
Multiple Machine Learning Methods
Reveal Key Biomarkers of Obstructive
Sleep Apnea and Continuous Positive
Airway Pressure Treatment
Jie Zhu1, Larry D. Sanford2, Rong Ren1, Ye Zhang1 and Xiangdong Tang1*

1Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Mental Health Center, West China Hospital,
Sichuan University, Chengdu, China, 2Sleep Research Laboratory, Center for Integrative Neuroscience and Inflammatory
Diseases, Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA, United States

Obstructive sleep apnea (OSA) is a worldwide health issue that affects more than
400 million people. Given the limitations inherent in the current conventional diagnosis
of OSA based on symptoms report, novel diagnostic approaches are required to
complement existing techniques. Recent advances in gene sequencing technology
have made it possible to identify a greater number of genes linked to OSA. We
identified key genes in OSA and CPAP treatment by screening differentially expressed
genes (DEGs) using the Gene Expression Omnibus (GEO) database and employing
machine learning algorithms. None of these genes had previously been implicated in
OSA. Moreover, a new diagnostic model of OSA was developed, and its diagnostic
accuracy was verified in independent datasets. By performing Single Sample Gene Set
Enrichment Analysis (ssGSEA) and Counting Relative Subsets of RNA Transcripts
(CIBERSORT), we identified possible immunologic mechanisms, which led us to
conclude that patients with high OSA risk tend to have elevated inflammation levels
that can be brought down by CPAP treatment.

Keywords: obstructive sleep apnea, machine learning, continuous positive airway pressure, bioinfomatic analysis,
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INTRODUCTION

The prevalence of obstructive sleep apnea (OSA) is estimated at one billion people worldwide,
including over 400 million who have moderate-to-severe symptoms (Benjafield et al., 2019). The
main characteristic of OSA is excessive sleepiness due to collapsed upper airways during sleep,
resulting in oxygen desaturations, heart rate changes, neurological arousal, and therefore disturbed
sleep (Young et al., 2004). In the absence of proper treatment, OSA contributes to a higher mortality
rate from cardio- or cerebro-vascular events (Lévy et al., 2015). A variety of treatments have been
developed to correct the narrowing of the upper airway in OSA patients. Continuous positive airway
pressure (CPAP) treatment is the most extensively studied and proven therapy.

There has long been an indication that family history is a powerful risk factor for OSA. According
to the Cleveland Family Study (Grilo et al., 2013), approximately one-third of the variance in the
apnea-hypopnea index (AHI) can be explained by genetic factors shared across families. In addition,
epidemiological evidence suggests a strong association between OSA susceptibility and genetic
polymorphisms (Sun et al., 2015). Genes associated with cardiovascular consequences can be
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hypermethylated by hypoxia (Stenvinkel et al., 2007; Watson
et al., 2010). Forkhead Box P3 (FOXP3), an immune-related gene,
activates regulatory T cells and prevents atherosclerosis by
modulating lipoprotein metabolism (Klingenberg et al., 2013).
An increase in methylation of FOXP3 promoter has been linked
to systemic inflammation among children with OSA. A strong
correlation between DNA methylation levels and total C reactive
protein (CRP) levels has been observed in OSA, suggesting a
possible underlying mechanism (Kim et al., 2012). In fact,
extensive inflammation is believed to be a major contributing
factor to OSA. Multiple inflammatory biomarkers such as
interleukin-6 (IL-6), tumor necrosis factor (TNF), CRP, and
von Willebrand factor (VWF) antigen have been observed
independently and consistently associated with OSA (De Luca
Canto et al., 2015; Nowakowski et al., 2018; Hirsch et al., 2019).
Nevertheless, the specific mechanisms that regulate this broadly
activated inflammatory background remain unclear. Due to the
recent emergence of next-generation sequencing, high-
throughput techniques have enabled examining expression
profiles for thousands of genes at a time. This has enabled
identifying marker genes related to a wide range of diseases
and has facilitated effective disease diagnosis and treatment.

As a result of excellent capabilities in handling large and
complex datasets, artificial intelligence (AI) systems, which use
multiple machine learning methods, have gained widespread
popularity in evaluating genetic profiles. The recursive feature
elimination (RFE) approach has demonstrated its effectiveness in
selecting informative variables for disease classification. In order
to aid in the identification of the least useful features to remove
from consideration, a Support Vector Machine (SVM)
classification model can be used to assign weights to features.
Subsequently, each time the RFE procedure is executed, the least
important feature, that having the smallest weight, can be
eliminated thereby reducing the number of parameters and
potentially increasing accuracy (Ding and Wilkins, 2006). The
random forest (RF) algorithm is a method of reducing
dimensions based on the creation of thousands of decision
trees (Zheng et al., 2021). A random assignment of variables
into testing and training groups is made first, followed by
10,000 iterations until the lowest error rate is achieved, and
the optimal variable number and the optimal number of trees
are determined. In addition, an RF model with variable
importance values can be created (Bi et al., 2020). An artificial
neural network (ANN), a method for supervised learning,
consists of an interconnected group of artificial neurons
arranged in layers (Alizadeh Savareh et al., 2020). An ANN is
developed by changing weights of connection during the training
phase to improve network performance.

Our primary aim in this study was to develop a novel
prediction tool for OSA risk and CPAP treatment utilizing
these three machine learning algorithms (SVM-RFE, RF, and
ANN). We utilized transcriptome microarray data obtained from
a public database, Gene Expression Omnibus (GEO). To establish
machine learning models and discover key biomarkers associated
with OSA and its therapeutic response to CPAP treatment, we
integrated five independent microarray datasets related to
moderate-severe OSA patients and their CPAP treatment. The

results were also revalidated in another two separate datasets.
Additionally, we assessed possible immunological mechanisms of
OSA using multiple gene sets and enrichment analysis. As part of
this research, we hoped to identify key genes that are implicated
in OSA pathogenesis in addition to determining whether OSA is
accompanied by dysfunctional innate immunity.

MATERIALS AND METHODS

Data Collecting and Downloading
Patients with OSA, controls, and patients who had undergone
CPAP treatment were included in this study. Genome profiles
were derived from the GEO (Gene Expression Omnibus)
database, which provides array- and sequence-based data.
As the study utilized a public database, no approval from
an institutional review board was required. A total of five
microarray datasets were obtained. GSE133601 included
15 patients with moderate to severe OSA and who adhered
to CPAP therapy over 3 months. Peripheral blood
mononuclear cells were collected before and after CPAP
treatment. GSE75097 involved 42 treatment-naïve subjects
and patients with moderate to severe OSA that had received
at least 1 year of adequate CPAP treatment. Peripheral blood
mononuclear cells were collected. GSE71356 contained eight
controls whose whole blood was collected. GSE61463 consisted
of 16 OSA patients and five controls, and peripheral blood
mononuclear cell samples were analyzed. GSE49800 was
comprised of 18 subjects with severe OSA who had
undergone CPAP therapy. Transcriptional profiles of
peripheral blood leukocytes were assessed. GSE38792 and
GSE135917 were used as independent validation sets. They
provided information on subcutaneous and visceral adipose
tissue transcription of OSA patients (including those who took
CPAP treatment) and of controls.

Data Processing and Batch Effect Control
R software (version 3.6.2) was used for statistical analyses. If
multiple microarray probes were mapped to a single gene, its
mean expression level was used in the analysis. The gene
expression values were log2-transformed before normalization.
All genes and samples were checked to ensure that no missing
values were contained in the dataset. Quantile normalization was
used to standardize data. The SVA package was used to conduct
batch effect processing to remove differences caused by different
platforms and technologies. Principal component analysis (PCA)
was performed to verify whether or not the batch effect was
eliminated. Genetic comparisons were performed between OSA
patients and controls or between treatment-naive and CPAP
therapy groups. Differential expression analysis was performed
using the stringr and limma packages in R software. The fold
change was derived from the average expression values. A
logFoldChang (logFC) greater than 1.5 and p-value <
0.05 were set to identify the differentially expressed genes
(DEGs). Continuous variables were compared between groups
using equal variance. The significance threshold for the p-value
was also set to <0.05.
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Gene Set Enrichment Analysis
GSEA analyses of RNA-seq profiles revealed DEGs-related
signaling pathways in OSA patients and those who had
undergone CPAP treatment. Screening of the enriched set was
based on FDR (False Discovery Rate) < 0.25 and a p < 0.05 after
1,000 permutations. In GSEA, gene expression profiles from
patient samples and controls were analyzed according to
specific datasets (Subramanian et al., 2005). The GSEA website
and theMsigDB database were used to obtain the c2. cp.kegg.v7.4.
symbols.gmt dataset and c5. go.v7.4. symbols.gmt dataset for
enrichment analyses, presenting Kyoto Encyclopedia of Genes
and Genomes (KEGG) and Gene Ontology (GO) analyses for
biologic pathways and function annotations. Statistically
significantly enriched gene sets were defined as those with a
minimum number of samples per group of 5.

Cell-Type Identification by Estimating
Relative Subsets of RNA Transcript
Analyses for Infiltrating Immune Cells
CIBERSORT is a computational technique for quantifying cell
fractions based upon bulk tissue gene expression profiles, which
can distinguish 22 human hematopoietic cell phenotypes
(Newman et al., 2015). It is widely applied in various diseases
to accurately estimate underlying immunocellular landscapes.
The CIBERSORT gene matrix contains 547 genes and
distinguishes 7 T cell subsets, naïve and memory B cells,
plasma cells, NK cells, and myeloid subsets (Wang et al.,
2020). Heatmap analysis and correlation analysis of multiple
immune cells in OSA patients and controls, or in those
receiving CPAP treatment, were conducted using the
pheatmap and corrplot packages, respectively.

Single Sample Gene Set Enrichment
Analysis Algorithm
ssGSEA identifies gene sets by their common biological
functions, spatial localization, and physiological significance,
and then it calculates separate enrichment scores for each
pairing of a sample and gene set. Gene sets consisting of
782 genes are used for predicting the abundance of 28 types
of immune cells and functions in individual tissue samples.
The immune cells include activated dendritic cells (aDCs),
B cells, CD8+ T cells, natural killer cells (NK cells), dendritic
cells (DCs), neutrophils, macrophages, mast cells,
plasmacytoid dendritic cells (pDCs), immature dendritic
cells (iDCs), follicular helper T cells (Tfh), T helper cells,
type-1 T helper cells (Th1), and type-2 T helper cells (Th2),
tumor infiltrating lymphocytes (TILs), macrophages,
regulatory T cells (Tregs). The immune-related functions
consist of antigen presenting cell (APC) co-inhibition, APC
co-stimulation, chemokine receptor (CCR), checkpoint,
cytolytic activity, human leukocyte antigen (HLA),
inflammation-promoting, MHC class I, para-inflammation,
T cell co-inhibition, T cell co-stimulation, Type I IFN
response, and Type II IFN response.

Support Vector Machine Recursive Feature
Elimination and Random Forest Algorithm
DEGs between OSA patients and controls or between treatment-
naive and CPAP therapy groups were treated as variables in
machine learning procedures. In the first step, SVM-RFE
screening was performed for candidate genes. The SVM-RFE
model employs a backward selection approach by which variables
can be identified based on their weights on the model. A first
ranking criterion is calculated using the SVM weights, then the
features with the smallest ranking criteria are eliminated. The
process is then repeated until the highest accuracy of classification
is achieved.

Using the e1071 package and the svmRFE function in R
software, we eliminated the recursive features of DEGs. All
genes were sorted by their SVM weights in the linear SVM
model, and those with low weights were eliminated. For the
purpose of avoiding overfitting, a 15-fold cross-validation
approach was used to increase the number of estimates.
Fifteen subsamples from the original sample were randomly
distributed. The model was tested using one subsample while
the other subsamples were used as training data. After the 15-fold
cross-validation was completed, the loop function provided an
estimation of generalization accuracy and error rate. The best list
of variables was determined based on the highest accuracy rate
and lowest error rate. The Root Mean Square Error (RMSE) is
defined as the standard deviation of the prediction errors, which
measures the difference between the observed value and the
actual value. The RMSEs were calculated from the 15-fold CV
to verify the results of SVM-RFE.

A second machine learning algorithm, RF, was then applied to
the candidate genes obtained from the SVM-RFE algorithm. It
utilized a large number of decision trees and combined the
bootstrap aggregation method to select features at random
(Deo, 2015). Training data was collected for each tree through
repeated subsampling (bootstrapping) (Hanko et al., 2021).
Bootstrap subsamples excluding approximately 33% of the
data provide an out of bag (OOB) sample (Hanko et al.,
2021). The error rate was minimized by minimizing the
number of decision trees included in the model, preventing
overfitting. Internal validation of the RF was estimated using
the OOB sample. The decreasing accuracy method was used to
obtain the dimensional importance value based on the RF model.
The genes with the highest importance values were selected for
inclusion as variables in establishing an ANN.

Construction of Gene Signature by Artificial
Neural Network
R software neuralnet and NeuralNetTools packages were used to
build an ANN model of the candidate genes screened by SVM-
REF and RF (Beck, 2018). Typically, an ANN, another form of
supervised learning algorithm, includes an interconnected set of
artificial neurons in the form of intermittent layers.

There are typically three types of layers in neural networks:
hidden, input, and output. Neurons are the basic components
of computation, also known as nodes or units. A node receives
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inputs from other nodes or from outside and produces output
after completing calculations. Each connection between two
nodes represents a weighted value (W) for the signal passing
through the connection. Each node applies a function f to the
weighted sum of the inputs. The function f is nonlinear and is
known as the activation function. In order to achieve the
purpose of nonlinear representation of neurons and meet
the data requirements of the actual environment, it
introduces nonlinearity into the output of neurons. The
function includes the inputs (x1, x2, . . . ), the weights (w1,

w2, . . . ) associated with the inputs, and input weights (b):
Output of neuron = f(w1.x1 + w1.x2 + . . . + b). In each
neuron, inputs are received at the previous layer, then
output is sent to the next layer, and so forth until the
output layer is reached. There is only one input layer and
one output layer in a neural network, but there can be multiple
hidden layers. Layers and neurons are not allocated according
to a fixed rule. According to a broad consensus, one hidden
layer can approximate any function that involves a continuous
mapping from one finite space to another (Heaton, 2008).

FIGURE 1 | (A) PCA diagram before normalization. Samples from five datasets were distributed on both sides of panel A with a distinct boundary. (B) PCA diagram
after normalization. After normalization, the data were tightly distributed. (C) Volcano plot of DEGs analysis in the OSA cohort. A logFC abscissa and (A) log10 p-value
ordinate were used. Red plots in the upper right had a p value less than 0.05 and a fold change greater than 1.5, indicating up-regulated expression. Green plots on the
upper left had a p value less than 0.05 and a fold change less than −1.5, indicating down-regulated expression. (D) Volcano plot of DEGs analysis in the CPAP
cohort.
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There are very few cases where a second or more hidden layer
improves performance, and most of the time, one hidden layer
suffices. The number of neurons in hidden layers are decided
by input and output dimensionality. In cases where the input-
output relationship is fairly simple, ideally, the optimal
dimensionality for a hidden layer should be in the middle
of the input layer and output layer (Heaton, 2008; Beck, 2018).
In our ANN model, one hidden layer and five neurons were
established for the classification model of OSA and CPAP
treatment based on the principles outlined above.

A min-max normalization method was used to preprocess the
data before training the neural network. Classification scores were
calculated by multiplying the weight scores by the expression
levels of the important genes. In a 5-fold cross-validation method,
a training set and a verification set were randomly selected from
the dataset. The training set served as the basis for determining
the weights of candidate genes, while the verification set served as
the basis for assessing the efficiency of classification. The R
software pROC package was employed to assess classification
accuracy.

RESULTS

The Removal of Batch Effect Through
Cross-Platform Normalization
The R software ComBat function was used to eliminate batch
effects due to non-ignorable technical differences across
experiments, platforms, or studies. A total of 10,613 genes
were detected in datasets from five different microarray
platforms. Unnormalized and normalized PCA plots are
shown in Figures 1A,B, respectively. Scatter plots illustrate the
top two principal components (PCs) of expressed values.
Unnormalized data plots indicate that the samples were
loosely clustered and have distinct boundaries. As the samples
clustered more tightly after normalization, they were more
similar across datasets.

Differentially Expressed Genes Analysis
Differential expression analysis was performed on two cohorts,
between OSA patients and controls and between treatment-naive
and CPAP therapy groups. The OSA cohort consisted of 77 OSA
patients and 19 controls. The CPAP cohort comprised
47 individuals undergoing CPAP therapy and 61 treatment-
naive OSA patients. Further, using the R software limma
package, DEGs were identified between OSA and controls or
between CPAP and treatment-naive samples. The results of the
DEGs are presented in a volcano plot (Figures 1C,D). Based on
fold changes >1.5 and significance thresholds of p < 0.05,
360 significant DEGs linked to OSA and 393 significant DEGs
linked to CPAP were identified. A cross-comparison of two
cohorts of DEGs identified 37 intersection genes: BAZ1B,
MAP1LC3B, TCF12, HUWE1, TPD52, CRYBB1, PTPN3,
BAD, CAND1, TXLNA, BHLHB9, GRPEL1, FGD4, REV3L,
EXOSC10, SMAD4, TBX3, RETN, PPL, MGAT5, GLT1D1,
SLC44A5, FAAH, FLT3, DOCK9, MGP, EPN3, TMEM121,

FIGURE 2 | (A) Common pathways in OSA patients according to the
GSEA c5. go.v7.4. symbols.gmt dataset. (B) Common pathways in OSA
patients that had undergone CPAP treatment according to the GSEA c2.
cp.kegg.v7.4. symbols.gmt dataset. (C) Common pathways in OSA
patients according to the GSEA c5. go.v7.4. symbols.gmt dataset.
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ZNF214, CLEC10A, FKBP4, EYA2, MRO, TFF2, ABCF1,
MOAP1, DNMT1.

GSEA of DEGs
Some immune-related pathways were included in the GSEA
results. DEGs of OSA patients who had undergone CPAP
treatment were enriched in the adaptive immune response,
defense response to bacterium, myeloid leukocyte mediated
immunity, and negative regulation of cytokine production per
the c5. go.v7.4. symbols.gmt dataset (Figure 2A). Several
cellular structure-related pathways were also present in the
results in OSA patients that had undergone CPAP treatment
including cell adhesion molecules, hematopoietic cell lineages,
and lysosomes per the c2. cp.kegg.v7.4. symbols.gmt dataset
(Figure 2B). Some cell cycle-related activities were also
observed in OSA patients, including chromosome
segregation, mitotic sister chromatid segregation, nuclear
chromosome segregation per the c5. go.v7.4. symbols.gmt
dataset (Figure 2C).

Selection of Candidate Genes and
Construction of Predictive Signatures Using
Multiple Machine Learning Algorithms
Across Cohorts
The SVM-RFE algorithm, which searches for genes with the smallest
classification error, and RF, which detects genes with the highest
importance, resulted in the selection of candidate genes. When the
accuracy of the SVM-RFE algorithmwas highest, and the estimation
error was the lowest, 25 genes were identified in the CPAP cohort
(Figures 3A,B) and 21 genes were identified in the OSA cohort
(Figures 3D,E). We then input these genes into the RF classifier. By
evaluating the RMSE, the bestmodels were also determined to have a
better balance of prediction errors (Figures 3C,F).

Each possible number of variables was analyzed with a
recurrent RF classification to determine the average error rate.
The error rate was relatively small when the number of decision
trees was approximately 87 in the OSA cohort and 258 in the
CPAP cohort (Figures 4A,C). Next, an RF model was built, and
the Gini coefficient method was used to calculate the dimensional

FIGURE 3 | (A,B) Feature recursive optimization showing that the highest accuracy, and the lowest error, was achieved with 25 features (genes) in the OSA cohort.
(C) The evaluation of RMSE in 15-fold cross-validation (CV) revalidated the results of SVM-RFE. (D,E) 21 features (genes) in the CPAP cohort were identified with the
highest accuracy and lowest error obtained in the curves. The horizontal axis shows the number of feature selections based on CV, and the vertical axis shows the
prediction accuracy (F) The RMSE was calculated from 15-fold CV and verified the results of SVM-RFE.
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importance value. We chose the top ten genes with the greatest
importance value as variables in each cohort’s subsequent
construction of an ANN. In the OSA cohort, the top 10 genes
were: PTPN3, TXLNA, GLT1D1, SMAD4, REV3L, MOAP1,
GRPEL1, MGAT5, TBX3, and CRYBB1 (Figure 4B). In the
CPAP cohort, the top 10 genes were: PPL, TBX3, TMEM121,
EYA2, TFF2, FGD4, CAND1, TXLNA, TCF12, and ABCF1
(Figure 4D).

Creating a Model of an Artificial Neural
Network
The following formula was constructed to calculate the
classification score for the ANN model: neural score =
∑(Gene Expression’ Neural Network Weight).

The weight predictions for the OSA cohort were 2.84
(PTPN3), -2.78 (TXLNA), -6.57 (SMAD4), 2.00 (REV3L), 1.41

FIGURE 4 | (A) The impact of decision tree number on error rate. The decision tree was plotted along the x-axis and an error rate along the y-axis. The OSA cohort’s
error rate was relatively low when approximately 87 decision trees were plotted. (B) The Gini coefficient method in random forest modeling of the OSA cohort. Genetic
variables are plotted on the y-axis, and importance indexes on the x-axis. (C) The CPAP cohort’s error rate was relatively low when approximately 258 decision trees
were plotted. (D) The Gini coefficient method in random forest modeling of the CPAP cohort. Genetic variables are plotted on the y-axis, and importance indexes on
the x-axis.
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FIGURE 5 | (A,B) The constructions of an ANN for the OSA cohort and the CPAP cohort were comprised of one input layer, one hidden layer, and one output layer.
(C) ROC curves of the ANN-based OSA diagnostic model. (D) ROC curves of the ANN-based CPAP treatment model.
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FIGURE 6 | (A,B) Nomograms with key genes were constructed for OSA risk prediction and CPAP therapeutic response. A point line is shown on the horizontal
axis for each variable. An axis for total score was plotted, and a line for probability was drawn downward to determine the risk or response to treatment. (C) ROC curves
of ANN model genes in the OSA cohort. (D) ROC curves of ANN model genes in the CPAP cohort.
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FIGURE 7 | (A,B) Verification of the ROC curves by the ANN model for the GSE38792 and GSE135917 datasets. (C,D) The enrichment levels of 28 immune-
related cells and functions in the ssGSEA results for the OSA cohort. Besides APC co-inhibition, MHC Class I, and T cell co-inhibition, other cell components, and
functional pathways showed higher ssGSEA scores in OSA patients. (E,F) The enrichment levels of 28 immune-related cells and functions in the ssGSEA results for the
CPAP cohort. Aside from DCs, Neutrophils, CCRs, and MHC class I, other immune cells and functions showed a downward trend in ssGSEA scores after CPAP
treatment. *, p < 0.05; **, p < 0.01; ***, p < 0.001.
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FIGURE 8 | The enrichment levels of 28 immune-related cells and functions in the ssGSEA results for the ANN model. (A,B) Other than MHC class I, all other
immune terms in the ssGSEA were increased in the high neural score group, suggesting that OSA is associated with increased inflammation. (C,D) In addition to DCs,
other immune-related terms in ssGSEA decreased after CPAP treatment, suggesting that CPAP could reduce the level of inflammation in OSA patients. (E,F)
CIBERSORT analysis of immune cell fractions of samples from OSA and CPAP cohorts. Patients with OSA had higher levels of inflammation in multiple immune cell
components, which decreased with CPAP use. *, p < 0.05; **, p < 0.01; ***, p < 0.001.
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(MGAT5), and 1.87 (TBX3), 17.77 (GLT1D1), 42.69
(MOAP1), 8.24 (GRPEL1), -7.96 (CRYBB1) (Figure 5A).
Based on nomograms, MGAT5, REV3L, TXLNA, and
PTPN3 were positively correlated with OSA risk, while the
remaining six genes were negatively correlated (Figure 6A).
The weight predictions for the CPAP cohort were -5.44
(TMEM121), -6.53 (EYA2), 8.75 (TFF2), -15.52 (FGD4),
2.54 (PPL), 1.72 (TBX3), -0.57 (CAND1), 8.66 (TXLNA),
7.99 (TCF12), -5.25 (ABCF1) (Figure 5B). Based on
nomograms, the CPAP response was positively correlated

with FGD4, TFF2, EYA2, and TMEM121, but was
negatively correlated with other genes (Figure 6B). With
the receiver operating characteristic (ROC) curve, the 5-
time cross-validation illustrated the model classification
performance. The areas under the curves (AUC) showed the
hardiness of the model (average AUC >0.99) (Figures 5C,D).
The AUC for each gene was also assessed within each cohort
(Figures 6C,D). The AUC of the neural network score was
much better than that of other genes. Furthermore, the same
ANN model also had excellent performance across two

FIGURE 9 | (A) Bar chart of 22 immune infiltrating cells comparing OSA patients and control samples (B) Bar chart of 22 immune infiltrating cells comparing OSA
patients before CPAP and after CPAP treatment.
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FIGURE 10 | (A) Heatmap of 22 immune cells comparing OSA patients and control samples (B) Heatmap of 22 immune cells comparing OSA patients before and
after the use of CPAP.

Frontiers in Genetics | www.frontiersin.org July 2022 | Volume 13 | Article 92754513

Zhu et al. Machine Learning Reveals Biomarkers of OSA

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


independent validation cohorts from GSE38792 and
GSE135917 (Figures 7A,B).

Immune Cell Infiltration and the Neural
Score
We used ssGSEA to examine immune infiltration in the
transcriptomes of both OSA and CPAP cohorts, including
twenty-eight immune-related terms to assess the abundance of
immune cells.

In the OSA cohort, ssGSEA scores in multiple terms were higher
in OSA patients than in controls, including diverse immune cells
(DCs, B cells, T cells, macrophages, mast cells, neutrophils, NK cells,
etc.) and a variety of immune pathways (APC co-stimulation, CCR,
Checkpoint, Cytolytic activity, HLA, MHC class I, T cell
co−stimulation, etc.) (Figures 7C,D). Almost all the elevated
immune parameters responded to CPAP treatment. A decrease in
the ssGSEA scores in immune cells and pathways was observed after
CPAP treatment (Figures 7E,F). Our ANN model retained the
differences in immunity between OSA and controls and before
and after treatment with CPAP. The OSA patients were clustered
into two groups based on the average neural score. Figure 8 shows the
ssGSEA scores for the high-neural score and low-neural score groups.
The high neural score group was associated with a higher ssGSEA
score, indicating that a higher risk of OSA was associated with
elevated immune infiltration (Figures 8A,B). Similarly, OSA
patients with CPAP treatment were divided based on their
average neural score. A higher neural score indicated a better
CPAP treatment response, accompanied by lower immune
infiltration (Figures 8C,D).

As a result of CIBERSORT, the proportion of 22 immune cell
types in mixed tissue samples from the OSA and CPAP cohorts
was estimated (Figures 9A,B). There were clear positive
correlations among T follicular helper cells, activated mast
cells, eosinophils, activated dendritic cells, and resting memory
CD4 T cells (Figures 10A,B). Additionally, these immune cells
exhibited negative correlations with monocytes, CD8 T cells, and
resting mast cells. Diverse immune cells had a higher
CIBERSORT fraction in OSA patients than controls
(Figure 8E), such as B cells (naïve and memory B cells),
plasma cells, T cells (CD8, resting CD4 memory cells,
activated CD4 memory cells, etc.), NK cells, macrophages
(M0, M1, M2), mast cells, and neutrophils. Additionally,
nearly all types of immune cells showed decreased levels of
elevation after CPAP use (Figure 8F).

DISCUSSION

OSA can be predicted using patient-reported symptoms such as
sleepiness, snoring, and observed apnea (Holfinger et al., 2022).
Questionnaires based on typical symptoms are widely used to
assess OSA risk (Chung et al., 2008). However, such screenings
tend to miss patients with mild symptoms and may include patients
with conditions that cause similar symptoms. It is also believed that
some physiological or pathological indicators, such as sex, age, BMI,
smoking history, alcohol consumption, obesity, and hypertension, are

highly associated with OSA risk (Gaspar et al., 2017; Peppard and
Hagen, 2018; Drager et al., 2019). Furthermore, there is increasing
recognition of the predictive role of inflammatory factors in OSA risk
(Shamsuzzaman et al., 2002; Yokoe et al., 2003). However, there are
no biological indicators to assess the risk of OSA that are as widely
used in clinical practice as patient-reported symptoms. The
development of high-throughput techniques has opened up
numerous possibilities for gene-level analysis, providing an entirely
new perspective on the assessment and treatment of OSA (Kim et al.,
2012; Strausz et al., 2021). Significant advances made in targeting
driver genes for cancer diseases suggests that new OSA prediction
tools based on genetic data could contribute to identifying OSA risk
and improving outcomes. Compared to traditional statistical tools
such as logistic regression models, machine learning algorithms are
more efficient at detectingmultilevel, nonlinear relationships between
variables and outcomes (Holfinger et al., 2022).

Machine learning also is rapidly being applied to various clinical
models of diseases. According to Holfinger et al. (Holfinger et al.,
2022), machine learning derived prediction tools based on age, sex,
race, and BMI provide better diagnosis for OSA than logistic
regression when used in community-based samples. Using sleep
parameters and endoscopic findings to develop machine learning
models for predicting the success rate of sleep surgery also showed
higher accuracy than subjective prediction by sleep surgeons (Kim
et al., 2021). Moreover, machine learning tools are effective at
assessing long-term cardiovascular risk in OSA patients (Li et al.,
2022). Machine learning has even been used to help build a CPAP
compliance-monitoring system to improve the management of OSA
patients (Turino et al., 2021). Additionally, machine learning is used
to recognize data from polysomnograms (PSGs) and other
monitoring equipment automatically. The data from PSGs is in
the form of multichannel signals, making them ideal for machine
learning techniques. Thework of LindaZhang has demonstrated how
machine learning can assist in automating sleep staging and apnea/
hypopnea detection, as well as building models to predict comorbid
outcomes (Zhang et al., 2019; Zhang, 2021). As for other contactless
devices, such as a microwave Doppler radar sleepmonitoring system,
machine learning is also capable of identifying OSA events (Snigdha
et al., 2020). However, the performance of machine learning
prediction models based on genetic datasets has not been
examined. Utilizing three machine learning methods (ANN, RF,
and SVM-REF), we performed a comprehensive analysis of
transcriptome data for OSA risk and CPAP treatment.

Public databases were used to obtain microarray data on patients
with OSA and those who had undergone CPAP treatment.
Comparing OSA data with controls, including before and after
CPAP treatment, DEG intersections were calculated. The final risk
prediction model was comprised of ten genes and demonstrated
excellent ROC performance as verified in multiple independent data
sets. Several of these ten genes are involved in the immune system.
PTPN3 is described as an immune checkpoint molecule. Increased
expression of PTPN3may act as a negative feedback mechanism that
regulates the overactivation of lymphocytes andmay be related to the
PD-1/PD-L1 axis (Fujimura et al., 2019). PTPN3 has been implicated
in various tumor studies as an immune system regulator and as an
immunotherapy target (Gao et al., 2014; Peng et al., 2020; Koga et al.,
2021). TXLNA, formerly known as interleukin-14 (IL-14), has been
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identified as a key factor in intracellular vesicle traffic, essential for
cellular functions, such as neurotransmitter release, cell division, and
cell motility (Nogami et al., 2003). It has been demonstrated that IL-
14 promotes the proliferation of B cells and the expansion ofmemory
B cells (Leca et al., 2008) and enhances the functions of memory
B cells (Ford et al., 1995). SMAD4 has a critical role in activating
TGF-β signaling pathways, a major immune-suppressive signal,
affecting cytotoxic T cells and regulating the recruitment of
regulatory T cells (Nakamura et al., 2001; Chen et al., 2003). In
response to proinflammatory cytokines, SMAD4 proteins inhibit
IFN-γ secretion by NK cells (Yu et al., 2006). MGAT5 encodes a
glycosyltransferase called N-acetylglucosaminyltransferase V (GnT-
V), required for T cell function (Daniels et al., 2002). GnT-V is tightly
involved in regulating T cell activity and signaling. GnT-V deficient
mice showed increased T cell receptor clustering, which led to a
reduced threshold of T cell activation and increased
TH1 differentiation (Demetriou et al., 2001; Morgan et al., 2004).

Several other genes are involved in important cell cycle and
function processes. REV3L encodes the catalytic subunit of DNA
polymerase zeta (Pol zeta), which belongs to the B family of DNA
polymerases. A key function of this protein is to contribute to the
tolerance of DNA damage by translesion synthesis (Prakash et al.,
2005; Waters et al., 2009). By interacting with the BAX protein,
MOAP1 serves as one of the key regulators of apoptosis, contributing
to mitochondrial and death receptor-mediated apoptosis (Su et al.,
2022). GRPEEL1 is a subtype of the GRPE protein homolog. It acts
as a nucleotide exchange factor in mitochondria to influence
nonnative protein folding (Ma et al., 2022).

The main characteristic of OSA is recurrent episodes of upper
airway narrowing, which results in intermittent hypoxia (IH) and
thus induces systemic inflammation. The activation of systemic
inflammation and proinflammatory pathways are important
mechanisms of OSA-derived chronic health conditions such as
cardiovascular disease and cognitive impairment (Thompson
et al., 2022). Widespread increases in inflammatory factors like
TNF-α, interleukin 8(IL-8), Interleukin 6 (IL-6) (NF)-kB, and
CRP levels have been observed in OSA patients and can be
alleviated by CPAP treatment (Garvey et al., 2009;
Kheirandish-Gozal and Gozal, 2019; Thompson et al., 2022).
These proinflammatory factors are part of complex interactive
networks generated by immune cells and vascular endothelial
cells, adipose cells, and liver cells (Lee et al., 2007; Baessler et al.,
2013). These factors were also highly variable among individuals,
according to different studies (Kaditis et al., 2014; Gaines et al.,
2016; Huang et al., 2016). It appears that genetic variances are
responsible for similar heterogeneity (Riha et al., 2005; Popko
et al., 2008; Kong et al., 2017). Given this background, finding
important markers, particularly those closely related to OSA
patients’ inflammation level and responding to CPAP
treatment, will improve accuracy and provide new perspectives
in identifying and treating these patients.

Accordingly, our ssGESA and CIBERSORT results provided
similar conclusions. Multiple identified immune cells, such as
B cells, T cells, plasma cells, NK cells, macrophages, and
neutrophils, and diverse immune pathways were elevated in
OSA patients and decreased after CPAP treatment. The
predictive model based on machine learning algorithms

maintained this characteristic, with individuals at high risk for
OSA showing extensive activation of immune cells and pathways.
Moreover, as mentioned previously, most genes in the models
play an important role in the immune system. In addition, all ten
genes were highly expressed in OSA patients, and their expression
levels decreased after CPAP treatment. Furthermore, all patients
in our study suffered frommoderate to severe OSA. A majority of
the studies reporting increased inflammation in OSA were based
on moderate to severe cases (Murphy et al., 2017; Díaz-García
et al., 2022; Popadic et al., 2022).

As the severity of OSA increased, so did the level of
inflammation (Karamanli et al., 2017; Huang et al., 2021),
which may have a more serious effect on gene transcription.
These findings confirm the critical role that the immune
background plays in developing and treating OSA and
identifying important genes involved in OSA pathophysiology.
There is little information regarding the relative roles played by
these genes in OSA development. Further experiments in vivo
and in vitro will be necessary to validate and examine the specific
mechanisms involved.

While our results are promising, there also are several
limitations to the current study. Machine learning based on
genetic data poses challenges, especially regarding how to best
apply results to clinical practice, given that genetic testing for
OSA patients is not shared and costly. Second, AUC is a powerful
tool for measuring model discrimination; however, its clinical
utility is determined by the threshold met for sleep apnea
treatment. A definite threshold has not been determined and
remains subject to interpretation. Our models used a chosen cut-
point to calculate predictive characteristics. Further population
testing and model corrections and improvements are required
before this type of analysis reaches its potential as a research and
clinical tool for OSA.
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