.
Slope, MTT, Circ0 and γ are model parameters to be estimated. (B)
Myelosuppression model-predicted neutrophil (red curve) and drug
effect (blue curve) time courses for a once every 3 weeks drug treatment.
Δ baseline may be calculated from the model-predicted (baseline-nadir)/
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The baseline hazard h0(t) is defined by one or more esti-
mated parameters, and x1, x2, . . . xn represent a set of pre-
dictors (e.g. one of the metrics in Tables 1–4 that were
related to OS). These predictors may be a derived constant
value for each patient (e.g. TSR, Δ baseline), an individual
parameter estimate (e.g. Kgrow, slope), or a time varying
metric (e.g. tumour(t), biomarker(t)) from the population
PKPD models. Additionally, patient baseline characteristics
(e.g. ECOG status, observed tumour size at baseline,
number of lesions, etc.) are frequently assessed as predic-
tors. Incorporation of relevant predictors in the final sur-
vival model can be decided according to the log-likelihood
ratio test and goodness-of-fit plots, e.g. in a visual predic-
tive check comparing simulated Kaplan–Meier curves with
the observed survival data [64]. The impact of the predic-
tors is determined by the size of the respective coefficients
β1, β2, . . . , βn, which are estimated from the data [62].

Shown in Table 1 are examples of tumour SLD-related
predictors for survival, both model-based metrics and
patient baseline characteristics. Relative or absolute
changes from baseline in a variable over time (e.g. tumour
SLD) may reflect the drug-induced effect better than the
absolute values and thereby be better predictors of
outcome. This is often the case when baseline measure-
ments are highly variable, as is for tumour SLD. Indeed, TSR
(e.g. at week 6–8) was identified as a predictor for OS in
NSCLC [19, 20], colorectal cancer [23, 28] and metastatic
breast cancer [32].

In the analysis by Claret et al. [23], SLD0 and the model-
predicted TSR at week 7 were identified as predictors of OS
in the 5-FU arm using a parametric drug-independent sur-
vival model. The modelling framework for analysis was
used to predict survival in a phase III trial of capecitabine
vs. 5-FU. The same approach has been applied to thyroid
cancer patients treated with motasenib [26, 65] where the
probability and duration of dose reduction and interrup-
tion were also modelled. Application of this modelling
framework has therefore been demonstrated to leverage
information from phase II trials to predict phase III out-
comes and thereby support end-of-phase II decisions and
guide clinical trial design (e.g. dose selection for phase III
studies). Further, Bruno et al. [32] found the TSR at week 6
to be predictive of OS and PFS. Using simulations, the
authors determined the capecitabine dose that would
show non-inferiority to the dose currently registered,
when used in combination with docetaxel.

There are drawbacks with TSR in that it is determined at
a fixed time point, and thereby can be the same value for a
drug with slow drug effect rate and low resistance devel-
opment as for another drug with a fast drug effect rate and
high rate of resistance development. It is not possible to
ascertain whether tumour SLD is in a declining or increas-
ing phase at week 6–8. In addition, TSR is typically also

applied to predict survival at time points preceding week
6–8, i.e. before the predictor can be determined, and
thereby limit its use for simulation. Lastly, changes in treat-
ment after the evaluation time point are not considered,
which could be of importance when predicting survival in
cancers with longer survival times.

In addition to TSR, the model-based metrics of tumour
growth rate and TTG were shown as predictors for sur-
vival in a parametric TTE analysis of colorectal cancer
data [28]. Tumour growth rate was also shown to be pre-
dictive in a correlation analysis of prostate cancer data
[66]. TTG is derived using the TGI modelling approach,
and this metric summarizes a patient’s tumour growth
rate, tumour growth inhibition rate and drug efficacy
decay [28]. TTG is a measurement in time units, as sur-
vival, and may therefore provide the TTE model of OS
with more information on when an event will happen
compared with TSR. The TTG metric does have similar
limitations as TSR, i.e. it is a constant value metric that is
used to predict survival also at time points before the
metric has occurred, and TTG may be the same value
even for patients with vastly different tumour responses
(i.e. the extent of tumour shrinkage is not considered).
Ultimately, using the full model-based time course (i.e.
tumour(t)) as a continuous predictor of survival in para-
metric TTE models is most useful for simulations of
different scenarios since all information contained in the
tumour profiles is retained.

Tumour markers have also been related to OS in TTE
models (Table 2). These markers (e.g. M-protein, PSA, AFP,
hCG) may be more reflective of overall tumour body
burden than tumour SLD measurements, and thus sur-
vival, providing a convenient and cost-effective alternative
to assess therapeutic efficacy. In You et al. [36], several
metrics (e.g. PSA clearance (CLPSA), half-life, AUC) were
derived and investigated as prognostic factors for clinical
outcome using non-parametric analyses. CLPSA was found
to be a predictor for survival in which patients with lower
CLPSA had a reduced chance for biochemical relapse-free
survival. In You et al. [37], the combined model-predicted
AUC of AFP and hCG was found to be a predictor for PFS
using non-parametric analyses. In Bruno et al. [67], the
week 8 change in M-protein from baseline, along with
other baseline patient factors, predicted survival in phase
III patients with multiple myeloma treated with dexam-
ethasone alone or in combination with lenalidomide. OS
and PFS were subsequently simulated for patients in phase
I and II studies of another drug, pomalidomide, using
interim M-protein data. Simulation results were shown to
be similar to actual OS and PFS, supporting the use of
M-protein as a biomarker of response in multiple mye-
loma. The modelling approach may be used to guide end-
of-phase II decisions for candidate drugs in multiple
myeloma.

Regarding biomarker response, sunitinib AUC [44] and
sVEGFR-3(t) [29] have been identified as predictors for OS
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in mCRC and GIST, respectively (Table 3). Using a paramet-
ric TTE model, the model-predicted change in sVEGFR-3
from baseline was found to be a better predictor of OS as
compared with change in tumour SLD or sKIT. This finding
differed from the results of a traditional statistical analysis
where sKIT was reported to be a better predictor of OS
than sVEGFR-3 [68]. This may be explained by the fact
that only discrete (trough) time points were used in the
traditional analysis, and the difference in turnover times
between the biomarkers was not considered. A biomarker
with a long turnover time like sKIT (101 days) is less sensi-
tive to sampling in off treatment periods as compared
with a biomarker with shorter turnover time, like sVEGFR-3
(17 days). Integration of the whole biomarker response
by a model-based approach allows for biomarkers with
shorter turnover time to be appropriately evaluated,
regardless of the time of measurement. Population PKPD
modelling of biomarkers in oncology is relatively new, and
further work is needed to identify readily measurable, cir-
culating biomarkers that can be used as predictors for
treatment responses and as early indicators for survival
benefit.

Overall, parametric TTE models offer an evaluation and
understanding of survival in a population through testing
the predictive ability of patient baseline or time-varying
covariates, as well as model-based metrics. TTE models can
be used to conduct simulations to predict survival in a new
setting, explore different dosing schedules, predict long
term clinical outcome in phase III studies based on short
term phase II data [23, 28], or in the development of guide-
lines to be applied in clinical practice. It should be noted
that we have documented only those predictors which
were determined using population PKPD and parametric
TTE analysis. Other investigators have identified prognos-
tic indicators (e.g. albumin [69], α1-acid glycoprotein (AAG)
[70]), and predictive indicators (e.g. neutropenia [71],
drug trough concentrations [72]) for survival from non-
parametric, retrospective analyses of clinical trial data.
These indicators should be considered when designing
and analyzing new trials.

Discussion

In clinical oncology drug development, a wide range of
variables are being collected for a given drug and indica-
tion. It is necessary to characterize these factors, and the
links between them, to improve understanding and guide
future interventions. In this review, we have listed the cur-
rently identified PD drivers of response and predictors
of OS for oncology drugs and their cancer indication
(Tables 1–4).

The three highlighted PKPD models (TGI, IDR and
myelosuppression) have parameters with some mecha-
nistic interpretation and are relatively simple with few
parameters and one to five differential equations. These

models are readily modifiable if given additional data
[56] and/or the need for additional mechanistic detail
[55, 57]. Application of structural PKPD models should
streamline data analysis and allow comparison of results
across drugs and indications. For example, the first
order tumour growth rate (Kgrow) from the TGI model
provides tumour doubling times for various cancer types.
Comparison of the slope parameter, from the myelo-
suppression model, may give an indication on the rela-
tive toxicity between different anticancer drugs. The
magnitude of the estimated variability in these param-
eters, from the population modelling approach, provides
information on the range of patient responses to expect.

We note that the drivers of PD response range from
model-predicted time courses, to exposure (e.g. AUC,
dose), to none, i.e. ‘dose independent’ (Tables 1–4). The
possibility to apply different drivers is, of course, depend-
ent on what type of data are available and the sampling
frequency. For tumour SLD measurements, which are typi-
cally made once every 6 or 8 weeks, daily drug AUC may
suffice as the PD driver. However, to characterize schedule
dependence, there is a need to use the drug–
concentration time profile to drive the response. For
myelosuppression, in which blood cell counts are readily
available and the effect delay is in the order of days, a drug
concentration–time course driven response is often
applied. Thus, simulation of response and outcomes under
other dose and regimens have been used to minimize side
effects [73] and optimize drug treatment for individual
patients.

The population PKPD and TTE modelling examples pre-
sented herein support linking drug exposure with
PD response, and linking PD response with survival. This is
in order to explain and forecast patient response to drug
treatment in oncology, with the ultimate goal of predict-
ing and improving survival by bringing the ‘right drug to
the right patient at the right dose’. We propose that inves-
tigators consider this framework (Figure 1) for model-
based clinical oncology drug development for application
in clinical protocol design and analyses. These framework
and modelling approaches can readily be extended to
combination drug treatment to account for drug–drug
interaction in PK and/or PD. Further, we support the use of
time courses of time-varying predictors to improve the
predictive and simulation value of the models. With a fully
integrated modelling framework, both the benefits and
risks of a different dosing strategy can be explored, which
is of special importance in oncology where a range of
outcome measures are being applied and different types
of adverse effects are limiting.
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